Skip to main content

Phytosensors and Phytoactuators

  • Chapter
  • First Online:

Abstract

Plants continuously sense a wide variety of perturbations and produce various responses known as tropisms in plants. It is essential for all plants to have survival sensory mechanisms and actuators responsible for a specific plant response process. Plants are ideal adaptive structures with smart sensing capabilities based on different types of tropisms, such as chemiotropism, geotropism, heliotropism, hydrotropism, magnetotropism, phototropism, thermotropism, electrotropism, thigmotropism, and host tropism. Plants can sense mechanical, electrical and electromagnetic stimuli, gravity, temperature, direction of light, insect attack, chemicals and pollutants, pathogens, water balance, etc. Here we show how plants sense different environmental stresses and stimuli and how phytoactuators response to them. Plants generate various types of intracellular and intercellular electrical signals in response to these environmental changes. This field has both theoretical and practical significance because these phytosensors and phytoactuators employ new principles of stimuli reception and signal transduction and play a very important role in the life of plants.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abe T (1981) Chloride ion efflux during an action potential in the main pulvinus of Mimosa pudica. Bot Mag Tokyo 94:379–383

    CAS  Google Scholar 

  • Ahmad M, Jarillo JA, Smirnova O, Cashmore AR (1998) Cryptochrome blue-light photoreceptors implicated in phototropism. Nature 392:720–723

    PubMed  CAS  Google Scholar 

  • Allen RD (1969) Mechanism of the seismonastic reaction in Mimosa pudica. Plant Physiol 44:1101–1107

    PubMed  CAS  Google Scholar 

  • Asprey GF, Palmer JH (1955) A new interpretation of the mechanics of pulvinar movement. Nature 175:1122–1123

    Google Scholar 

  • Babourina O, Newman I, Shabala S (2002) Blue light-induced kinetics of H+ and Ca2+ fluxes in etiolated wild-type and phototropin-mutant Arabidopsis seedlings. Proc Natl Acad Sci USA 99:2433–2438

    PubMed  CAS  Google Scholar 

  • Balmer RT, Franks JG (1975) Contractile characteristics of Mimosa pudica L. Plant Physiol 56:464–467

    PubMed  CAS  Google Scholar 

  • Baluska F, Mancuso S, Volkmann D, Barlow P (2004) Root apices as plant command centers: the unique ‘brain-like” status of the root apex transition zone. Biologia (Bratisl) (Suppl) 13:1-13

    Google Scholar 

  • Baluska F, Volkmann D, Menzel D (2005) Plant synapses: actin-based domains for cell-to-cell communication. Trends Plant Sci 10:106–111

    PubMed  CAS  Google Scholar 

  • Bertholon M (1783) De l’electricite des vegetaux: ouvrage dans lequel on traite de l’electricite de l’atmosphere sur les plantes, de ses effets sur leconomie des vegetaux, de leurs vertus medico. P.F. Didot Jeune, Paris

    Google Scholar 

  • Blancaflor EB, Fasano JM, Gilroy S (1998) Mapping the functional roles of cap cells in the response of Arabidopsis primary roots to gravity. Plant Physiol 116:213–222

    PubMed  CAS  Google Scholar 

  • Blancaflor EB, Masson PH (2003) Plant Gravitropism. unraveling the ups and downs of a complex process. Plant Physiol 133:1677–1690

    PubMed  CAS  Google Scholar 

  • Boonsirichai K, Guan C, Chae R, Masson PH (2002) Root gravitropism: an experimental tool to investigate basic cellular and molecular processes underlying mechanosensing and signal transmission in plants. Ann Rev Plant Biol 53:421–447

    CAS  Google Scholar 

  • Bose JC (1907) Comparative electro-physiology, a physico-physiological study. Longmans Green and Co., London

    Google Scholar 

  • Bose JC (1913) Researches on irritability of plants. Longmans, London

    Google Scholar 

  • Bose JC (1918) Life movements in plants. B.R. Publishing Corp, Delhi

    Google Scholar 

  • Bose JC (1926) The Nervous mechanism of plants. Longmans Green and Co., London

    Google Scholar 

  • Bose JC (1928) The Motor Mechanism of Plants. Longmans Green, London

    Google Scholar 

  • Burdon-Sanderson J (1873) Note on the electrical phenomena which accompany stimulation of the leaf of Dionaea muscipula. Philos Proc R Soc Lond 21:495–496

