Skip to main content

Computational Soundness of Indistinguishability Properties without Computable Parsing

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 7232))

Abstract

We provide a symbolic model for protocols using public-key encryption and hash function, and prove that this model is computationally sound: if there is an attack in the computational world, then there is an attack in the symbolic (abstract) model. Our original contribution is that we deal with the security properties, such as anonymity, which cannot be described using a single execution trace, while considering an unbounded number of sessions of the protocols in the presence of active and adaptive adversaries. Our soundness proof is different from all existing studies in that it does not require a computable parsing function from bit strings to terms. This allows us to deal with more cryptographic primitives, such as a preimage-resistant and collision-resistant hash function whose input may have different lengths.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication. In: Proc. of the 28th ACM Symposium on Principles of Programming Languages (POPL 2001), pp. 104–115 (2001)

    Google Scholar 

  2. Abadi, M., Rogaway, P.: Reconciling two views of cryptography (the computational soundness of formal encryption). Journal of Cryptology 15(2), 103–127 (2002)

    MathSciNet  MATH  Google Scholar 

  3. Backes, M., Hofheinz, D., Unruh, D.: CoSP: A general framework for computational soundness proofs. Cryptology ePrint Archive, Report 2009/080 (2009), http://eprint.iacr.org/

  4. Backes, M., Pfitzmann, B., Waidner, M.: A composable cryptographic library with nested operations. In: Proc. of the 10th ACM Concerence on Computer and Communications Security (CCS 2003), pp. 220–230 (2003)

    Google Scholar 

  5. Backes, M., Pfitzmann, B., Waidner, M.: Limits of the BRSIM/UC Soundness of Dolev-Yao Models with Hashes. In: Gollmann, D., Meier, J., Sabelfeld, A. (eds.) ESORICS 2006. LNCS, vol. 4189, pp. 404–423. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Backes, M., Pfitzmann, B., Waidner, M.: The reactive simulatability (RSIM) framework for asynchronous systems. Information and Computation 205(12), 1685–1720 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Comon-Lundh, H., Cortier, V.: Computational soundness of observational equivalence. In: Proc. of the 15th ACM Conference on Computer and Communications Security (CCS 2008), pp. 109–118 (2008)

    Google Scholar 

  8. Cortier, V., Kremer, S., Küsters, R., Warinschi, B.: Computationally Sound Symbolic Secrecy in the Presence of Hash Functions. In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 176–187. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Cortier, V., Warinschi, B.: Computationally Sound, Automated Proofs for Security Protocols. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 157–171. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  10. Garcia, F.D., van Rossum, P.: Sound and complete computational interpretation of symbolic hashes in the standard model. Theor. Comput. Sci. 394(1-2), 112–133 (2008)

    Article  MATH  Google Scholar 

  11. Janvier, R., Lakhnech, Y., Mazaré, L.: Computational soundness of symbolic analysis for protocols using hash functions. Electr. Notes Theor. Comput. Sci. 186, 121–139 (2007)

    Article  Google Scholar 

  12. Kawamoto, Y., Sakurada, H., Hagiya, M.: Computationally sound symbolic anonymity of a ring signature. In: Proc. of Joint Workshop on Foundations of Computer Security, Automated Reasoning for Security Protocol Analysis and Issues in the Theory of Security (FCS-ARSPA-WITS 2008), pp. 161–175 (2008)

    Google Scholar 

  13. Micciancio, D., Warinschi, B.: Soundness of Formal Encryption in the Presence of Active Adversaries. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 133–151. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  14. Rogaway, P., Shrimpton, T.: Cryptographic Hash-Function Basics: Definitions, Implications, and Separations for Preimage Resistance, Second-Preimage Resistance, and Collision Resistance. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 371–388. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  15. Unruh, D.: Termination-insensitive computational indistinguishability (and applications to computational soundness). In: Proc. of the 24th IEEE Computer Security Foundations Symposium (CSF 2011). IEEE Computer Society (June 2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Comon-Lundh, H., Hagiya, M., Kawamoto, Y., Sakurada, H. (2012). Computational Soundness of Indistinguishability Properties without Computable Parsing. In: Ryan, M.D., Smyth, B., Wang, G. (eds) Information Security Practice and Experience. ISPEC 2012. Lecture Notes in Computer Science, vol 7232. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29101-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29101-2_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29100-5

  • Online ISBN: 978-3-642-29101-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics