Skip to main content

Patch Clamp Techniques for Plant Cells

  • Chapter
  • First Online:

Abstract

The study of electrophysiological processes at the molecular level, with exquisite sensitivity and full control over the experimental conditions, is possible with the patch clamp technique. A concise overview is given of the different configurations that are used with the technique. The patch clamp technique critically depends on the formation of a tight, gigaOhm, seal between the glass tip of the measuring electrode and the cell membrane, which for plant cells means that the cell wall has to be removed. Methods that have been developed specifically to gain access to the membrane, such as laser microsurgery and protoplast release, are discussed. This chapter also provides a review of the factors that influence the interaction between the glass tip of the electrode and cell membrane.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Arend M, Stinzing A, Wind C, Langer K, Latz A, Ache P, Fromm J, Hedrich R (2005) Polar-localised poplar K+ channel capable of controlling electrical properties of wood-forming cells. Planta 223:140–148

    Article  PubMed  CAS  Google Scholar 

  • Auerbach A, Sachs F (1985) High resolution patch-clamp techniques. In: Smith TG, Lecar H, Redman SJ, Gage PW (eds) Voltage and patch clamping with microelectrodes. American Physiological Society, Baltimore, pp 121–149

    Google Scholar 

  • Blom-Zandstra M, Koot HTM, van Hattum J, Vogelzang SA (1995) Isolation of protoplasts for patch-clamping experiments: an improved method requiring minimal amounts of adult leaf or root tissue from monocotyledonous or dicotyledonous plants. Protoplasma 185:1–6

    Article  Google Scholar 

  • Boehle T, Benndorf K (1994) Facilitated giga-seal formation with a just originated glass surface. Pflugers Arch 427:487–491

    Article  Google Scholar 

  • Brownlee C (1994) Microelectrode techniques in plant cells and microorganisms. In: Ogden DC (ed) Microelectrode techniques, the plymouth workshop handbook, 2nd edn. Company of Biologists, Cambridge, pp 347–359

    Google Scholar 

  • Brudern A, Thiel G (1999) Effect of cell-wall digesting enzymes on physiological state and competence of maize coleoptile cells. Protoplasma 209:246–255

    Article  CAS  Google Scholar 

  • Bush DS, Hedrich R, Schroeder JI, Jones RL (1988) Channel-mediated K+ flux in barley aleurone protoplasts. Planta 176:368–377

    Article  CAS  Google Scholar 

  • Colquhoun D, Hawkes AG (1995) The principles of the stochastic interpretation of ion-channel mechanisms. In: Sakmann B, Neher E (eds) Single-channel recording, 2nd edn. Plenum Press, New York, pp 397–482

    Google Scholar 

  • Colquhoun D, Sigworth FJ (1995) Fitting and statistical analysis of single-channel records. In: Sakmann B, Neher E (eds) Single-channel recording, 2nd edn. Plenum Press, New York, pp 483–587

    Google Scholar 

  • Davey MR, Anthony P, Power JB, Lowe KC (2005) Plant protoplasts: status and biotechnological perspectives. Biotechnol Adv 23:131–171

    Article  PubMed  CAS  Google Scholar 

  • Davies JM, Poole RJ, Rea PA, Sanders D (1992) Potassium transport into plant vacuoles energized directly by a proton-pumping inorganic pyrophosphatase. Proc Nat Acad Sci USA 89:11701–11705

    Article  PubMed  CAS  Google Scholar 

  • Demidchik V, Sokolik A, Yurin V (2006) Electrophysiological characterization of plant cation channels. In: Volkov A (ed) Plant electrophysiology: theory and methods. Springer, Berlin, pp 173–183

    Chapter  Google Scholar 

  • Dutta AK, Korchev YE, Shevchuk AI, Hayashi S, Okada Y, Sabirov RZ (2008) Spatial distribution of maxi-anion channel on cardiomyocytes detected by smart-patch technique. Biophys J 94:1646–1655

    Article  PubMed  CAS  Google Scholar 

  • Elzenga JTM, Van Volkenburgh E (1997) Characterization of a light-controlled anion channel in the plasma membrane of mesophyll cells of pea. Plant Physiol 113:1419–1426

    PubMed  CAS  Google Scholar 

  • Elzenga JTM, Keller CP, Van Volkenburgh E (1991) Patch clamping protoplasts from vascular plants: method for the quick isolation of protoplasts having a high success rate of gigaseal formation 97:1573–1575

    CAS  Google Scholar 

  • Fairley KA, Walker NA (1989) Patch clamping corn protoplasts. Gigaseal frequency is not improved by Congo red inhibition of cell wall regeneration. Protoplasma 153:111–116

    Article  Google Scholar 

  • Gadsby DC (2009) Ion channels versus ion pumps: the principal difference, in principle. Nat Rev Mol Cell Biol 10:344–352

    Article  PubMed  CAS  Google Scholar 

  • Hafke JB, Furch ACU, Reitz MU, van Bel AJE (2007) Functional sieve element protoplasts. Plant Physiol 145:703–711

    Article  PubMed  CAS  Google Scholar 

  • Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Arch 391(2):85–100

    Article  PubMed  CAS  Google Scholar 

  • Hedrich R, Schroeder JI (1989) The physiology of ion channels and electrogenic pumps in higher plants. Annu Rev Plant Physiol Plant Mol Biol 40:539–569

    Article  Google Scholar 

  • Henriksen GH, Assmann SM (1997) Laser-assisted patch clamping: a methodology. Pfluegers Arch 433:832–841

    Article  CAS  Google Scholar 

  • Henriksen GH, Taylor AR, Brownlee C, Assmann SM (1996) Laser microsurgery of higher plant cell walls permits patch-clamp access. Plant Physiol 110:1063–1068

    PubMed  CAS  Google Scholar 

  • Hille B (1992) Ion channels of excitable membranes. Sinaur Associates, Sunderland, p 607

    Google Scholar 

  • Ivashikina N, Deeken R, Sche P, Kranz E, Pommerrenig B, Sauer N, Hedrich R (2003) Isolation of AtSUC2 promoter-GFP-marked companion cells for patch-clamp studies and expression profiling. Plant J 36:931–945

    Article  PubMed  CAS  Google Scholar 

  • Kennedy BF, De Filippis LF (2004) Tissue degradation and enzymatic activity observed during protoplast isolation in two ornamental Grevillea species. In Vitro Cell Dev Biol 40:119–125

    CAS  Google Scholar 

  • Klercker JAf (1892) Eine Methode zur Isolierung lebender Protoplasten. Ofversigt af kong vetenskaps-akademiens forhandlingar 9:463–474

    Google Scholar 

  • Korchev YE, Negulyaev YA, Edwards CRW, Vodyanoy I, Lab MJ (2000) Functional localization of single active ion channels on the surface of a living cell. Nat Cell Biol 2:616–619

    Article  PubMed  CAS  Google Scholar 

  • Lapointe J-Y, Szabo G (1987) A novel holder allowing internal perfusion of patch-clamp pipettes. Pfluegers Arch Eur J Physiol 410:212–216

    Article  CAS  Google Scholar 

  • Latorre R, Miller C (1983) Conduction and selectivity in potassium channels. J Membr Biol 71:11–30

    Article  PubMed  CAS  Google Scholar 

  • Lebaudy A, Vavasseur A, Hosy E, Dreyer I, Leonhardt N, Thibaud J-B, Very AA, Simonneau T, Sentenac H (2008) Plant adaptation to fluctuating environment and biomass production are strongly dependent on guard cell potassium channels. PNAS 105:5271–5276

    Article  PubMed  CAS  Google Scholar 

  • Levchenko V, Guinot DR, Klein M, Roelfsema MRG, Hedrich R, Dietrich P (2008) Stringent control of cytoplasmic Ca2+ in guard cells of intact plants compared to their counterparts in epidermal strips or guard cell protoplasts. Protoplasma 233:61–72

    Article  PubMed  CAS  Google Scholar 

  • Lew RR (1991) Substrate regulation of single potassium and chloride ion channels in Arabidopsis plasma membrane. Plant Physiol 95:642–647

    Article  PubMed  CAS  Google Scholar 

  • Maathuis FJM, Prins HBA (1990) Patch clamp studies on root cell vacuoles of a salt-tolerant and a salt-sensitive Plantago species. Plant Physiol 92:23–28

    Article  PubMed  CAS  Google Scholar 

  • Maathuis FJM, Prins HBA (1991) Inhibition of inward rectifying tonoplast channels by a vacuolar factor: physiological and kinetic implications. J Membr Biol 122:251–258

    Article  PubMed  CAS  Google Scholar 

  • Maathuis FJM, Taylor AR, Assmann SM, Sanders D (1997) Seal-promoting solutions and pipette perfusion for patch clamping plant cells. Plant J 11:891–896

    Article  PubMed  CAS  Google Scholar 

  • Maathuis FJM, May ST, Graham NS, Bowen HC, Jelitto TC, Trimmer P, Bennett MJ, Sanders D, White PJ (1998) Cell marking in Arabidopsis thaliana and its application to patch-clamp studies. Plant J 15:843–851

    Article  PubMed  CAS  Google Scholar 

  • Malhoubi M, Ostadi H, Wang S, Gu Y, Jiang K (2009) Effects of the surface morphology of pipette tip on giga-seal formation. Eng Lett 17:4

    Google Scholar 

  • Miedema H, Henriksen GH, Assmann SM (1999) A laser microsurgical method of cell wall removal allows detection of large-conductance ion channels in the guard cell plasma membrane. Protoplasma 209:58–67

    Article  PubMed  CAS  Google Scholar 

  • Milton RL, Caldwell JH (1990) How do patch clamp seals form? A lipid bleb model. Pfluegers Arch Eur J Physiol 416:758–765

    Article  CAS  Google Scholar 

  • Moran N, Ehrenstein G, Iwasa K, Bare C, Mischke C (1984) Ion channels in plasmalemma of wheat protoplasts. Science 226:835–883

    Article  PubMed  CAS  Google Scholar 

  • Ogden D (ed) (1994) Microelectrodes Techniques. The Plymouth Workshop Handbook. The Company of Biologists Ltd, Cambridge, p 448

    Google Scholar 

  • Qian YC, Nguyen T, Murphy TM (1993) Effect of washing on the plasma membrane and on stress reactions of cultured rose cells. Plant Cell, Tissue Organ Cult 35:245–252

    Article  Google Scholar 

  • Schauf CL, Wilson KJ (1987a) Effects of abscisic acid on K+ channels in Vicia faba guard cell protoplasts. Biochem Biophys Res Commun 145:284–290

    Article  PubMed  CAS  Google Scholar 

  • Schauf CL, Wilson KJ (1987b) Properties of single K+ and Cl- channels in Asclepias tuberosa protoplasts. Plant Physiol 85:413–418

    Article  PubMed  CAS  Google Scholar 

  • Schroeder JI, Hedrich R, Fernandez JM (1984) Potassium-selective single channels in guard cell protoplasts of Vicia faba. Nature 312:361–362

    Article  CAS  Google Scholar 

  • Suchyna TM, Markin VS, Sachs F (2009) Biophysics and structure of the patch and the gigaseal. Biophys J 97:738–747

    Article  PubMed  CAS  Google Scholar 

  • Vogelzang SA, Prins HBA (1992) Plasmalemma patch clamp experiments in plant root cells: procedure for fast isolation of protoplasts with minimal exposure to cell wall degrading enzymes. Protoplasma 171:104–109

    Article  Google Scholar 

  • Ward JM (1997) Patch-clamping and other molecular approaches for the study of plasma membrane transporters delmystified. Plant Physiol 114:1151–1159

    Article  PubMed  CAS  Google Scholar 

  • Ward JM, Mäser P et al (2009) Plant ion channels: gene families, physiology, and functional genomics analyses. Annu Rev Physiol 71:59–82

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Theo M. Elzenga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Elzenga, J.T.M. (2012). Patch Clamp Techniques for Plant Cells. In: Volkov, A. (eds) Plant Electrophysiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29119-7_10

Download citation

Publish with us

Policies and ethics