    Google Scholar 

  • Casal JJ (2000) Phytochromes, cryptochromes, phototropin: photoreceptor interactions in plants. Photochem Photobiol 71:1–11

    PubMed  CAS  Google Scholar 

  • Cashmore AR, Jarillo JA, Wu YJ, Liu D (1999) Cryptochromes: blue light receptors for plants and animals. Science 284:760–765

    PubMed  CAS  Google Scholar 

  • Chen AM, Rosen ES, Masson PH (1999) Update: gravitropism in higher plants. Plant Physiol 120:343–350

    PubMed  CAS  Google Scholar 

  • Chen Y, Tan TC (1995) Dopamine-sensing efficacy and characteristics of pretreated palnt tissue powder sensors. Sens Actuators B 28:39–48

    Google Scholar 

  • Cosgrove DJ, Hedrich R (1991) Stretch-activated chloride, potassium, and calcium channels coexisting in plasma membranes of guard cells of Vicia faba L. Planta 186:143–153

    PubMed  CAS  Google Scholar 

  • Cote GG (1995) Signal transduction in leaf movements. Plant Physiol 109:729–734

    PubMed  CAS  Google Scholar 

  • Darwin C (1880) The power of movements in plants. John Murray, London

    Google Scholar 

  • Davies E (2006) Electrical signals in plants: Facts and hypothesis. In: Volkov AG (ed) Plant Electrophysiology. Springer, Berlin, pp 407–422

    Google Scholar 

  • Denius HR, Homann PH (1972) The relation between photosynthesis, respiration, and crassulacean acid methabolism in the leaf slices of Aloe arborescent Mill. Plant Physiol 49:873–880

    PubMed  CAS  Google Scholar 

  • De Mairan M (1729) Observation botanique. Histoire de l’Academie Royale de Sciences, Paris, pp. 35–36

    Google Scholar 

  • Dutrochet MH (1837) Memoires pour server a l’histoire anatomique et physiologique des vegetaux et des animaux, Bruxelles

    Google Scholar 

  • Feynman RP, Leighton RB, Sands M (1963) The Feynman lectures on physics. Addison-Wesley, Reading

    Google Scholar 

  • Fleurat-Lessard P, Bouche-Pillion S, Leloup C, Bonnemain J (1997) Distribution and activity of the plasma membrane H+-ATPase related to motor cell function in Mimosa pudica L. Plant Physiol 114:827–834

    PubMed  CAS  Google Scholar 

  • Fleurat-Lessard P, Roblin G (1982) Comparative histology of the petiole and the main pulvinus in Mimosa pudica L. Ann Bot 50:83–92

    Google Scholar 

  • Fondeville JC, Bortwick HA, Hendricks SB (1966) Leaflet movement of Mimosa pudica L Indicative of phytochrome action. Planta 69:357–364

    Google Scholar 

  • Frechilla S, Talbott LD, Bogomolni RA, Zeiger E (2000) Reversal of blue light-stimulated stomatal opening by green light. Plant Physiol 122:99–106

    Google Scholar 

  • Fromm J, Bauer T (1994) Action potentials in maize sieve tubes change phloem translocation. J Exp Bot 45:463–469

    Google Scholar 

  • Fromm J, Spanswick R (1993) Characteristics of action potentials in willow (Salix viminalis L.). J Exp Bot 44:1119–1125

    Google Scholar 

  • Gardiner W (1888) On the power of contractility exhibited by the protoplasm of certain plant cells. Ann Bot os 1:362–367

    Google Scholar 

  • Goldsworthy A (1983) The evolution of plant action potentials. J Theor Biol 103:645–648

    Google Scholar 

  • Gorton HL (1987) Water relation in pulvini from Samanea saman. 2. effects of excision of motor tissues. Plant Physiol 83:945–950

    PubMed  CAS  Google Scholar 

  • Haberlandt G (1890) Das reisleitende Gewebesystem der Sinnpflanse. W. Engelmann, Leipzig

    Google Scholar 

  • Hamill OP, Martinac B (2001) Molecular basis of mechanotransduction in living cells. Physiol Rev 81:685–740

    PubMed  CAS  Google Scholar 

  • Hamill OP, Marty A, Neher E, Sackmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pfluegers Arch Eur J Physiol 391:85–100

    CAS  Google Scholar 

  • He X, Rechnitz GA (1995) Plant tissue-based fiber-optic pyruvate sensor. Anal Chim Acta 316:57–63

    CAS  Google Scholar 

  • Hooke R (1667) Micrographia. The Royal Society, London

    Google Scholar 

  • Jonas H (1970) Oscillations and movements of Mimosa leave due to electric shock. J Interdisc Cycle Res 1:335–348

    Google Scholar 

  • Kameyama K, Kishi Y, Yoshomura M, Kanzawa N, Tsuchia T (2000) Thyrosine phosphorylation in plant bending. Nature 407:37

    PubMed  CAS  Google Scholar 

  • Kanzawa N, Hoshino Y, Chiba M, Hoshino D, Kobayashi H, Kamasawa N, Kishi Y, Osumi M, Sameshima M, Tsuchia T (2006) Change in the actin cytoskeleton during seismonastic movement of Mimosa pudica. Plant Cell Physiol 47:531–539

    PubMed  CAS  Google Scholar 

  • Kim HY, Coté GG, Crain RC (1992) Effect of light on the membrane potential of protoplasts from Samanea saman pulvini. involvement of K+ channels and the H+-ATPase. Plant Physiol 99:1532–1539

    PubMed  CAS  Google Scholar 

  • Kim HY, Coté GG, Crain RC (1993) Potasium channels in Samanea saman protoplasts controlled by phytochrome and the biological clock. Science 260:960–962

    PubMed  CAS  Google Scholar 

  • Kloda A, Martinac B (2002) Common evolutionary origins of mechanosensitive ion channels in archaea, bacteria and cell-walled eukarya. Archaea 1:35–44

    PubMed  CAS  Google Scholar 

  • Ksenzhek OS, Volkov AG (1998) Plant energetics. Academic, San Diego

    Google Scholar 

  • Kumon K, Tsurumi S (1984) Ion efflux from pulvinar cells during slow downward movement of the petiole of Mimosa pudica L. induced by photostimulation. J Plant Physiol 115:439–443

    CAS  Google Scholar 

  • Kuriyama S, Rechnitz GA (1981) Plant tissue-based bioselective membrane electrode for glutamate. Anal Chim Acta 131:91–96

    CAS  Google Scholar 

  • Labady A, Thomas D’J, Shvetsova T, Volkov AG (2002) Plant electrophysiology: excitation waves and effects of CCCP on electrical signaling in soybean. Bioelectrochem 57:47–53

    CAS  Google Scholar 

  • Lebaudy A, Vavasseur A, Hisy E, Dreyer I, Leonhards N, Thibaud JB, Very AA, Simonneau T, Sentenac H (2008) Plant adaptation to fluctuating environment and biomass production are strongly dependent on guard cell potassium channels. Proc Natl Acad Sci USA 105:5271–5276

    PubMed  CAS  Google Scholar 

  • Lemström K (1904) Electricity in agriculture and horticulture. Electrician Publications, London

    Google Scholar 

  • Liawruangrath S, Oungpipat W, Watanesk S, Liawruangrath B, Dongduen C, Purachat P (2001) Asparagus-based amperometric sensor for fluoride determination. Anal Chim Acta 448:37–46

    CAS  Google Scholar 

  • Lindley J (1854) New plant Vallota miniata. The Gardener’s Chronicle 8:119

    Google Scholar 

  • Liubimova MN, Deminovskaya NS, Fedorovich IB (1964) The part played by ATP in the motor function of Mimosa pudica leaf. Biokhimia (Moscow) 29:774–779

    Google Scholar 

  • Liubimova-Engel’gardt MN, Burnasheva SA, Fain FS, Mitina NA, Poprykina IM (1978) Mimosa pudica adenosine triphosphatase. Biokhimia (Moscow) 43:748–760

    Google Scholar 

  • Maffei ME, Mithofer A, Boland W (2007) Insect feeding on plants: rapid signals and responses preseding the induction of phytochemical release. Phytochemistry 68:2946–2959

