Skip to main content

Regulatory Mechanism of Plant Nyctinastic Movement: An Ion Channel-Related Plant Behavior

  • Chapter
  • First Online:
Book cover Plant Electrophysiology

Abstract

Leguminous plants open their leaves during the daytime and close them at night as if sleeping, a type of movement that follows circadian rhythms, and is known as nyctinasty. This movement is regulated by the drastic volume changes in two kinds of motor cell of the pulvinus, which is located at the bottom of the leaf stalk. The detailed mechanism of the ion channel-regulated volume change of the motor cells largely remains to be elucidated. In this chapter, we reviewed the mechanism of nyctinasty from two view points, electrophysiology of potassium channel and endogenous chemical substance triggering nyctinastic leaf closure. We focused on the nyctinasty of Samanea saman plant because almost all of physiological studies on nyctinasty have been carried out using this plant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acharya BR, Assmann SM (2009) Hormone interactions in stomatal function. Plant Mol Biol 69:451–462

    Article  PubMed  CAS  Google Scholar 

  • Albrecht V, Weinl S et al (2003) The calcium sensor CBL1 integrates plant responses to abiotic stresses. Plant J 36:457–470

    Article  PubMed  CAS  Google Scholar 

  • Bihler H, Eing C et al (2005) TPK1 is a vacuolar ion channel different from the slow-vacuolar cation channel. Plant Physiol 139:417–424

    Article  PubMed  CAS  Google Scholar 

  • Blechert S, Bockelmann C, Fußlein M, Schrader T, Stelmach B, Niesel U, Weiler EW (1999) Structure-activity analyses reveal the existence of two separate groups of active octadecanoids in elicitation of the tendril-coiling response of Bryonia dioica Jacq. Planta 207:470–479

    Article  CAS  Google Scholar 

  • Briggs WR, Christie JM (2002) Phototropins 1 and 2: versatile plant blue-light receptors. Trends Plant Sci 7:204–210

    Article  PubMed  CAS  Google Scholar 

  • Browse J (2009) Jasmonate passes muster: a receptor and targets for the defense hormone. Annu Rev Plant Biol 60:183–205

    Article  PubMed  CAS  Google Scholar 

  • Chini A, Fonseca S, Fernandez G, Adie B, Chico JM, Lorenzo O, Garcıa-Casado G, Lopez-Vidriero I, Lozano FM, Ponce MR et al (2007) The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448:666–671

    Article  PubMed  CAS  Google Scholar 

  • Chung HS, Koo AJK, Gao X, Jayanty S, Thines B, Jones AD, Howe GA (2008) Regulation and function of Arabidopsis JASMONATE ZIM-domain genes in response to wounding and herbivory. Plant Physiol 146:952–964

    Article  PubMed  CAS  Google Scholar 

  • Darwin C (1880) The power of movement in Plants. John Murray Inc.,

    Google Scholar 

  • De Angeli A, Monachello D et al (2006) The nitrate/proton antiporter AtCLCa mediates nitrate accumulation in plant vacuoles. Nature 442:939–942

    Article  PubMed  Google Scholar 

  • Devoto A, Turner JG (2003) Regulation of jasmonate-mediated plant responses in Arabidopsis. Ann Bot (Lond) 92:329–337

    Article  CAS  Google Scholar 

  • Diekmann W, Hedrich R, Raschke K, Robinson DG (1993) Osmocytosis and vacuolar fragmentation in guard cell protoplasts: their relevance to osmotically-induced volume changes in guard cells. J Exp Bot 44:1569–1577

    Article  Google Scholar 

  • Fonseca S, Chini A, Hamberg M, Adie B, Porzel A, Kramell R, Miersch O, Wasternack C, Solano R (2009) (+)-7-iso-Jasmonoyl-l-isoleucine is the endogenous bioactive jasmonate. Nat Chem Biol 5:344–350

    Article  PubMed  CAS  Google Scholar 

  • Gao XQ, Li CG et al (2005) The dynamic changes of tonoplasts in guard cells are important for stomatal movement Vicia faba. Plant Physiol 139:1207–1216

