Skip to main content

Carbon Nanotube Actuation

  • Chapter
  • First Online:
  • 2717 Accesses

Part of the book series: Research Topics in Aerospace ((RTA))

Abstract

The outstanding electrical and mechanical properties of single carbon nanotubes (CNT) are the motivation for an intensive research in various fields of application. The actuation effect constitutes the foundation for any application as a multifunctional material and within the field of adaptronics. The effect is in the majority of cases investigated by a CNT configuration of stochastically aligned CNT, so-called bucky-paper, in an electrolytic environment. The chapter presents an analytical model for a detailed understanding and investigation of the actuation process. The complete description and parameterization of the model is documented. Initial results from experiments with aligned CNT structures and the application of solid electrolytes are presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Iijima, S.: Helical microtubules of graphitic carbon. Nature 354(6348), 56–58 (1991). (London, UK)

    Article  Google Scholar 

  2. Baughman, R.H., Cui, C., Zakhidov, A.A., Iqbal, Z., Barisci, J.N., Spinks, G.M., Wallace, G.G., Mazzoldi, A., De Rossi, D., Rinzler, A.G., Jaschinski, O., Roth, S., Kerzesz, M.: Carbon nanotube actuators. Science 284, 1340–1344 (1999)

    Article  Google Scholar 

  3. Yeo-Heung, Y., Miskin, A., Kang, P., Jain, S., Narasimhadevara, S., Hurd, D., Shinde, V., Schulz, M.J., Shanov, V., He, P., Boerio, F.J., Shi, D., Srivinas, S.: Carbon nanofiber hybrid actuators: part I–liquid electrolyte-based. J. Intell. Mater. Syst. Struct. 17(2), 107–116 (2006)

    Article  Google Scholar 

  4. Yeo-Heung, Y., Miskin, A., Kang, P., Jain, S., Narasimhadevara, S., Hurd, D., Shinde, V., Schulz, M.J., Shanov, V., He, P., Boerio, F.J., Shi, D., Srivinas, S.: Carbon nanofiber hybrid actuators: part II—solid electrolyte-based. J. Intel. Mater. Syst. Struct. 17(3), 191–197 (2006)

    Article  Google Scholar 

  5. Barisci, J. N., Spinks, G.M., Gordon, G.W., John, D.M., Ray, H.B.: Increased actuation rate of electromechanical carbon nanotube actuators using potential pulses with resistance compensation. Smart Mater. Struct. 12, 549–555 (2003)

    Article  Google Scholar 

  6. Mazzoldi, A., De Rossi, D., Baughman, R.H.: Electro-mechanical behavior of carbon nanotube sheets in electrochemicial actuators. In: Bar-Cohen, Y. (ed.) SPIE, EA-PAD, vol. 3987 (2000)

    Google Scholar 

  7. Spinks, GM., Wallace, G.G., Baughman, R.H.: Carbon nanotubes actuators. In: Bar-Cohen, Y. (ed.) Electroactive Polymer (EAP) Actuator as Artificial Muscles, Book Chapter 8, vol. PM 136, pp. 223–246. SPIE Press Monograph (2001)

    Google Scholar 

  8. Spinks, G.M., Wallace, G.G., Carter, C.D., Zhou, D., Fifield, L.S., Kincaid, C.R., Baughman, R.H.: Conducting polymer, carbon nanotube, and hybrid actuator materials. In: Bar-Cohen, Y. (ed.) Smart Structures and Materials 2001: Electroactive Polymer Actuators and Devices, vol. 4329, pp. 199–208. SPIE (2001)

    Google Scholar 

  9. Spinks, G.M., Wallace, G.G., Lewis, T.W., Fifield, L.S., Dai, L., Baughman, R.H.: Electrochemically driven actuators from conducting polymers, hydrogels, and carbon nanotubes. In: Wilson, A.R., Asanuma, H. (ed.) Smart Materials, vol. 4234, pp. 223–231. SPIE (2001)

    Google Scholar 

  10. Tahhan, M., Van Truong, T., Spinks, G., Wallace, G.G.: Carbon nanotube and polyaniline composite actuators. Smart Mater. Struct. 12, 626–632 (2003)

    Article  Google Scholar 

  11. Spinks, G.M., Xi, B., Van Truong, T., Wallace, G.G.: Actuation behaviour of layered composites of polyaniline, carbon nanotubes and polypyrrole. Synth. Met. 151(1), 8591 (2005)

    Article  Google Scholar 

  12. Riemenschneider, J., Mahrholz, T., Mosch, J., Monner, H.P., Melcher, J.: Carbon nanotubes-smart material of the future: experimental investigation of the system response. ECCOMAS, (Jul 2005)

    Google Scholar 

  13. Schmickler, W.: Interfacial electrochemistry. Oxford University Press, Oxford (1996). (ISBN: 0195089324, 1996)

    Google Scholar 

  14. Riemenschneider, J., Temmen, H., Monner, H.P.: CNT based actuators: experimental and theoretical investigation of the in-plain strain generation. J. Nanosci. Nanotechnol. (2006)