    PubMed  CAS  Google Scholar 

  • Markin VS, Sachs F (2004) Thermodynamics of mechanosensitivity. physical. Biol 1:110–124

    CAS  Google Scholar 

  • Markin VS, Volkov AG, Jovanov E (2008) Active movements in plants: mechanism of trap closure by Dionaea muscipula Ellis. Plant Signal Behav 3:778–783

    PubMed  Google Scholar 

  • Martinac B, Kloda A (2003) Evolutionary origins of mechanosensitive ion channels. Progress Biophys Mol Biol 82:11–24

    CAS  Google Scholar 

  • Martinac B (2004) Mechanosensitive ion channels: molecules of mechanotransduction. J Cell Sci 117:2449–2460

    PubMed  CAS  Google Scholar 

  • Mayer WE, Flash D, Raju MVS, Starrach N, Wiech E (1985) Mechanics of circadian pulvini movements in Phaseolus coccineus L. shape and arrangement of motor cells, micellation of motor cell walls, and bulk moduli of extensibility. Planta 163:381–390

    Google Scholar 

  • Mei Y, Ran L, Ying X, Yuan Z, Xin S (2007) A sequential injection analysis/chemiluminescent plant tissue-based biosensor system for the determination of diamine. Biosens Bioelectron 22:871–876

    PubMed  CAS  Google Scholar 

  • Morita MT, Tasaka M (1996) Gravity sensing and signaling. Curr Opin Plant Biol 7:712–718

    Google Scholar 

  • Mwesigwa J, Collins DJ, Volkov AG (2000) Electrochemical signaling in green plants: effects of 2,4-dinitrophenol on resting and action potentials in soybean. Bioelectrochem 51:201–205

    CAS  Google Scholar 

  • Pal M, Roychaudhury A, Pal A, Biswas S (1990) A novel tubulin from Mimosa pudica. Eur J Biochem 192:329–335

    PubMed  CAS  Google Scholar 

  • Pfeffer W (1905) The physiology of plants. Clarendon Press, Oxford

    Google Scholar 

  • Quail PH (1997) An emerging molecular map of the phytochromes. Plant, Cell Environ 20:657–665

    CAS  Google Scholar 

  • Quin W, Zhang Z, Peng Y (2000) Plant tissue-base chemiluminescence flow biosensor for urea. Analytica Chim Acta 407:81–86

    Google Scholar 

  • Racusen R, Satter RL (1975) Rhytmic and phytochrome-regulated changes in transmembrane potential in Samanea pulvini. Nature 255:408–410

    PubMed  CAS  Google Scholar 

  • Regel E (1864) Clivia miniata Lindl. amaryllideae. Gartenflora 14:131–134

    Google Scholar 

  • Ricca U (1916) Soluzione d’un problema di fisiologia. La propagazione di stimulo nella “Mimosa.” Nuovo Giornale Botanico Italiano Nuovo Serie 23:51-170

    Google Scholar 

  • Ritter JW (1811) Electrische Versuche an der Mimosa pudica L. In Parallel mit gleichen Versuchen an Fröschen. Denkschr Köningl Akad Wiss (München) 2:345-400

    Google Scholar 

  • Sack FD (1991) Plant gravity sensing. Intl Rev Cytol 127:193–252

    CAS  Google Scholar 

  • Samejima M, Sibaoka T (1982) Membrane potentials and resistance of excitable cells in the petiole and main pulvinus of Mimosa pudica. Plant Cell Physiol 23:459–465

    CAS  Google Scholar 

  • Satter RL (1990) Leaf movements: an overview of the field. In: Satter RL, Gorton HL, Vogelmann TC (eds) The pulvinus: motor organ for leaf movement. The American Society of Plant Physiologists, Rockville, pp 1–9

    Google Scholar 

  • Schildknecht H, Bender W (1983) Chemonastisch wirksame leaf factors aus Mimosa pudica. Chemische Zeitung 107:111–114

    CAS  Google Scholar 

  • Schildknecht H, Meier-Ausgenstein W (1990) Role of turgorins in leaf movement. In: Satter RL, Gorton HL, Vogelman TC (eds) The pulvinus: motor organ for leaf movement. American Society of Plant Physiologists, Rockville, pp 101–129

    Google Scholar 

  • Shimmen T (2006) Electrophysiology in mechanosensing and wounding response. In: Volkov AG (ed) Plant electrophysiology. Springer, Berlin, pp 319–339

    Google Scholar 

  • Scott BIH, Gulline HF (1975) Membrane changes in a circadian system. Nature 254:69–70

    PubMed  CAS  Google Scholar 

  • Shigematsu H, Toko K, Matsuno T, Yamafuji K (1994) Early gravi-electrical responses in bean epicotyls. Plant Physiol 105:875–880

    PubMed  Google Scholar 

  • Short TW, Briggs WR (1994) The transduction of blue light signals in higher plants. Ann Rev Plant Physiol Plant Mol Biol 45:143–171

    CAS  Google Scholar 

  • Shvetsova T, Mwesigwa J, Labady A, Kelly S, Thomas D’J, Lewis K, Volkov AG (2002) Soybean electrophysiology: effects of acid rain. Plant Sci 162:723–731

    CAS  Google Scholar 

  • Shvetsova T, Mwesigwa J, Volkov AG (2001) Plant electrophysiology: FCCP induces fast electrical signaling in soybean. Plant Sci 161:901–909

    CAS  Google Scholar 

  • Sidwell JS, Rechnitz GA (1986) Progress and challenges for biosensors using plant tissue materials. Biosensors 2:221–233

    CAS  Google Scholar 

  • Sinukhin AM, Britikov EA (1967) Action potentials in the reproductive system of plant. Nature 215:1278–1280

    Google Scholar 

  • Stankovic B (2006) Electrophysiology of plant gravitropism. In: Volkov AG (ed) Plant electrophysiology. Springer, Berlin

    Google Scholar 

  • Stoeckel H, Takeda K (1993) Plasmalemmal, voltage-dependent ionic currents from excitable pulvinar motor cells of Mimosa pudica. J Membr Biol 131:179–192

    PubMed  CAS  Google Scholar 

  • Tamiya T, Miyasaki T, Ishikawa H, Iruguchi N, Maki T, Matsumoto JJ, Tsuchiya T (1988) Movement of water in conjunction with plant movement visualized by NMR imaging. J Biochem 104:5–8

    PubMed  CAS  Google Scholar 

  • Tanada T, Vinten-Johansen C (1980) Gravity induces fast electrical field change in soybean hypocotyls. Plant, Cell Environ 3:127–130

    Google Scholar 

  • Tasaka M, Kato T, Fukaki H (1999) The endodermis and shoot gravitropism. Trends Plant Sci 4:103–107

    PubMed  CAS  Google Scholar 

  • Taya M (2003) Bio-inspired design of intelligent materials. Proc SPIE 5051:54–65

    Google Scholar 

  • Temmei Y, Uchida S, Hoshino D, Kanzawa N, Kuwahara M, Sasaki S, Tsuchia T (2005) Water channel activities of Mimosa pudica plasma membrane intrinsic proteins are regulated by direct interaction and phosphorylation. FEBS Lett 579:4417–4422

    PubMed  CAS  Google Scholar 

  • Thomas B, Vince-Prue D (1997) Photoperiodism in plants. Academic, San Diego

    Google Scholar 

  • Toriyama H, Jaffe M (1972) Migration of calcium and its role in the regulation of seismonasty in the motor cell of Mimosa pudica L. Plant Physiol 49:72–81

    PubMed  CAS  Google Scholar 

  • Toriyama H (1955) Observational and experimental studies of sensitive plants. VI. the migration of potassium in the primery pulvinus. Cytologia 20:367–377

    Google Scholar 

  • Varin L, Chamberland H, Lafontaine JG, Richard M (1997) The enzyme involved in sulfation of the turgorins, gallic acid 4-O-(β-D-glucopyranosyl-6’-sulfate) is pulvini-localized in Mimosa pudica. Plant J 12:831–837

    PubMed  CAS  Google Scholar 

  • Volkov AG (1989) Oxygen evolution in the course of photosynthesis. Bioelectrochem Bioenerg 21:3–24

    CAS  Google Scholar 

  • Volkov AG (2000) Green plants: Electrochemical interfaces. J Electroanal Chem 483:150–156