    Article  PubMed  CAS  Google Scholar 

  • Geiger D, Scherzer S et al (2010) Guard cell anion channel SLAC1 is regulated by CDPK protein kinases with distinct Ca2+ affinities. Proc Natl Acad Sci U S A 107:8023–8028

    Google Scholar 

  • Geiger D, Scherzer S et al (2009) Activity of guard cell anion channel SLAC1 is controlled by drought-stress signaling kinase-phosphatase pair. Proc Natl Acad Sci U S A 106:21425–21430

    Article  PubMed  CAS  Google Scholar 

  • Gidda SK, Miersch O, Levitin A, Schmidt J, Wasternack C, Varin L (2003) Biochemical and molecular characterization of a hydroxyjasmonate sulfotransferase from Arabidopsis thaliana. J Biol Chem 278:17895–17900

    Google Scholar 

  • Gobert A, Isayenkov S et al (2007) The two-pore channel TPK1 gene encodes the vacuolar K+ conductance and plays a role in K+ homeostasis. Proc Natl Acad Sci U S A 104:10726–10731

    Article  PubMed  CAS  Google Scholar 

  • Gorton HL, Satter RL (1984) Extensor and flexor protoplasts from Samanea Pulvini. Plant Physiol 76:680–684

    Article  PubMed  CAS  Google Scholar 

  • Hafke JB, Hafke Y et al (2003) Vacuolar malate uptake is mediated by an anion-selective inward rectifier. Plant J 35:116–128

    Article  PubMed  CAS  Google Scholar 

  • Hamamoto S, Marui J et al (2008a) Characterization of a tobacco TPK-type K+ channel as a novel tonoplast K+ channel using yeast tonoplasts. J Biol Chem 283:1911–1920

    Article  PubMed  CAS  Google Scholar 

  • Hamamoto S, Yabe I et al (2008b) Electrophysiological properties of NtTPK1 expressed in yeast tonoplast. Biosci Biotechnol Biochem 72:2785–2787

    Article  PubMed  CAS  Google Scholar 

  • Hedrich R, Neher E (1987) Cytoplasmic calcium regulates voltage dependent ion channels in plant vacuoles. Nature 329:833–835

    Article  Google Scholar 

  • Hidaka H, Inagaki M et al (1984) Isoquinolinesulfonamides, novel and potent inhibitors of cyclic nucleotide dependent protein kinase and protein kinase C. Biochemistry 23:5036–5041

    Article  PubMed  CAS  Google Scholar 

  • Howe GA, Jander G (2008) Plant immunity to insect herbivores. Annu Rev Plant Biol 59:41–66

    Article  PubMed  CAS  Google Scholar 

  • Inoue S, Kinoshita T et al (2005) Possible involvement of phototropins in leaf movement of kidney bean in response to blue light. Plant Physiol 138:1994–2004

    Article  PubMed  CAS  Google Scholar 

  • Israelsson M, Siegel RS et al (2006) Guard cell ABA and CO2 signaling network updates and Ca2+ sensor priming hypothesis. Curr Opin Plant Biol 9:654–663

    Article  PubMed  CAS  Google Scholar 

  • Kienow L, Schneider K, Bartsch M, Stuible H-P, Weng H, Miersch O, Wasternack C, Kombrink E (2008) Jasmonates meet fatty acids: functional analysis of a new acyl-coenzyme a synthetase protein family from Arabidopsis thaliana. J Exp Bot 59:403–419

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita T, Shimazaki K (1999) Blue light activates the plasma membrane H(+)-ATPase by phosphorylation of the C-terminus in stomatal guard cells. EMBO J 18:5548–5558

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita T, Doi M et al (2001) Phot1 and phot2 mediate blue light regulation of stomatal opening. Nature 414:656–660

    Google Scholar 

  • Kovermann P, Meyer S et al (2007) The Arabidopsis vacuolar malate channel is a member of the ALMT family. Plant J 52:1169–1180

