Skip to main content

The Telegraph Plant: Codariocalyx motorius (Formerly Also Desmodium gyrans)

  • Chapter
  • First Online:
Plant Electrophysiology

Abstract

The telegraph plant (Codariocalyx motorius) has drawn much interest among plant physiologists because of its peculiar movements of the leaflets. While the terminal leaflets move from a horizontal position during the day and downward during the night, the lateral leaflets display rhythmic up and down movements in the minute range. The period length of the lateral leaflets is temperature dependent, while that of the terminal leaflet is temperature compensated. The movements of both the leaflets are regulated in the pulvini, a flexible organ between the leaflets and the stalk. Electrophysiological recordings using microelectrodes have revealed the physiological mechanisms underlying the leaflet movements. Early experiments related to effect of mechanical load, light, electric and magnetic fields on the leaflet oscillations by the Indian physicist Bose, and followed up by others, are presented. Experimental approaches are discussed and indicate, that Ca2+, various membrane channels, electric and osmotic mechanisms participate in the oscillating system. Modelling the pulvinus tissue would certainly aid in understanding the signal transduction during the movements. New approaches of modelling the mechanisms could further help in understanding the oscillations in the leaflet movements. Such oscillations might be of much broader relevance than known so far, although not as conspicuous as in the leaflet movements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The present scientific name of the plant is Codariocalyx motorius (Houtt.) (Ohashi 1973), but for a very long time older names such as Hedysarum gyrans (L.f.), Desmodium gyrans (L.f.) DC, and Desmodium motorium (Houtt.) Merril., were used. In this chapter we will consistently use the present official name viz. Codariocalyx, but readers looking for relevant literature should also use ‘Desmodium’ as the key word.

  2. 2.

    Pulvinus: correctly pulvinule, since it is the joint of a leaflet, not a leaf; for simplicity and since it is commonly used, we will use pulvinus (plural: pulvini).

  3. 3.

    G proteins (guanine nucleotide-binding proteins) are a family of proteins involved in transmitting chemical signals from outside the cell causing intracellular changes.

References

  • Agre P (2004) Aquaporin water channels (Nobel lecture). Angew Chem Int Ed 43:4278–4290

    Article  CAS  Google Scholar 

  • Antkowiak B (1992) Elektrophysiologische Untersuchungen zur Seitenfiederblattbewegung von Desmodium motorium. PhD thesis, University of Tübingen, Germany

    Google Scholar 

  • Antkowiak B, Engelmann W (1989) U1tradian rhythms in the pulvini of Desmodium gyrans: an electrophysiological approach. J Interdiscip Cycle Res 20:164–165

    Google Scholar 

  • Antkowiak B, Engelmann W (1995) Oscillations of apoplasmic K+ and H+ activities in Desmodium motorium (Houtt) merril. Pulvini in relation to the membrane potential of motor cells and leaflet movements. Planta 196:350–356

    Article  CAS  Google Scholar 

  • Antkowiak B, Engelmann W, Herbjørnsen R, Johnsson A (1992) Effects of vanadate, N2 and light on the membrane potential of motor cells and the lateral leaflet movements of Desmodium motorium. Physiol Plant 86:551–558

    Article  CAS  Google Scholar 

  • Antkowiak B, Mayer W-E, Engelmann W (1991) Oscillations of the membrane potential of pulvinar motor cells in situ in relation to leaflet movements of Desmodium motorium. J Exp Bot 42:901–910

    Article  Google Scholar 

  • Antonsen F (1998) Biophysical studies of plant growth movements in microgravity and under 1 g conditions. Doctoral thesis, Norwegian University of Science and Technology, Trondheim, Norway

    Google Scholar 

  • Aridor M, Sagi-Eisenberg R (1990) Neomycin is a potent secretagogue of mast cells that directly activates a GTP-binding protein involved in exocytosis. J Cell Biol 111:2885–2891

    Article  PubMed  CAS  Google Scholar 

  • Aschoff J (1991) Hufeland’s interest in plant movements. Chronobiol 18:75–78

    CAS  Google Scholar 

  • Baikie ID, Smith PJS, Porterfield DM, Estrup PJ (1999) Mulitiple scanning bio-Kelvin probe. Rev Sci Instrum 70:1842–1850

    Article  CAS  Google Scholar 

  • Baluska F (2010) Recent surprising similarities between plant cells and neurons. Plant Signal Behav 5:87–89

    Article  PubMed  CAS  Google Scholar 

  • Baluska F, Schlicht M, Volkmann D, Mancuso S (2008) Vesicular secretion of auxin: evidences and implications. Plant Signal Behav 3:254–256

    Article  PubMed  Google Scholar 

  • Baluska F, Volkmann D, Menzel D (2005) Plant synapses: actin-based domains for cell-to-cell communication. Trends Plant Sci 10:106–111

    Article  PubMed  CAS  Google Scholar 

  • Bauréus Koch CL, Sommarin M, Persson BR, Salford LG, Eberhardt JL (2003) Interaction between weak low frequency magnetic fields and cell membranes. Bioelectromagnetics 24:395–402

    Article  PubMed  Google Scholar 

  • Berg AR, Peacock K (1992) Growth patterns in nutating and nonnutating sunflower (Helianthus annuus) hypocotyls. Am J Bot 79:77–85

    Article  Google Scholar 

  • Bose JC (1913) Researches on irritability of plants. Longmans, Green and Co. London, NY, Bombay, Calcutta, London

    Book  Google Scholar 

  • Bose JC (1919) Life movements in plants. Trans Bose Inst, pp 255–597

    Google Scholar 

  • Bose JC (1926) The nervous mechanisms of plants. Longmans, Green and Co., London

    Google Scholar 

  • Bose JC (1928) The motor mechanism of plants. Longmans, Green and Co., London

    Google Scholar 

  • Brenner ED, Stahlberg R, Mancuso S, Vivanco J, Baluska F, Volkenburgh EV (2006) Plant neurobiology: an integrated view of plant signaling. Trends Plant Sci 1:413–419

    Article  CAS  Google Scholar 

  • Chen J-P (1996) Untersuchungen zur ultradianen Seitenfiederbewegung von Desmodium motorium und zu diffusiv gekoppelten Ca2+-Oszillatoren. PhD thesis, University of Tübingen, Germany

    Google Scholar 

  • Chen J-P, Eichelmann C, Engelmann W (1997) Substances interfering with phosphatidyl inositol signalling pathway affect ultradian rhythm of Desmodium motorium. J Biosc 22:465–476

    Article  CAS  Google Scholar 

  • Chen J-P, Engelmann W, Baier G (1995) Nonlinear dynamics in the ultradian rhythm of Desmodium motorium. Z Naturf 50:1113–1116

    Google Scholar 

  • Chrispeels MJ, Holuigue L, Latorre R, Luan S, Orellana A, Peña-Cortes H, Raikhel NV, Ronald PC, Trewavas A (1999) Signal transduction networks and the biology of plant cells. Biol Res 32:35–60

    PubMed  CAS  Google Scholar 

  • Cihlar J (1965) Der Einfluss vorübergehender Temperaturänderungen auf Erregungsvorgänge bei Staubgefässen und bei Desmodium gyrans. PhD thesis, University of Tübingen, Germany

    Google Scholar 

  • Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6:850–861

    Article  PubMed  CAS  Google Scholar 

  • Cosgrove DJ, Li LC, Cho HT, Hoffman-Benning S, Moore RC, Blecker D (2002) The growing world of expansins. Plant Cell Physiol 43:1436–1444

    Article  PubMed  CAS  Google Scholar 

  • Cosgrove DJ, Hedrich R (1991) Stretch-activated chloride, potassium, and calcium channels coexisting in plasma membranes of guard cells of Vicia faba L. Planta 186:143–153

    Article  PubMed  CAS  Google Scholar 

  • Coté GG (1995) Signal transduction in leaf movement. Plant Physiol 109:729–734

    PubMed  Google Scholar 

  • Das GP (1932) Comparative studies of the effect of drugs on the rhythmic tissues of animal and plant. Trans Bose Res Inst 8:146

    Google Scholar 

  • Davies E (1987a) Action potentials as multifunctional signals in plants: a unifying hypothesis to explain apparently disparate wound responses. Plant Cell Environ 10:623–631

