Skip to main content

Ion Currents Associated with Membrane Receptors

  • Chapter
  • First Online:

Abstract

The coordination of cellular physiology, organ development, life cycle phases and symbiotic interaction, as well as the triggering of a response to changes is the environment, in plants depends on the exchange of molecules that function as messengers. Binding of these messenger molecules to receptor proteins, is transduced through a network of second messengers into a response. Electrophysiological processes, like ion channel activation, regulation of ion pumps and membrane potential changes, have been shown to be involved in signal perception, transduction and in the cellular response. Examples are the perception and response to pathogen invasion, the signal exchange between plants and microbial symbionts, the systemic response to herbivore attack and the interaction between pollen tube and pistil tissue. In this chapter an overview of the coupling between ligands binding to a receptor protein and subsequent ion flux changes is given.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Batut J, Mergaert P, Masson-Bovin C (2011) Peptide signaling in the rhizobium-legume symbiosis. Curr Opin Microbiol 14:181–187

    Article  PubMed  CAS  Google Scholar 

  • Becraft PW (2002) Receptor kinase signaling in plant development. Annu Rev Cell Dev Biol 18:163–192

    Article  PubMed  CAS  Google Scholar 

  • Bedinger PA, Pearce G, Covey PA (2010) RALFS peptide regulators of plant growth. Plant Signal Behav 5:1342–1346

    Article  PubMed  CAS  Google Scholar 

  • Boller T, Felix G (2009) A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60:379–406

    Article  PubMed  CAS  Google Scholar 

  • Bosch M, Poulter NS, Vatovec S, Franklin VE (2008) Initiation of programmed cell death in self-incompatibility: role for cytoskeleton modifications and several caspase-like activities. Mol Plant 1:879–887

    Article  PubMed  CAS  Google Scholar 

  • Briggs WR, Christie JM (2002) Phototropins 1 and 2: versatile plant blue-light receptors. Trends Plant Sci 7:204–210

    Article  PubMed  CAS  Google Scholar 

  • Butenko MA, Vie AK, Brembu T, Aalen RB, Bones AM (2009) Plant peptides in signaling: looking for new partners. Trends Plant Sci 14:255–263

    Article  PubMed  CAS  Google Scholar 

  • Campanoni P, Blatt MR (2007) Membrane trafficking and polar growth in root hairs and pollen tubes. J Exp Bot 58:65–74

    Article  PubMed  CAS  Google Scholar 

  • Castells E, Casacuberta JM (2007) Signaling through kinase-defective domains: the prevalence of atypical receptor-like kinases in plants. J Exp Bot 58(13):3503–3511

    Article  PubMed  CAS  Google Scholar 

  • Davenport R (2002) Glutamate receptors in plants. Ann Bot 90:549–557

    Article  PubMed  CAS  Google Scholar 

  • De Smet I, Voss U, Juergens G, Beeckman T (2009) Receptor-like kinases shape the plant. Nature Cell Biol 11:1166–1173

    Article  PubMed  Google Scholar 

  • Demarsy E, Fankhauser C (2009) Higher plants use LOV to perceive blue light. Curr Opin Plant Biol 12:69–74

    Article  PubMed  CAS  Google Scholar 

  • Dodds PN, Rathjen JP (2010) Plant immunity: towards an integrated view of plant-pathogen interactions. Nat Rev Genet 11:539–548

    Article  PubMed  CAS  Google Scholar 

  • Dutta R, Robinson KR (2004) Identification and characterization of stretch-activated ion channels in pollen protoplasts. Plant Physiol 135:1398–1406

    Article  PubMed  CAS  Google Scholar 

  • Farmer EE, Almeras E, Krishnamurthy V (2003) Jasmonates and related oxylipins in plant responses to pathogenesis and herbivory. Curr Opin Plant Biol 6:372–378

    Article  PubMed  CAS  Google Scholar 

  • Felix G, Boller T (1995) Systemin induces rapid ion fluxes and ethylene biosynthesis in Lycopersicon peruvianum cells. Plant J 7:381–389

    Article  CAS  Google Scholar 

  • Ferry N, Edwards MG, Gatehouse JA, Gatehouse AMR (2004) Plant-insect interactions: molecular approaches to insect resistance. Curr Opin Biotechnol 15:155–161

    Article  PubMed  CAS  Google Scholar 

  • Fromm J, Lautner S (2007) Electrical signals and their physiological significance in plants. Plant Cell Env 30:249–257

    Article  CAS  Google Scholar 

  • Fukuda H, Higashiyama T (2011) Diverse functions of palnt peptides: entering a new phase. Plant Cell Physiol 52:1–4