    Google Scholar 

  15. Ghosh, S., Gadagkar, V., Sood, A.K.: Strains induced in carbon nanotubes due to the presence of ions: Ab initio restricted hatree-fock calculations. Chem. Phys. Lett. 406, 10–14 (2005)

    Article  Google Scholar 

  16. Brug, G.J., van den Eeden, A.L.G., Sluyters-Rehbach, M., Sluyters, J.H.: The analysis of electrode impedances complicated by the presence of a constantphase element. J. Electroanal. Chem. 176, 275–295 (1984). March

    Article  Google Scholar 

  17. Waidhas, M.: Grundlegende Technologie von Doppelschichtkondensatoren. In: Siemens ZVEI-Workshop, (Jan 2004)

    Google Scholar 

  18. Riemenschneider, J., Opitz, S., Sinapius, M., Monner, H.P.: Modeling of carbon nanotube actuators: part I {modeling and electrical properties. J. Intell. Mater. Syst. Struct. 20(2), 245–250 (2009)

    Article  Google Scholar 

  19. Riemenschneider, J., Opitz, S., Sinapius, M., Monner, H.P.: Modeling of carbon nanotube actuators: part II—mechanical properties, electro mechanical coupling and validation of the model. J. Intell. Mater. Syst. Struct. 20(3), 253–263 (2009)

    Article  Google Scholar 

  20. Riemenschneider, J., Mahrholz, T., Mosch, J., Monner, H.P., Melcher, J.: System response of nanotube based actuators. Mech. Adv. Mater. Struct. 14(1), 57–65 (2007)

    Article  Google Scholar 

  21. Barisci, J.N., Wallace, G.G., MacFarlane, D.R., Baughman, R.H.: Investigation of ionic liquids as electrolytes for carbon nanotube electrodes, vol. 6, issue 1, pp. 22–27 (2004)

    Google Scholar 

  22. Barisci, J.N., Wallace, G.G., Baughman, R.H.: Electrochemical studies of single-wall carbon nanotubes in aqueous solutions. J. Electroanal. Chem. 488, 92–98 (2000)

    Article  Google Scholar 

  23. Landi, B.J., Raffaelle, R.P., Heben, M.J., Alleman, J.L., VanDerveer, W., Gennett, T.: Single wall carbon nanotube-nafion composite actuators. Nano Lett. 2(11), 1329–1332 (2002)

    Article  Google Scholar 

  24. Landi, B.J., Raffaelle, R.P., Heben, M.J., Alleman, J.L., Van Derveer, W., Gennett, T.: Development and characterization of single wall carbon nanotube-nafion composite actuators. Mater. Sci. Eng. B 116(3), 359–362 (2005)

    Article  Google Scholar 

  25. Kosidlo, U., Eis, D.G., Hying, K., Haque, M.H., Kolaric, I.: Development of measurement set-up for electromechanical analysis of bucky-paper actuators. AZojono: J. Nanotechnol. Online 3, 1–11 (2007)

    Google Scholar 

  26. Shahinpoor, M., Kim, K.J.: Ionic polymer-metal composites: I. fundamentals. Smart Mater. Struct. 10(4), 819–833 (2001)

    Article  Google Scholar 

  27. Shahinpoor, M., Kim, K.J.: Ionic polymer-metal composites: Iii. Modeling and simulation as biomimetic sensors, actuators, transducers, and artificial muscles. Smart Mater. Struct. 13(6), 1362–1388 (2004)

    Article  Google Scholar 

  28. Akle, B., Akle, E., Duncan, A., Lee, D.J., Wallmersperger, T.: Forced and free displacement characterization of inonic polymer transducers. Proc. SPIE 7287, 72870N (2009)

    Article  Google Scholar 

  29. Prehn, K., Adelung, R., Heinen, M., Nunes, S.P., Schulte, K.: Catalytically active cnt-polymer-membrane assemblies: From synthesis to application. J. Membr. Sci. 321, 123–130 (2008)

    Article  Google Scholar 

  30. Wang, D., Song, P., Liu, C., Wu, W., Fan, S.: Highly oriented carbon nanotube papersmade of aligned carbon nanotubes. Nanotechnology 19(7), 1–6 (2008)

    Google Scholar 

Download references

Acknowledgment

The authors would like to thank the German Research Foundation (DFG) for financially supporting the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steffen Opitz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Opitz, S., Geier, S., Riemenschneider, J., Monner, H.P., Sinapius, M. (2013). Carbon Nanotube Actuation. In: Wiedemann, M., Sinapius, M. (eds) Adaptive, tolerant and efficient composite structures. Research Topics in Aerospace. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29190-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29190-6_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29189-0

  • Online ISBN: 978-3-642-29190-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics