Skip to main content

Mathematical Modeling, Dynamics Analysis and Control of Carnivorous Plants

  • Chapter
  • First Online:
Book cover Plant Electrophysiology

Abstract

The focus of this chapter is to analyze the sensing and actuating mechanism of the Venus flytrap (Dionaea muscipula) by developing a control model to explain these phenomena. The mathematical model captures the dynamic responses of the flytrap in different environmental conditions. In addition, this model emphasizes the existence of the threshold accumulation of the trigger signal and the semi-closed state, which are largely ignored in other models. Furthermore, a biomimetic robot was constructed to demonstrate the feasibility of the mathematical model. While the robot serves as a prototype to demonstrate the control model, future applications using this control could aid microsensors and microgrippers to reduce false alarms. In summary, this chapter uses the Venus flytrap as an example to illustrate the integration between biology, theoretical modeling, and engineering. Such integration and inspiration from the natural world will significantly contribute to advances in these various disciplines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bar-Cohen Y, Breazeal CL (2003) Biologically inspired intelligent robots. SPIE Publications, WA

    Google Scholar 

  • Bhushan B (2009) Biomimetics: lessons from nature: an overview. Phil Trans R Soc A 367(1893):1445–1486

    Article  PubMed  CAS  Google Scholar 

  • Bobji M (2005) Springing the trap. J Biosci 30:143–146

    Article  PubMed  CAS  Google Scholar 

  • Brogan WL (1985) Modern control theory, 3rd edn. Prentice Hall, NJ

    Google Scholar 

  • Brown WH, Sharp LW (1910) The Closing response in dionaea. Bot Gaz 49(4):290–302

    Article  Google Scholar 

  • Burden-Sanderson J (1882) On the electromotive properties of the leaf of Dionaea in the excited and unexcited states. Philos Trans R Soc Lond B Biol Sci 173:1–55

    Article  Google Scholar 

  • Darwin C (1875) Insectivorous plants. Murray, London

    Book  Google Scholar 

  • Fagerberg WR, Allain D (1991) A quantitative study of tissue dynamics during closure in the traps of Venus’s Flytrap Dionaea muscipula ellis. Am J Bot 78(5):647–657

    Article  Google Scholar 

  • Fagerberg WR, Howe DG (1996) A quantitative study of tissue dynamics in Venus’s Flytrap Dionaea muscipula (droseraceae). II. Trap Reopening Am J Bot 83(7):836–842

    Article  Google Scholar 

  • Forterre Y, Skotheim JM, Dumais J, Mahadevan L (2005) How the Venus Flytrap snaps. Nature 433(7024):421–425

    Article  PubMed  CAS  Google Scholar 

  • Hodick D, Sievers A (1986) The infulence of Ca2+ on the action potential in mesophyll Cells of Dionaea muscipula ellis. Protoplasma 133:83–84

    Article  Google Scholar 

  • Hodick D, Sievers A (1988) The action potential of Dionaea muscipula ellis. Planta 174(1):8–18

    Article  CAS  Google Scholar 

  • Hodick D, Sievers A (1989) On the mechanism of trap closure of Venus Flytrap (Dionaea muscipula ellis). Planta 179(1):32–42

    Article  Google Scholar 

  • Kim S-W, Koh J-S, Cho M, Cho K-J (2011) Design and amp; analysis a flytrap robot using bi-stable composite. In: IEEE international conference on robotics and automation (ICRA), Shanghai, 9–13 May 2011, pp 215–220

    Google Scholar 

  • Leang K, Zou Q, Devasia S (2009) Feedforward control of piezoactuators in atomic force microscope systems. IEEE Control Syst Mag 29(1):70–82

    Article  Google Scholar 

  • Li Y, Zhang M (2011) Nonlinear dynamics in the trapping movement of the Venus Flytrap. In: American control conference, San Francisco, CA, pp 3514–3518

    Google Scholar 

  • Mangan S, Alon U (2003) Structure and function of the feed-forward loop network motif. PNAS 100(21):11980–11985

    Article  PubMed  CAS  Google Scholar 

  • Markin VS, Volkov AG, Jovanov E (2008) Active movements in plants: mechanism of fly catching by Venus Flytrap. Plant Sign Behav 3:778–783

    Article  Google Scholar 

  • Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U (2002) Network motifs: simple building blocks of complex networks. Science 298(5594):824–827. doi:10.1126/science.298.5594.824

    Article  PubMed  CAS  Google Scholar 

  • Rea PA (1983) The dynamics of H+ efflux from the trap lobes of Dionaea muscipula ellis (Venus’s Flytrap). Plant Cell Environ 6(2):125–134

    Article  CAS  Google Scholar 

  • Schäffner AR (1998) Aquaporin function, structure, and expression: are there more surprises to surface in water relations? Planta 204(2):131–139

    Article  PubMed  Google Scholar 

  • Shahinpoor M, Thompson M (1995) The Venus Flytrap as a model for a biomimetic material with built-in sensors and actuators. Mat Sci Eng C Biomim 2:229–233

    Article  Google Scholar 

  • Stuhlman O Jr (1948) A physical analysis of the opening and closing movements of the lobes of Venus’ Flytrap. Bull Torrey Bot Club 75(1):22–44

    Article  Google Scholar 

  • Stuhlman O Jr, Darder E (1950) The action potentials obtained from Venus’s Flytrap. Science 111:491–492

    Article  PubMed  Google Scholar 

  • Trivedi D, Rahn CD, Kier WM, Walker ID (2008) Soft robotics: biological inspiration, state of the art, and future research. Appl Bionics Biomech 5(3):99–117

    Article  Google Scholar 

  • Ueda M, Nakamura Y, Okada M (2007) Endogenous factors involved in the regulation of movement and “memory” in plants. Pure Appl Chem 79(4):519–527

    Article  CAS  Google Scholar 

  • Vincent JF (2003) Deployable structures in biology. In: Hara F, Pfeifer R (eds) Morpho-functional machines—the new species: designing embodied intelligence. Springer, Tokyo, pp 23–40

    Chapter  Google Scholar 

  • Volkov AG, Adesina T, Jovanov E (2007) Closing of Venus Flytrap by electrical stimulation of motor cells. Plant Sign Behav 2:139–144

    Article  Google Scholar 

  • Volkov AG, Adesina T, Jovanov E (2008a) Charge induced closing of Dionaea muscipula ellis trap. Bioelectrochemistry 74(1):16–21

    Article  PubMed  CAS  Google Scholar 

  • Volkov AG, Adesina T, Markin VS, Jovanov E (2008b) Kinetics and mechanism of Dionaea muscipula trap closing. Plant Physiol 146(2):694–702

    Article  PubMed  CAS  Google Scholar 

  • Volkov AG, Carrell H, Adesina T, Markin VS, Jovanov E (2008c) Plant electrical memory. Plant Sign Behav 3:490–492

    Article  Google Scholar 

  • Volkov AG, Coopwood KJ, Markin VS (2008d) Inhibition of the Dionaea muscipula ellis trap closure by ion and water channels blockers and uncouplers. Plant Sci 175(5):642–649

    Article  CAS  Google Scholar 

  • Yang R, Lenaghan SC, Zhang M, Xia L (2010a) A mathematical model on the closing and opening mechanism for Venus Flytrap. Plant Sign Behav 5(8):968–978

    Article  Google Scholar 

  • Yang R, Tarn T-J, Zhang M (2010b) Data-driven feedforward control for electroporation mediated gene delivery in gene therapy. IEEE Trans Control Syst Technol 18(4):935–943

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingjun Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yang, R., Lenaghan, S.C., Li, Y., Oi, S., Zhang, M. (2012). Mathematical Modeling, Dynamics Analysis and Control of Carnivorous Plants. In: Volkov, A. (eds) Plant Electrophysiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29110-4_3

Download citation

Publish with us

Policies and ethics