    Article  PubMed  CAS  Google Scholar 

  • Germain H, Chevalier E, Matton DP (2006) Plant bioactive peptides: an expanding class of signaling molecules. Can J Bot 84:1–19

    Article  CAS  Google Scholar 

  • Grill E, Christmann A (2007) A plant receptor with a big family. Science 315:1676–1677

    Article  PubMed  CAS  Google Scholar 

  • Heil M (2009) Damaged-self recognition in plant herbivore defense. Trends Plant Sci 14:356–363

    Article  PubMed  CAS  Google Scholar 

  • Hind SR, Malinowski R, Yalamanchili R, Stratmann JW (2010) Tissue-type specific systemin perception and the elusive systemin receptor. Plant Signal and Behav 5:42–44

    Article  CAS  Google Scholar 

  • Holton N, Cano-Delgado A, Harrison K, Montoya T, Chory J, Bishop GJ (2007) Tomato brassinosteroid insensitive1 is required for systemin-induced root elongation in solanum pimpinellifolium but is not essential for wound signaling. Plant Cell 19:1709–1717

    Article  PubMed  CAS  Google Scholar 

  • Inoue S, Takemiya A, Shimazaki K (2010) Phototropin signaling and stomatal opening as a model cas. Curr Opin Plant Biol 13:587–593

    Article  PubMed  CAS  Google Scholar 

  • Jeworutski E, Roelfsema MRG, Anschuetz U, Krol E, Elzenga JTM, Felix G, Boller T, Hedrich R, Becker D (2010) Early signaling through the Arabidopsis pattern recognition receptors FLS2 and EFR involves Ca2+-associated opening of plasma membrane anion channels. Plant J 62:367–378

    Article  Google Scholar 

  • Johnson BR, Wyttenbach RA, Wayne R, Hoy RR (2002) Action potentials in a giant algal cell: a comparative approach to mechanisms and evolution of excitability. J Undergraduate Neurosci Educ 1:A23–A27

    Google Scholar 

  • Kacperska A (2004) Sensor types in signal transduction pathways in plant cells responding to abiotic stressors: do they depend on stress intensity? Physol Plant 122:159–168

    Article  CAS  Google Scholar 

  • Katsir L, Davies KA (2011) Peptide signaling in plant development. Curr Biol 21:356–365

    Article  Google Scholar 

  • Krol E, Mentzel T, Chinchilla D, Boller T, Felix G, Kemmerling B, Postel S, Arents M, Jeworutzki E, Al-Rasheid KAS, Becker D, Hedrich R (2010) Perception of the Arabidopsis danger signal peptide 1 involves the pattern recognition receptor AtPEPR1 and its close homologue AtPEPR2. J Biol Chem 285:13471–13479

    Article  PubMed  CAS  Google Scholar 

  • Lanfermeijer FC, Staal M, Malinowski R, Stratmann JW, Elzenga JTM (2008) Micro-electrode flux estimation confirms that the Solanum pimpinellifolium cu3 mutant still responds to systemin. Plant Physiol 146:129–139

    Article  PubMed  CAS  Google Scholar 

  • Lin C (2000) Plant blue-light receptors. Trends Plant Sci 5:337–342

    Article  PubMed  CAS  Google Scholar 

  • Lorenzo O, Solano R (2005) Molecular players regulating the jasmonate signaling network. Curr Opin Plant Biol 8:532–540

    Article  PubMed  CAS  Google Scholar 

  • Ludidi N, Morse M, Sayed M, Wherrett T, Shabala S, Gehring C (2004) A recombinant plant natriuretic peptide causes rapid and spatially differentiated K+, Na+ and H+ flux changes in Arabidopsis thaliana roots. Plant Cell Physiol 45:1093–1098

    Article  PubMed  CAS  Google Scholar 

  • Maffei ME, Mithoefer A, Boland W (2007a) Before gene expression: early events in plant—insect interaction. Trends Plant Sci 12:310–316

    Article  PubMed  CAS  Google Scholar 

  • Maffei ME, Mithoefer A, Boland W (2007b) Insect feeding on plants: rapid signals and responses preceding the induction of phytochemical release. Phytochemistry 68:2946–2959

    Article  PubMed  CAS  Google Scholar 

  • Malinowski R, Higgins R, Luo Y, Piper L, Nazir A, Bajwa VS, Clouse SD, Thompson PR, Stratmann JW (2009) The tomato brassinosteroid receptor BRI1 increases binding of systemin to tobacco plasma membranes, but is not involved in systemin signaling. Plant Mol Biol 70:603–616

    Article  PubMed  CAS  Google Scholar 

  • Maryani MM, Shabala S, Gehring CA (2000) Plant natriuretic peptide immunoreactants modulate plasma-membrane H+ gradients in Solanum tuberosum L. leaf tissue vesicles. Arch Biochem Biophys 376:456–458

    Article  PubMed  CAS  Google Scholar 

  • Meindl T, Boller T, Felix G (1998) The plant wound hormone systemin binds with the N-terminal part to its receptor but needs the C-terminal part to activate it. Plant Cell 10:1561–1570

    Article  PubMed  CAS  Google Scholar 

  • Michard E, Alves F, Feijo JA (2009) The role of ion fluxes in polarized cell growth and morphogenesis: the pollen tube as an experimental paradigm. Int J Dev Biol 53:1609–1622

    Article  PubMed  CAS  Google Scholar 

  • Mithoefer A, Boland W (2008) Recognition of herbivory-associated molecular patterns. Plant Physiol 146:825–831

    Article  CAS  Google Scholar 

  • Moyen C, Hammond-Kosack KE, Jones J, Knight MR, Johannes E (1998) Systemin triggers and increase of cytoplasmic calcium in tomato mesophyll cells: Ca2+ mobilization from intra-and extracellular compartments. Plant Cell Envir 21:1101–1111

    Article  CAS  Google Scholar 

  • Moyen C, Johannes E (1996) Systemin transiently depolarizes the tomato mesophyll cell membrane and antagonizes fusicoccin-induced extracellular acidification of mesophyll tissue. Plant Cell Environ 19:464–470

    Article  CAS  Google Scholar 

  • Nicaise V, Roux M, Zipfel C (2009) Recent advances in PAMP-triggered immunity against bacteria: pattern recognition receptors watch over and raise the alarm. Plant Physiol 150:1638–1647

    Article  PubMed  CAS  Google Scholar 

  • Orozco-Cárdenas ML, Narváez-Vásquez J, Ryan CA (2001) Hydrogen peroxide acts as a second messenger for the induction of defense genes in tomato plants in response to wounding, systemin, and methyl jasmonate. Plant Cell 13:179–191

    Article  PubMed  Google Scholar 

  • Pearce G, Munske G, Yamaguchi Y, Ryan CA (2010a) Structure-activity studies of GmSubPep, a soybean peptide defense signal derived from an extracellular protease. Peptides 31:2159–2164

    Article  PubMed  CAS  Google Scholar 

  • Pearce G, Yamaguchi Y, Barona G, Ryan CA (2010b) A subtilisin-like protein from soybean contains an embedded cryptic signal that activates defense related genes. Proc Nat Acad Sci USA 107:14921–14925

    Article  PubMed  CAS  Google Scholar 

  • Pearce G, Yamaguchi Y, Munske G, Ryan CA (2008) Structure-activity studies of AtPep1, a plant peptide signal involved in the innate immune response. Peptides 29:2083–2089

    Article  PubMed  CAS  Google Scholar 

  • Pearce G, Yamaguchi Y, Munske G, Ryan CA (2010c) Structure-activity studies of RALF, rapid alkalinization factor, reveal an essential—YISY—motif. Peptides 31:1973–1977

    Article  PubMed  CAS  Google Scholar 

  • Pharmawati M, Shabala S, Newman IA, Gehring CA (1999) Natriuretic peptides and cGMP modulate K+, Na+, and H+ fluxes in Zea mays roots. Mol Cell Biol Res Commun 2:53–57

    Article  PubMed  CAS  Google Scholar 

  • Qi Z, Verma R, Gehring C, Yamaguchi Y, Zgao Y, Ryan CA, Berkowitz GA (2010) Ca2+ signaling by plant Arabidopsis thaliana Pep peptides depends on AtPepR1, a receptor with guanylyl cyclase activity, and cGMP-activated Ca2+ channels. Proc Nat Acad Sci USA 107:21193–21198

    Article  PubMed  CAS  Google Scholar 

  • Qu H-Y, Shang Z-L, Zhang S-L, Liu L-M, Wu J-Y (2007) Identification of hyperpolarization-activated calcium channels in apical pollen tubes of Pyrus pyrifolia. New Phytol 174:524–536

    Article  PubMed  CAS  Google Scholar 

  • Radutolu S, Madsen LH, Madsen EB, Felle HH, Umehara Y, Groenlund M, Sato S, Nakamura Y, Tabata S, Sandal N, Stougaard J (2003) Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases. Nature 425:585–592