    Article  Google Scholar 

  • Davies E (1987b) The biochemistry of plants. Academic 12:243–264

    CAS  Google Scholar 

  • Dupont G, Berridge MJ, Goldbeter A (1991) Signal-induced Ca2+ oscillations: properties of a model based on Ca2+-induced Ca2+ release. Cell Calcium 12:73–85

    Article  PubMed  CAS  Google Scholar 

  • Durachko DM, Cosgrove DJ (2009) Measuring plant wall extension (creep) induced by acidic pH and by alpha-expansin. J Vis Exp 25:1263

    PubMed  Google Scholar 

  • Dutt BK, Guhathakurta A (1996) Effect of application of load on the pulsatory movement of the leaflet of Desmodium gyrans. Trans Bose Res Inst 29:105–117

    Google Scholar 

  • Dwight JS (1839) Select minor poems from the German of Goethe and Schiller with notes (specimens of foreign standard literature). Hilliard, Gray and Company, Boston, p 403

    Google Scholar 

  • Ellingsrud S, Johnsson A (1993) Perturbations of plant leaflet rhythms caused by electromagnetic radiofrequency radiation. Bioelectromagnetics 14:257–271

    Article  PubMed  CAS  Google Scholar 

  • Engelberth J (2003) Mechanosensing and signal transduction in tendrils. Adv Space Res 32:1611–1619

    Article  PubMed  Google Scholar 

  • Engelmann W (1996) Leaf movement rhythms as hands of biological docks. In: Greppin H, Degli Agosti R, Bonzon M (eds) Vistas on biorhythmicity. University of Geneva, Geneva, pp 51–76

    Google Scholar 

  • Engelmann W, Antkowiak B (1998) Ultradian rhythms in Desmodium (minireview). Chronobiol Internat 15:293–307

    Article  CAS  Google Scholar 

  • Engelmann W, Simon K, Phen CJ (1992) Leaf movement rhythm in Arabidopsis thaliana. Z Naturf 47C:925–928

    Google Scholar 

  • Felle H (1988) Auxin causes oscillations of cytosolic free calcium and pH in Zea mays coleoptiles. Planta 174:495–499

    Article  CAS  Google Scholar 

  • Findlay GP (2001) Membranes and the electrophysiology of turgor regulation. Aust J Plant Physiol 28:617–634

    CAS  Google Scholar 

  • Fostad OK (1994) Konstruksjon av strømpulsgenerator. Strømperturberingseksperiment og matematisk modellering/simulering i studier av oscillative bladbevegelser. Master thesis, University of Trondheim, Norway

    Google Scholar 

  • Fostad OK, Johnsson A, Engelmann W (1997) Effects of electrical currents on Desmodium gyrans leaflet movements. Experiments using a current clamp technique. Biol Rhythm Res 28:244–259

    Article  Google Scholar 

  • Fromm J, Eschrich W (1990) Seismonastic movements in Mimosa. In: Satter RL, Gorton HL, Vogelmann TC (eds) The pulvinus: motor organ for leaf movement. American Society of Plant Physiologists, Rockville, pp 25–43

    Google Scholar 

  • Fromm J, Lautner S (2007) Electrical signals and their physiological significance in plants. Plant Cell Environ 30:249–257

    Article  PubMed  CAS  Google Scholar 

  • Ginzo HD, Decima EE (1995) Weak static magnetic fields increase the speed of circumnutation in cucumber (Cucumis sativus L.) tendrils. Experientia 51:1090–1093

    Article  CAS  Google Scholar 

  • Glass L, Mackey MC (1988) From clocks to chaos: the rhythms of life. Princeton University Press, Princeton

    Google Scholar 

  • Goldbeter A (1996) Biochemical oscillations and cellular rhythms. The molecular bases of periodic and chaotic behaviour. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Goldbeter A, Dupont G, Berridge MJ (1990) Minimal model for signal-induced Ca2+- oscillations and for their frequency encoding through protein phosphorylation. Proc Nat Acad Sci USA 87:1461–1465

    Article  PubMed  CAS  Google Scholar 

  • Gorton HL (1987) Water relations in pulvini from Samanea saman. I. Intact pulvini. Plant Physiol 83:945–950

    Article  PubMed  CAS  Google Scholar 

  • Gorton GL (1990) Stomates and pulvini: a comparison of two rhythmic turgor-mediated movement systems. In: Satter RL, Gorton HL, Vogelmann TC (eds) The pulvinus: motor organ for leaf movement. American Society of Plant Physiologists, Rockville, pp 223–237

    Google Scholar 

  • Gradmann D (2001) Model for oscillations in plants. Aust J Plant Physiol 28:577–590

    CAS  Google Scholar 

  • Gradmann D, Buschmann P (1996) Electrocoupling causes oscillations of ion transporters in plants. In: Greppin H, Degli Agosti R, Bonzon M (eds) Vistas on biorhythmicity. University of Geneva, Geneva, pp 239–269

    Google Scholar 

  • Grassi C, D’Ascenzo M, Torsello A et al (2004) Effects of 50 Hz electromagnetic fields on voltage-gated Ca2+channels and their role in modulation of neuroendocrine cell proliferation and death. Cell Calcium 35:307–315

    Article  PubMed  CAS  Google Scholar 

  • Guevara MR, Glass L (1982) Phase locking, period doubling bifurcations and chaos in a mathematical model of a periodically driven oscillator: a theory for the entrainment of biological oscillators and the generation of cardiac dysrhythmias. J Math Biol 14:1–23

    Article  PubMed  CAS  Google Scholar 

  • Guhathakurta A, Dutt BK (1961) Electrical correlate of the rhythmic pulsatory movement of Desmodium gyrans. Trans Bose Res Inst 24:73–82

    Google Scholar 

  • Hager A (2003) Role of the plasma membrane H+-ATPase in auxin-induced elongation growth: historical and new aspects. J Plant Res 116:483–505

    Article  PubMed  CAS  Google Scholar 

  • Hepler PK, Winship LJ (2010) Calcium at the cell wall-cytoplast interface. J Integr Plant Biol 52:147–160

    Article  PubMed  CAS  Google Scholar 

  • Hufeland W (1790) Über die Bewegung des Hedysarum gyrans und die Wirkung der Elektrizität auf dasselbe. Magazin für das Neueste aus der Physik und Naturgeschichte 6:5–27 (was published as anonymous, but traced to Hufeland)

    Google Scholar 

  • Iino M, Long C, Wang XJ (2001) Auxin- and abscisic acid-dependent osmoregulation in protoplasts of Phaseolus vulgaris pulvini. Plant Cell Physiol 42:1219–1227

    Article  PubMed  CAS  Google Scholar 

  • Janse MJ (2003) A brief history of sudden cardiac death and its therapy. Pharmacol Ther 100:89–99

    Article  PubMed  CAS  Google Scholar 

  • Johansson I, Karlsson M, Johanson U, Larsson C, Kjellbom P (2000) The role of aquaporins in cellular and whole plant water balance. Biochim Biophys Acta 1465:324–342

    Article  PubMed  CAS  Google Scholar 

  • Johnsson A (1997) Circumnutations: Results from recent experiments on earth and in space. Planta 203(Suppl.):S147–S158

    Article  PubMed  CAS  Google Scholar 

  • Johnsson A, Bostrøm AC, Pedersen M (1993) Perturbation of the Desmodium leaflet oscillation by electric current pulses. J Interdisc Cycle Res 24:17–32

    Article  Google Scholar 

  • Johnsson A, Brogårdh T, Holje Ø (1979) Oscillatory transpiration of Avena plants: perturbation experiments provide evidence for a stable point of singularity. Physiol Plant 45:393–398

    Article  Google Scholar 

  • Johnsson A, Karlsson HG (1972) A feedback model for biological rhythms. I. Mathematical description and basic properties of the model. J Theor Biol 36:153–174

    Article  PubMed  CAS  Google Scholar 

  • Johnsson A, Solheim GB, Iversen T-H (2009) Gravity amplifies and microgravity decreases circumnutations in Arabidopsis thaliana stems: results from a space experiment. New Phytol 182:621–629

    Article  PubMed  CAS  Google Scholar 

  • Kaldenhoff R, Fischer M (2006) Aquaporins in plants. Acta Physiol (Oxf) 187:169–176

    Article  CAS  Google Scholar 

  • Karlsson HG, Johnsson A (1972) A feedback model for biological rhythms. II. Comparisons with experimental results, especially on the petal rhythm of Kalanchoë. J Theor Biol 36:175–194

    Article  PubMed  CAS  Google Scholar 

  • Kastenmeier B, Reich W, Engelmann W (1977) Effect of alcohols on the circadian petal movement of Kalanchoë and the rhythmic movement of Desmodium. Chronobiol 4:122

    Google Scholar 

  • Kim HY, Coté GG, Crain RC (1992) Effects of light on the membrane potential of protoplasts from Samanea saman pulvini. Involvement of K+ channels and the H+ ATPase. Plant Physiol 99:1532–1539

    Article  PubMed  CAS  Google Scholar 

  • Kim HY, Coté GG, Crain RC (1993) Potassium channels in Samanea saman protoplasts controlled by phytochrome and the biological clock. Science 260:960–962

    Article  PubMed  CAS  Google Scholar 

  • Kim HY, Coté GG, Crain RC (1996) Inositol 1,4,5-triphosphate may mediate closure of K+ channels by light and darkness in Samanea saman motor cells. Planta 198:279–287

    Article  PubMed  CAS  Google Scholar 

  • Konrad KR, Hedrich R (2008) The use of voltage-sensitive dyes to monitor signal-induced changes in membrane potential-ABA triggered membrane depolarization in guard cells. Plant J 55:161–173

    Article  PubMed  CAS  Google Scholar 

  • Kramer PJ, Boyer JS (1995) Water relations of plants and soils. Academic, San Diego. ISBN 0-12-425060-2

    Google Scholar 

  • Kraus M, Wolf B, Wolf B (1996) Cytoplasmic calcium oscillations. In: Greppin H, Degli Agosti R, Bonzon M (eds) Vistas on Biorhythmicity. University of Geneva, Geneva, pp 213–237

    Google Scholar 

  • Kuznetsov OA, Hasenstein KH (1996) Intracellular magnetophoresis of amyloplasts and induction of root curvature. Planta 198:87–94

    Article  PubMed  CAS  Google Scholar 

  • Lewis RD, Silyn-Roberts H (1987) Entrainment of the ultradian leaf movement rhythm of Desmodium gyrans by temperature cycles. J Interdiscipl Cycle Res 18:193–203

    Article  Google Scholar 

  • Lindström E, Lindström P, Berglund A, Lundgren E, Hansson Mild K (1995) Intracellular calcium oscillations in a T-cell line after exposure to extremely-low-frequency magnetic fields with variable frequencies and flux densities. Bioelectromagnetics 16:41–47

    Article  PubMed  Google Scholar 

  • MacRobbie EAC (1998) Signal transduction and ion channels in guard cells. Philos Trans R Soc London B Biol Sci 353:1475–1488

    Article  PubMed  CAS  Google Scholar 

  • Maurel C (2007) Plant aquaporins: novel functions and regulation properties. FEBS Lett 581:2227–2236

    Article  PubMed  CAS  Google Scholar 

  • Maurel C, Verdoucq L, Luu DT, Santoni V (2008) Plant aquaporins: membrane channels with multiple integrated functions. Annu Rev Plant Biol 59:595–624

    Article  PubMed  CAS  Google Scholar 

  • Mayer WE (1990) Walls as potassium storage reservoirs in Phaseolus pulvini. In: Satter RL, Gorton HL, Vogelmann TC (eds) The pulvinus: motor organ for leaf movement. American Society of Plant Physiologists, Rockville, pp 160–174

    Google Scholar 

  • McCreary CR, Dixon SJ, Fraher LJ et al (2006) Real-time measurement of cytosolic free calcium concentration in Jurkat cells during ELF magnetic field exposure and evaluation of the role of cell cycle. Bioelectromagnetics 27:354–364

    Article  PubMed  CAS  Google Scholar 

  • Menge C (1991) Die Wirkung von Ca2+, Ca2+-Chelatbildern, Ca2+-Kanalblockern, Calmodulinantagonisten und des Ca2+-Ionophors A23187 auf die ultradiane Rhythmik der Seitenfiederbewegung von Desmodium motorium. Diploma Thesis, Universität Tübingen, Germany

    Google Scholar 

  • Mitsuno T (1987) Volume change in the motor cells of pulvinule of lateral leaflets of Codariocalyx motorius. Bull Kyoritsu Woman’s Univ 33:115–124

    Google Scholar 

  • Mitsuno T, Sibaoka T (1989) Rhythmic electric potential change of motor pulvinus in lateral leaflet of Codariocalyx motorius. Plant Cell Physiol 30:1123–1127

    Google Scholar 

  • Monshausen GB, Miller ND, Murphy AS, Gilroy S (2011) Dynamics of auxin-dependent Ca2+ and pH signaling in root growth revealed by integrating high-resolution imaging with automated computer vision-based analysis. Plant J 65:309–318

    Article  PubMed  CAS  Google Scholar 

  • Moran N (1990) The role of ion channels in osmotic volume changes in Samanea motor cells analyzed by patch-clamp methods. In: Satter RL, Gorton HL, Vogelmann TC (eds) The pulvinus: motor organ for leaf movement. American Society of Plant Physiologists, Rockville, pp 142–159

    Google Scholar 

  • Moran N (2007) Osmoregulation of leaf motor cells. FEBS Lett 581:2337–2347

    Article  PubMed  CAS  Google Scholar 

  • Moshelion M, Becker D, Biela A et al (2002a) Plasma membrane aquaporins in the motor cells of Samanea saman: diurnal and circadian regulation. Plant Cell 14:727–739

    Article  PubMed  CAS  Google Scholar 

  • Moshelion M, Becker D, Czempinski K et al (2002b) Diurnal and circadian regulation of putative potassium channels in a leaf moving organ. Plant Physiol 128:634–642

    Article  PubMed  CAS  Google Scholar 

  • Neugebauer A (2002) Dreidimensionale Registrierung circadianer und ultradianer Wachstumsvorgänge des Hypokotyls von Arabidopsis thaliana und Cardaminopsis arenosa. PhD thesis University of Tübingen, Germany

    Google Scholar 

  • Nobel PS (1974) Biophysical plant physiology. Freeman and Company, San Fransisco. ISBN 0-7187-0592-3

    Google Scholar 

  • Ohashi H (1973) The Asiatic species of Desmodium and its allied genera. Ginkgoana 1:1–318

    Google Scholar 

  • Okada T, Miyazaki T, Ishii N, Fukushima T, Honda N (2005) Effect of the magnetic field of 50 Hz on the circumnutatiomn of the stem of Arabidopsis thaliana. Bull Maebashi Inst Technol 8:137–142

    Google Scholar 

  • Pandey S, Zhang W, Assman SM (2007) Roles of ion channels and transporters in guard cell signal transduction. FEBS Lett 581:2325–2336

    Article  PubMed  CAS  Google Scholar 

  • Pazur A, Rassadina V (2009) Transient effects of weak electromagnetic fields on calcium ion concentration in Arabidopsis thaliana. BMC Plant Biol 9:47

    Article  PubMed  CAS  Google Scholar 

  • Pedersen M, Johnsson A, Herbjørnsen R (1990) Rhythmic leaf movements under physical loading of the leaves. Z Naturf 45c:859–862

    Google Scholar 

  • Pickard BG (1973) Action potentials in plants. Bot Rev 39:172–201

    Article  Google Scholar 

  • Porterfield DM (2007) Measuring metabolism and biophysical flux in the tissue, cellular and sub-cellular domains: recent developments in self-referencing amperometry for physiological sensing. Biosens Bioelectron 22:1186–1196

    Article  PubMed  CAS  Google Scholar 

  • Rober-Kleber N, Albrechtovà JTB, Fleig S et al (2003) Plasma membrane H+-ATPase is involved in auxin-mediated cell elongation during wheat embryo development. Plant Physiol 131:1302–1312

    Article  PubMed  CAS  Google Scholar 

  • Rosen AD (1996) Inhibition of calcium channel activation in GH3 cells by static magnetic fields. Biochim Biophys Acta 1282:149–155

    Article  PubMed  Google Scholar 

  • Rosen AD (2003) Effect of 125 mT static magnetic field on the kinetics of voltage activated Na+ channels in GH3 cells. Bioelectromagnetics 24:517–523

    Article  PubMed  CAS  Google Scholar 

  • Ross EM, Higashijima T (1994) Regulation of G-protein activation by mastoparans and other cationic peptides. Methods Enzymol 237:26–37

    Article  PubMed  CAS  Google Scholar 

  • Roux D, Faure C, Bonnet P et al (2008) A possible role for extra-cellular ATP in plant responses to high frequency, low amplitude electromagnetic field. Plant Signal Behav 3:383–385

    Article  PubMed  Google Scholar 

  • Satter RL, Galston AW (1971) Potassium flux: a common feature of Albizzia leaflet movement controlled by phytochrome or endogenous rhythm. Science 174:518–520

    Article  PubMed  CAS  Google Scholar 

  • Satter RL, Galston AW (1981) Mechanisms of control of leaf movements. Annu Rev Plant Physiol 32:83–110

    Article  CAS  Google Scholar 

  • Satter RL, Gorton HL, Vogelmann TC (1990) The pulvinus: motor organ for leaf movement. American Society of Plant Physiologists, Rockville

    Google Scholar 

  • Satter RL, Morse MI, Lee Y, Crain RC, Cote G, Moran N (1988) Light-and clock-controlled leaflet movements in Samanea saman: a physiological, biophysical and biochemical analysis. Bot Acta 101:205–213

    CAS  Google Scholar 

  • Schuster S, Marhl M, Höfer T (2002) Modelling of simple and complex calcium oscillations. From single-cell responses to intercellular signalling. Eur J Biochem 269:1333–1355

    Article  PubMed  CAS  Google Scholar 

  • Scott BIH (1962) Feedback induced oscillations of five-minute period in the electric field of the bean root. Ann N Y Acad Sc 98:890–900

    Article  CAS  Google Scholar 

  • Serrano R (1990) Plasma membrane ATPases. In: Larsson C, Moller JM (eds) The plant plasma membrane. Springer, Berlin, pp 127–152

    Google Scholar 

  • Shabala SN, Newman IA, Morris J (1997) Oscillations in H+ and Ca2+ ion fluxes around the elongation region of corn roots and effects of externa1 pH. Plant Physiol 113:111–118

    PubMed  CAS  Google Scholar 

  • Shabala S, Shabala L, Gradmann D et al (2006) Oscillations in plant membrane transport: model predictions, experimental validation, and physiological implications. J Exp Bot 57:171–184

    Article  PubMed  CAS  Google Scholar 

  • Sharma VK, Bardal TK, Johnsson A (2003) Light-dependent changes in the leaflet movement rhythm of the plant Desmodium gyrans. Z Naturf 58c:81–86

    Google Scholar 

  • Sharma VK, Engelmann W, Johnsson A (2000) Effects of static magnetic field on the ultradian lateral leaflet movement rhythm in Desmodium gyrans. Z Naturf 55c:638–642

    Google Scholar 

  • Sharma VK, Jensen C, Johnsson A (2001) Phase response curve for ultradian rhythm of the lateral leaflets in the plant Desmodium gyrans, using DC current pulses. Z Naturf 56c:77–81

    Google Scholar 

  • Shepherd, VA (1999) Bioelectricity and the rhythms of sensitive plants—the biophysical research of Jagadis Chandra Bose. Curr Sci 77:189–195

    Google Scholar 

  • Shepherd VA (2005) From semi-conductors to the rhythms of sensitive plants: the research of J.C Bose. Cell Mol Biol 51:607–619

    PubMed  CAS  Google Scholar 

  • Solberg EE, Embra BI, Börjesson MB et al (2011) Commotio cordis—under-recognized in Europe? A case report and review. Eur J Cardiov Prev R 18:378–383

    Article  Google Scholar 

  • Solheim BGB, Johnsson A, Iversen TH (2009) Ultradian rhythms in Arabidopsis thaliana leaves in microgravity. New Phytol 183:1043–1052

    Article  PubMed  CAS  Google Scholar 

  • Strogatz SH (1994) Non-linear dynamics and chaos. Addison-Wesley Publishing Company, Reading MA. ISBN 0201543443

    Google Scholar 

  • Suh S, Moran N, Lee Y (2000) Blue light activates potassium-efflux channels in flexor cells from Samanea saman motor organs via two mechanisms. Plant Physiol 123:833–843

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K, Isobe M, Muto S (1998) Mastoparan induces an increase in cytosolic calcium ion concentration and subsequent activation of protein kinases in tobacco suspension culture cells. Biochim Biophys Acta 1401:339–346