    CAS  Google Scholar 

  • Volkov AG (ed) (2006a) Plant electrophysiology. Springer, Berlin

    Google Scholar 

  • Volkov AG (2006b) Electrophysiology and phototropism. In: Balushka F, Manusco S, Volkman D (eds) Communication in plants neuronal aspects of plant life. Springer, Berlin, pp 351–367

    Google Scholar 

  • Volkov AG, Deamer DW, Tanelian DL, Markin VS (1998) Liquid interfaces in chemistry and biology. Wiley, New York

    Google Scholar 

  • Volkov AG, Adesina T, Markin VS, Jovanov E (2007a) Closing of Venus flytrap by electrical stimulation of motor cells. Plant Signal Behav 2:139–144

    PubMed  Google Scholar 

  • Volkov AG, Adesina T, Markin VS, Jovanov E (2008a) Kinetics and mechanism of Dionaea muscipula trap closing. Plant Physiol 146:694–702

    PubMed  CAS  Google Scholar 

  • Volkov AG, Baker K, Foster JC, Clemmens J, Jovanov E, Markin VS (2011a) Circadian variations in biologically closed electrochemical circuits in Aloe vera and Mimosa pudica. Bioelectrochem 81:39–45

    CAS  Google Scholar 

  • Volkov AG, Carrell H, Adesina T, Markin VS, Jovanov E (2008b) Plant electrical memory. Plant Signal Behav 3:490–492

    PubMed  Google Scholar 

  • Volkov AG, Carrell H, Baldwin A, Markin VS (2009a) Electrical memory in Venus flytrap. Bioelectrochem 75:142–147

    CAS  Google Scholar 

  • Volkov AG, Carrell H, Markin VS (2009b) Biologically closed electrical circuits in Venus flytrap. Plant Physiol 149:1661–1667

    PubMed  CAS  Google Scholar 

  • Volkov AG, Collins DJ, Mwesigwa J (2000) Plant electrophysiology: pentachlorophenol induces fast action potentials in soybean. Plant Sci 153:185–190

    PubMed  CAS  Google Scholar 

  • Volkov AG, Coopwood KJ, Markin VS (2008c) Inhibition of the Dionaea muscipula Ellis trap closure by ion and water channels blockers and uncouplers. Plant Sci 175:642–649

    CAS  Google Scholar 

  • Volkov AG, Deamer DW, Tanelian DI, Markin VS (1997) Liquid interfaces in chemistry and biology. J Wiley, New York

    Google Scholar 

  • Volkov AG, Dunkley T, Labady A, Brown C (2005) Phototropism and electrified interfaces in green plants. Electrochim Acta 50:4241–4247

    CAS  Google Scholar 

  • Volkov AG, Dunkley TC, Labady AJ, Ruff D, Morgan SA (2004a) Electrochemical signaling in green plants induced by photosensory systems: molecular recognition of the direction of light. In: Bruckner-Lea C, Hunter G, Miura K, Vanysek P, Egashira M, Mizutani F (eds) Chemical sensors vi: chemical and biological sensors and analytical methods. Pennington, The Electrochemical Society, pp 344–353

    Google Scholar 

  • Volkov AG, Dunkley TC, Morgan SA, Ruff D, Boyce Y, Labady AJ (2004b) Bioelectrochemical signaling in green plants induced by photosensory systems. Bioelectrochem 63:91–94

    CAS  Google Scholar 

  • Volkov AG, Foster JC, Ashby TA, Walker RK, Johnson JA, Markin VS (2010a) Mimosa pudica: electrical and mechanical stimulation of plant movements. Plant, Cell Environ 33:163–173

    Google Scholar 

  • Volkov AG, Foster JC, Baker KD, Markin VS (2010b) Mechanical and electrical anisotropy in Mimosa pudica. Plant Signal Behav 5:1211–1221

    PubMed  Google Scholar 

  • Volkov AG, Foster JC, Jovanov E, Markin VS (2010c) Anisotropy and nonlinear properties of electrochemical circuits in leaves of Aloe vera L. Bioelectrochem 81:4–9

    Google Scholar 

  • Volkov AG, Foster JC, Markin VS (2010d) Molecular electronics in pinnae of Mimosa pudica. Plant Signal Behav 5:826–831