    Article  PubMed  CAS  Google Scholar 

  • Latz A, Becker D et al (2007) TPK1, a Ca(2+)-regulated Arabidopsis vacuole two-pore K(+) channel is activated by 14-3-3 proteins. Plant J 52:449–459

    Article  PubMed  CAS  Google Scholar 

  • Lee Y (1990) Satter RL, Gorton HL, Vogelmann TC (eds) The Pulvinus: motor organ for leaf movement. American Society of Plant Physiologists, Rockville, pp 130–141

    Google Scholar 

  • Lorenz A, Kaldenhoff R et al (2003) A major integral protein of the plant plasma membrane binds flavin. Protoplasma 221:19–30

    Article  PubMed  CAS  Google Scholar 

  • MacRobbie EA (1998) Signal transduction and ion channels in guard cells. Philos Trans R Soc Lond B Biol Sci 353:1475–1488

    Article  PubMed  CAS  Google Scholar 

  • Merlot S, Mustilli AC et al (2002) Use of infrared thermal imaging to isolate Arabidopsis mutants defective in stomatal regulation. Plant J 30:601–609

    Article  PubMed  CAS  Google Scholar 

  • Miersch O, Kramell R, Parthier B, Wasternack C (1999) Structure–activity relations of substituted, deleted or stereospecifically altered jasmonic acid in gene expression of barleyleaves. Phytochemistry 50:353–361

    Article  CAS  Google Scholar 

  • Miersch O, Neumerkel J, Dippe M, Stenzel I, Wasternack C (2008) Hydroxylated jasmonates are commonly occurring metabolites of jasmonic acid and contribute to a partial switch-off in jasmonate signaling. New Phytol 117:114–127

    Google Scholar 

  • Miyoshi E, Shizuri Y, Yamamura S (1987) Isolation of potassium chelidonate as a bioactive substance concerning with circadian rhythm in nyctinastic plants. Chem Lett: 511–514

    Google Scholar 

  • Moran N, Ehrenstein G et al (1988) Potassium channels in motor cells of Samanea saman: a patch-clamp study. Plant Physiol 88:643–648

    Article  PubMed  CAS  Google Scholar 

  • Moran N, Fox D, Satter RL (1990) Interaction of the depolarization-activated K+ channel of Samanea saman with inorganic ions: a patch-clamp study. Plant Physiol 94:424–431

    Article  PubMed  CAS  Google Scholar 

  • Moran N (1996) Membrane-delimited phosphorylation enables the activation of the outward-rectifying K channels in motor cell protoplasts of Samanea saman. Plant Physiol 111:1281–1292

    PubMed  CAS  Google Scholar 

  • Moshelion M, Moran N (2000) Potassium-efflux channels in extensor and flexor cells of the motor organ of Samanea saman are not identical. Effects of cytosolic calcium. Plant Physiol 124:911–919

    Article  PubMed  CAS  Google Scholar 

  • Moshelion M, Becker D et al (2002) Diurnal and circadian regulation of putative potassium channels in a leaf moving organ. Plant Physiol 128:634–642

    Article  PubMed  CAS  Google Scholar 

  • Mustilli AC, Merlot S et al (2002) Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell 14:3089–3099

    Article  PubMed  CAS  Google Scholar 

  • Nagano H, Kato E, Yamamura S, Ueda M (2003) Fluorescence studies on nyctinasty which suggest the existence of genus-specific receptors for leaf-movement factor. Org Biomol Chem 1:3186–3192

    Article  PubMed  CAS  Google Scholar 

  • Nakamura Y, Kiyota H, Kumagai T, Ueda M (2006a) Direct observation of the target cell for jasmonate-type leaf-closing factor: genus-specific binding of leaf-movement factors to the plant motor cell. Tetrahedron Lett 47:2893–2897

    Article  CAS  Google Scholar 

  • Nakamura Y, Miyatake R, Matsubara A, Kiyota H, Ueda M (2006b) Enantio-differential approach to identify the target cell for glucosyl jasmonate-type leaf-closing factor, by using fluorescence-labeled probe compounds. Tetrahedron 62:8805–8813

    Article  CAS  Google Scholar 

  • Nakamura Y, Matsubara A, Okada M, Kumagai T, Ueda M (2006c) Double fluorescence-labeling study on genus Albizzia using a set of fluorecence-labeled leaf-movement factors to identify the spatial distribution of their receptors. Chem Lett 35:744–745

    Article  CAS  Google Scholar 

  • Nakamura Y, Miyatake R, Ueda M (2008) Enantiodifferential approach for the detection of the target membrane protein of the Jasmonate Glycoside that controls the leaf movement of Albizzia saman. Angew Chem Int Ed 47:7289–7292

    Article  CAS  Google Scholar 

  • Nakamura Y, Mithofer A, Kombrink E, Boland W, Hamamoto S, Uozumi N, Tohma K, Ueda M (2011) 12-Hydroxyjasmonic acid glucoside is a COI1-JAZ-Independent activator of leaf-closing movement in Samanea saman. Plant Physiol 155:1226–1236

    Article  PubMed  CAS  Google Scholar 

  • Pei ZM, Ward JM et al (1996) A novel chloride channel in Vicia faba guard cell vacuoles activated by the serine/threonine kinase, CDPK. EMBO J 15:6564–6574

    PubMed  CAS  Google Scholar 

  • Peiter E, Maathuis FJ et al (2005) The vacuolar Ca2+-activated channel TPC1 regulates germination and stomatal movement. Nature 434:404–408

    Article  PubMed  CAS  Google Scholar 

  • Raz V, Fluhr R (1993) Ethylene signal is transduced via protein phosphorylation events in plants. Plant Cell 5:523–530

    Article  PubMed  CAS  Google Scholar 

  • Roelfsema MR, Hedrich R (2005) In the light of stomatal opening: new insights into ‘the Watergate’. New Phytol 167:665–691

    Article  PubMed  CAS  Google Scholar 

  • Sato A, Gambale F et al (2010) Modulation of the Arabidopsis KAT1 channel by an activator of protein kinase C in Xenopus laevis oocytes. FEBS J 277:2318–2328

    Article  PubMed  CAS  Google Scholar 

  • Sato A, Sato Y et al (2009) Threonine at position 306 of the KAT1 potassium channel is essential for channel activity and is a target site for ABA-activated SnRK2/OST1/SnRK2.6 protein kinase. Biochem J 424:439–448

    Article  PubMed  CAS  Google Scholar 

  • Sato H, Inada M, Sugimoto T, Kato N, Ueda M (2005) Direct observation of a target cell of leaf-closing factor by using novel fluorescence-labeled phyllanthurinolactone. Tetrahedron Lett 46:5537–5541

    Article  CAS  Google Scholar 

  • Satter RL, Geballe GT et al (1974) Potassium flux and leaf movement in Samanea saman. I. Rhythmic movement. J Gen Physiol 64:413–430

    Article  PubMed  CAS  Google Scholar 

  • Satter RL, Galston AW (1981) Mechanisms of control of leaf movements. Annu Rev Plant Physiol 32:83–110

    Article  CAS  Google Scholar 

  • Satter RL, Moran N (1998) Ionic channels in plant cell membranes. Physiol Plant 72:816–820

    Article  Google Scholar 

  • Satter RL, Gorton HL, Vogelmann TC (eds) (1990) The pulvinus: motor organ for leaf movement. Current topics in plant physiology, vol 3. American Society of Plant Physiologists, Rockville

    Google Scholar 

  • Schildcknecht H (1983) Turgorins, hormones of the endogeneous daily rhythms of higher organized plants—detection, isolation, structure, synthesis, and activity. Angew Chem Int Ed Engl 22:695–710

    Article  Google Scholar 

  • Sheard LB, Tan X, Mao H, Withers J, Ben-Nissan G, Hinds TR, Kobayashi Y, Hsu FF, Sharon M, Browse J et al (2010) Jasmonate perception by inositol-phosphate-potentiated COI1–JAZ co-receptor. Nature 468:400–405