    Article  Google Scholar 

  • Ranf S, Grimmer J, Poeschl Y, Pechner P, Chinchilla D, Scheel D, Lee J (2011) Defense-related calcium signaling mutants uncovered via a quantitative high-throughput screen in arabidopsis thaliana. Mol Plant. doi:10.1093/mp/ssr064

    PubMed  Google Scholar 

  • Ryan CA, Pearce G (2003) Systemins: a functionally defined family of peptide signals that regulate defensive genes in Solanaceae species. Proc Natl Acad Sci USA 100:14577–14580

    Article  PubMed  CAS  Google Scholar 

  • Schaller A (1999) Oligopeptide signaling and the action of systemin. Plant Mol Biol 40:763–769

    Article  PubMed  CAS  Google Scholar 

  • Scheer J, Ryan C (2002) The systemin receptor SR160 from Lycopersicon peruvianum is a member of the LRR receptor kinase family. Proc Natl Acad Sci USA 99:9585–9590

    Article  PubMed  CAS  Google Scholar 

  • Scheer JM, Pearce G, Ryan CA (2003) Generation of systemin signaling in tobacco by transformation with the tomato systemin receptor kinase gene. Proc Natl Acad Sci USA 100:10114–10117

    Article  PubMed  CAS  Google Scholar 

  • Schilmiller AL, Howe GA (2005) Systemic signaling in the wound response. Curr Opin Plant Biol 8:369–377

    Article  PubMed  CAS  Google Scholar 

  • Shiu SH, Bleecker AB (2001) Plant receptor-like kinase gene family: diversity, function, and signaling. Sci STKE 113: re22

    Google Scholar 

  • Strattmann J, Scheer J, Ryan CS (2000) Suramin inhibits initiation of defense signaling by systemin, chitosan, and a β-glucan elicitor in suspension-cultured Lycopersicon peruvianum cells. Proc Natl Acad Sci USA 97:8862–8867

    Article  Google Scholar 

  • Takeuchi H, Higashiyama T (2011) Attraction of tip-growing pollen tubes by the female gametophyte. Curr Opin Plant Biol 14:614–621

    Article  PubMed  CAS  Google Scholar 

  • Toer M, Lotze MT, Holton N (2009) Receptor-mediated signaling in plants: molecular patterns and programmes. J Exp Bot 60:3645–3654

    Article  CAS  Google Scholar 

  • Volkov A, Ranatunga DFA (2006) Plants as environmental biosensors. Plant Signal Behavior 1:105–115

    Article  Google Scholar 

  • Wang YH, Gehring C, Gahill DM, Irving HR (2007) Plant natriuretic peptide active site determination and effects on cGMP and cell volume regulation. Funct Plant Biol 34:645–653

    Article  CAS  Google Scholar 

  • Wang YH, Gehring C, Irving HR (2011) Plant natriuretic peptides are apoplastic and paracrine stress response molecules. Plant Cell Physiol 52:837–850

    Article  PubMed  CAS  Google Scholar 

  • Wheeler JI, Irving HR (2010) Evolutionary advantages of secreted peptide signaling molecules in plants. Funct Plant Biol 27:382–394

    Article  Google Scholar 

  • Wu J, Wang S, Gu Y, Zhang S, Publicover SJ, Franklin-Tong VE (2011) Self-incompatibility in Papaver rhoeas activates nonspecific cation conductance permeable to Ca2+ and K+. Plant Physiol 155:963–973

    Article  PubMed  CAS  Google Scholar 

  • Yan X, Wang Z, Huang L, Wang C, Hou R, Xu Z, Qiao X (2009) Research progress on electrical signals in higher plants. Prog Nat Sci 19:531–541

    Article  Google Scholar 

  • Zhang W, Fan L-M, Wu W-H (2007) Osmo-sensitive and stretch-activated Calcium-permeable channels in Vicia faba guard cells are regulated by actin dynamics. Plant Physiol 143:1140–1151

    Article  PubMed  CAS  Google Scholar 

  • Zimaro T, Gottig N, Garavaglia BS, Gehring C, Ottado J (2011) Unraveling plant responses to bacterial pathogens through proteomics. J Biomed Biotechnol. doi:10.1155/2011/354801

    PubMed  Google Scholar 

  • Zimmerman S, Nuernberger T, Frachisse J-M, Wirtz W, Guern J, Hedrich R, Scheel D (1997) Receptor-mediated activation of a plant Ca2+-permeable ion channel involved in pathogen defense. Proc Nat Acad Sci USA 94:2751–2755

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Theo M. Elzenga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Elzenga, J.T.M. (2012). Ion Currents Associated with Membrane Receptors. In: Volkov, A. (eds) Plant Electrophysiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29110-4_13

Download citation

Publish with us

Policies and ethics