    PubMed  CAS  Google Scholar 

  • Volkov AG, Foster JC, Markin VS (2010e) Signal transduction in Mimosa pudica: Biologically closed electrical circuits. Plant, Cell Environ 33:816–827

    Google Scholar 

  • Volkov AG, Foster JC, Markin VS (2010f) Molecular electronics in pinnae of Mimosa pudica. Plant Signal Behav 5:1–6

    Google Scholar 

  • Volkov AG, Foster JC, Markin VS (2011b) Anisotropy and nonlinear properties of electrochemical circuits in leaves of Aloe vera L. Bioelectrochem 81:4–9

    CAS  Google Scholar 

  • Volkov AG, Haack RA (1995a) Bioelectrochemical signals in potato plants. Russ J Plant Physiol 42:17–23

    CAS  Google Scholar 

  • Volkov AG, Haack RA (1995b) Insect induced bioelectrochemical signals in potato plants. Bioelectrochem Bioenerg 35:55–60

    Google Scholar 

  • Volkov AG, Labady A, Thomas D’J, Shvetsova T (2001a) Green plants as environmental biosensors: electrochemical effects of carbonyl cyanide 3-chlorophenylhydrazone on soybean. Analytical Sci 17:i359–i362

    Google Scholar 

  • Volkov AG, Lang RD, Volkova-Gugeshashvili MI (2007b) Electrical signal in Aloe vera induced by localized thermal stress. Bioelectrochem 71:192–197

    CAS  Google Scholar 

  • Volkov AG, Mwesigwa J (2001a) Electrochemistry of soybean: effects of uncouplers, pollutants, and pesticides. J Electroanal Chem 496:153–157

    CAS  Google Scholar 

  • Volkov AG, Mwesigwa J (2001b) Interfacial electrical phenomena in green plants: action potentials. In: Volkov AG (ed) Liquid interfaces in chemical, biological, and pharmaceutical applications. M Dekker, New York, Pp, pp 649–681

    Google Scholar 

  • Volkov AG, Mwesigwa J, Shvetsova T (2001b) Soybean as an environmental biosensor: action potentials and excitation waves. In: Butler M, Vanysek P, Yamazoe N (eds) Chemical and biological sensors and analytical methods, vol II. The Electrochemical Society, Pennington, pp 229–238

    Google Scholar 

  • Volkov AG, Pinnock MR, Lowe DC, Gay MS, Markin VS (2011c) Complete hunting cycle of Dionaea muscipula: consecutive steps and their electrical properties. J Plant Physiol 168:109–120

    PubMed  CAS  Google Scholar 

  • Volkov AG, Wooten JD, Waite AJ, Brown CR, Markin VS (2011d) Circadian rhythms in electrical circuits of Clivia miniata. J Plant Physiol 168:1753–1760

    PubMed  CAS  Google Scholar 

  • Wåhlin L (1986) Atmospheric electrostatics. Wiley, New York

    Google Scholar 

  • Weintraub M (1951) Leaf movements in Mimosa pudica L. New Phytol 50:357–382

    Google Scholar 

  • Wijesuriya DC, Rechnitz GA (1993) Biosensors based on plant and animal tissues. Biosens Bioelectron 8:155–160

    PubMed  CAS  Google Scholar 

  • Yamashiro S, Kameyama K, Kanzawa N, Tamiya T, Mabuchi I, Tsuchia T (2001) The gelsolin/fragmin family protein indentified in the higher plant Mimosa pudica. J Biochem 130:243–249

    PubMed  CAS  Google Scholar 

  • Yao H, Xu Q, Yuan M (2008) Actin dynamics mediates the changes of calcium level during the pulvinus movement of Mimosa pudica. Plant Signal Behav 3:954–960

    PubMed  Google Scholar 

  • Zhu L, Li Y, Zhu G (2004) A novel renewable plant tissue-based electrochemiluminescent biosensor for glycolic acid. Sens Actuators B 98:115–121

    Google Scholar 

Download references

Acknowledgement

This work was supported by the grant CBET-1064160 from the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander G. Volkov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Volkov, A.G., Markin, V.S. (2012). Phytosensors and Phytoactuators. In: Volkov, A. (eds) Plant Electrophysiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29110-4_7

Download citation

Publish with us

Policies and ethics