    Article  PubMed  CAS  Google Scholar 

  • Shigemori H, Sakai N, Miyoshi E, Shizuri Y, Yamamura S (1989) Potassium lespedezate and potassium isolespedezate, bioactive substances concerned with the circadian rhythm in nyctinastic plants. Tetrahedron Lett 30:3991–3994

    Article  CAS  Google Scholar 

  • Staswick PE, Tiryaki I, Rowe ML (2002) Jasmonate response locus JAR1 and several related Arabidopsis genes encode enzymes of the firefly luciferase superfamily that show activity on jasmonic, salicylic, and indole-3-acetic acids in an assay for adenylation. Plant Cell 14:1405–1415

    Article  PubMed  CAS  Google Scholar 

  • Sugimoto T, Wada Y, Yamamura S, Ueda M (2001) Fluorescence study on the nyctinasty of Cassia mimosoides L. using novel fluorescence-labeled probe compounds. Tetrahedron 57:9817–9825

    Article  CAS  Google Scholar 

  • Sugimoto T, Yamamura S, Ueda M (2002) Visualization of the precise structure recognition of leaf-opening substance by using biologically inactive probe compounds: fluorescence studies of nyctinasty in legumes 2. Chem Lett 11:1118–1119

    Article  Google Scholar 

  • Suh S, Moran N et al (2000) Blue light activates potassium-efflux channels in flexor cells from Samanea saman motor organs via two mechanisms. Plant Physiol 123:833–843

    Article  PubMed  CAS  Google Scholar 

  • Swiatek A, van Dongen W, Esmans EL, van Onckelen H (2004) Metabolic fate of jasmonates in Tobacco Bright Yellow-2 cells. Plant Physiol 135:161–172

    Article  PubMed  CAS  Google Scholar 

  • Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, Nomura K, He SY, Howe GA, Browse J (2007) JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling. Nature 448:661–665

    Article  PubMed  CAS  Google Scholar 

  • Ueda M, Niwa M, Yamamura S (1995a) Trigonelline, a leaf-closing factor of the nyctinastic plant, Aeschynomene Indica. Phytochemistry 39:817–819

    Article  CAS  Google Scholar 

  • Ueda M, Shigemori-Suzuki T, Yamamura S (1995b) Phyllanthurinolactone, a leaf-closing factor of nyctinastic plant, Phyllanthus urinaria L. Tetrahedron Lett 36:6267–6270

    Article  CAS  Google Scholar 

  • Ueda M, Ohnuki T, Yamamura S (1997a) The chemical control of leaf-movement in a nyctinastic plant, Lespedeza cuneata G. Don. Tetrahedron Lett 38:2497–2500

    Article  CAS  Google Scholar 

  • Ueda M, Tashiro C, Yamamura S (1997b) cis-p-Coumaroylagmatine, the genuine leaf-opening substance of a nyctinastic plant, Albizzia julibrissin Durazz. Tetrahedron Lett 38:3253–3256

    Article  CAS  Google Scholar 

  • Ueda M, Asano M, Yamamura S (1998a) Phyllurine, leaf-opening substance of a nyctinastic plant, Phyllanthus urinaria L. Tetrahedron Lett 39:9731–9734

    Article  CAS  Google Scholar 

  • Ueda M, Ohnuki T, Yamamura S (1998b) Chemical substances controlling the leaf-movement of a nyctinastic plant, Cassia mimosoides L. Phytochemistry 49:633–635

    Article  CAS  Google Scholar 

  • Ueda M, Sawai Y, Shibazaki Y, Tashiro C, Ohnuki T, Yamamura S (1998c) Leaf-opening substance of a nyctinastic plant, Albizzia julibrissin Durazz. Biosci Biotechnol Biochem 62:2133–2137

    Article  CAS  Google Scholar 

  • Ueda M, Yamamura S (1999a) Leaf-opening substance of Mimosa pudica L.; chemical studies on the other leaf-movement of mimosa. Tetrahedron Lett 40:353–356