    Article  PubMed  CAS  Google Scholar 

  • Toyota M, Furuichi T, Tatsumi H, Sokabe M (2008) Cytoplasmic calcium increases in response to changes in the gravity vector in hypocotyls and petioles of Arabidopsis seedlings. Plant Physiol 146:505–514

    Article  PubMed  CAS  Google Scholar 

  • Turing AM (1952) The chemical basis of morphogenesis. Philos Trans R Soc Lond B 237:37–72

    Article  Google Scholar 

  • Ul Haque A, Rokkam M, Carlo DAR et al (2007) A MEMS fabricated cell electrophysiology biochip for in silico calcium measurements. Sens Actuator B 123:391–399

    Article  CAS  Google Scholar 

  • Umrath K (1930) Untersuchungen über Plasma und Plasmaströmungen an Characeen. IV. Potentialmessungen an Nitella mucronata mit besonderer Berücksichtigung der Erregungserscheinungen. Protoplasma 9:576–597

    Article  Google Scholar 

  • Volkov AG, Adesina T, Jovanov E (2007) Closing of Venus flytrap by electrical stimulation of motor cells. Plant Signal Behav 2:139–145

    Article  PubMed  Google Scholar 

  • Volkov AG (2006) Plant electrophysiology. Theory and methods. Springer, London. ISBN 978-3-540-32717-2

    Book  Google Scholar 

  • Wang XJ, Haga K, Nishizaki Y et al (2001) Blue-light-dependent osmoregulation in protoplasts of Phaseolus vulgaris pulvini. Plant Cell Physiol 42:1363–1372

    Article  PubMed  CAS  Google Scholar 

  • Weber U (1990) Die Rolle von Ionenkanälen und Protonenpumpen bei der rhythmischen Seitenfiederbewegung von Desmodium motoricum. Diploma Thesis, Universität Tübingen, Germany

    Google Scholar 

  • Weber U, Engelmann W, Mayer WE (1992) Effects of tetraethylammonium chloride (TEA), vanadate, and alkali ions on the lateral leaflet movement rhythm of Des modium motorium (Houtt.) Merr. Chronobiol Int 9:269–277

    Article  PubMed  CAS  Google Scholar 

  • Whitecross MI, Plovanic N (1982) Structure of the motor region of pulvinules of Desmodium gyrans leaflets. Micron 13:337–338

    Google Scholar 

  • Wildon DC, Thain JF, Minchin PEH et al (1992) Electrical signalling and systemic proteinase inhibitor induction in the wounded plant. Nature 360:62–65

    Article  CAS  Google Scholar 

  • Winfree AT (1970) An integrated view of the resetting of a circadian clock. J Theor Biol 28:327–374

    Article  PubMed  CAS  Google Scholar 

  • Winfree A (1971) Corkscrews and singularities in fruitflies: resetting behaviour of the circadian eclosion rhythm. In: Menaker M (ed) Biochronometry. Natl Acad Sci, Washington

    Google Scholar 

  • Winfree AT (1987a) The timing of biological clocks. Scientific American Books Inc, NY

    Google Scholar 

  • Winfree AT (1987b) When time breaks down. The three-dimensional dynamics of electrochemical waves and cardiac arrythmias. Princeton University Press, Princeton NJ. ISBN 0-691-02402-2

    Google Scholar 

  • Winfree AT (2000) Various ways to make phase singularities by electric shock. J Cardiovasc Electrophysiol 11:286–289

    Article  PubMed  CAS  Google Scholar 

  • Winfree AT (2001) The geometry of biological time, 2nd edn. Springer, NY. ISBN 10: 0387989927

    Google Scholar 

  • Winfree AT (2002) Chemical waves and fibrillating hearts: discovery by computation. J Biosci 27:465–473

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Fan LM, Wu WH (2007) Osmo-sensitive and strech-activated calcium-permeable channels in Vicia faba guard cells are regulated by actin dynamics. Plant Physiol 143:1140–1151

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders Johnsson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Johnsson, A., Sharma, V.K., Engelmann, W. (2012). The Telegraph Plant: Codariocalyx motorius (Formerly Also Desmodium gyrans). In: Volkov, A. (eds) Plant Electrophysiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29110-4_4

Download citation

Publish with us

Policies and ethics