    Article  CAS  Google Scholar 

  • Ueda M, Yamamura S (1999b) Leaf-closing substance of Mimosa pudica L.; chemical studies on another leaf-movement of mimosa II. Tetrahedron Lett 40:2981–2984

    Article  CAS  Google Scholar 

  • Ueda M, Asano M, Sawai Y, Yamamura S (1999a) The chemistry of leaf-movement in Mimosa pudica L. Tetrahedron 55:5781–5792

    Article  CAS  Google Scholar 

  • Ueda M, Sawai Y, Yamamura S (1999b) Syntheses and novel bioactivities of artificial leaf-opening substances of Lespedeza cuneata G. Don, designed for the bioorganic studies of nyctinasty. Tetrahedron 55:10925–10936

    Article  CAS  Google Scholar 

  • Ueda M, Okazaki M, Ueda K, Yamamura S (2000a) A leaf-closing substance of Albizzia julibrissin Durazz. Tetrahedron 56:8101–8105

    Article  CAS  Google Scholar 

  • Ueda M, Shigemori H, Sata N, Yamamura S (2000b) The diversity of chemical substances controlling the nyctinastic leaf-movement in plants. Phytochemistry 53:39–44

    Article  PubMed  CAS  Google Scholar 

  • Ueda M, Yamamura S (2000) The chemistry and biology of the plant leaf-movements. Angew Chem Int Ed 39:1400–1414

    Article  CAS  Google Scholar 

  • Umezawa T, Nakashima K et al (2010) Molecular basis of the core regulatory network in ABA responses: sensing, signaling and transport. Plant Cell Physiol 51:1821–1839

    Article  PubMed  CAS  Google Scholar 

  • Vavasseur A, Raghavendra AS (2005) Guard cell metabolism and CO2 sensing. New Phytol 165:665–682

    Article  PubMed  CAS  Google Scholar 

  • Wasternack C (2007) Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot (Lond) 100:681–697

    Article  CAS  Google Scholar 

  • Wasternack C, Kombrink E (2010) Jasmonates: structural requirements for lipid- derived signals active in plant stress responses and development. ACS Chem Biol 5:63–77

    Article  PubMed  CAS  Google Scholar 

  • Ward JM, Pei ZM et al (1995) Roles of ion channels in initiation of signal transduction in higher plants. Plant Cell 7:833–844

    Article  PubMed  CAS  Google Scholar 

  • Ward JM, Schroeder JI (1994) Calcium-activated K+ channels and calcium-induced calcium release by slow vacuolar ion channels in guard cell vacuoles implicated in the control of stomatal closure. Plant Cell 6:669–683

    Article  PubMed  CAS  Google Scholar 

  • Yoshida R, Hobo T et al (2002) ABA-activated SnRK2 protein kinase is required for dehydration stress signaling in Arabidopsis. Plant Cell Physiol 43:1473–1483

    Article  PubMed  CAS  Google Scholar 

  • Yoshihara T, Omer ESA, Koshino H, Sakamura S, Kikuta Y, Koda Y (1989) Structure of a tuber-inducing stimulus from potato leaves (Solanum tuberosum L.). Agric Biol Chem 53:2835–2837

    Article  CAS  Google Scholar 

  • Yu L, Becker D et al (2006) Phosphorylation of SPICK2, an AKT2 channel homologue from Samanea motor cells. J Exp Bot 57:3583–3594

    Article  PubMed  CAS  Google Scholar 

  • Yu L, Moshelion M et al (2001) Extracellular protons inhibit the activity of inward-rectifying potassium channels in the motor cells of Samanea saman pulvini. Plant Physiol 127:1310–1322

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minoru Ueda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ishimaru, Y., Hamamoto, S., Uozumi, N., Ueda, M. (2012). Regulatory Mechanism of Plant Nyctinastic Movement: An Ion Channel-Related Plant Behavior. In: Volkov, A. (eds) Plant Electrophysiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29110-4_5

Download citation

Publish with us

Policies and ethics