Skip to main content

Rotational Degrees of Freedom of Particles

  • Chapter
  • First Online:
Mathematical Modeling in Mechanics of Granular Materials

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 21))

  • 1290 Accesses

Abstract

On the basis of a mathematical model of the Cosserat continuum and a generalized model, that describes the different resistance of a material with respect to tension and compression, the influence of rotational motion of particles onto the stress-strain state of a granular material is studied. It is shown that a couple-stress elastic medium has the resonance frequency, coinciding with the frequency of natural oscillations of rotational motion of the particles. The solution of the problem of uniform shear of a granular material, having rotational degrees of freedom, is analyzed in the framework of linear and nonlinear models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aero, E.L., Bulygin, A.N.: Equations of motion of nematic liquid-crystal media. J. Appl. Math. Mech. 35(5), 879–891 (1971)

    Article  Google Scholar 

  2. Aero, E.L., Bulygin, A.N.: Kinematics of nematic liquid crystals. Prikl. Mekh. VIII(3), 97–105 (1972)

    Google Scholar 

  3. Aero, E.L., Kuvshinskii, E.V.: Basic equations of the theory of elasticity of media with rotational interaction of particles. Fizika Tverd. Tela 2(7), 1399–1409 (1960)

    Google Scholar 

  4. Aero, E.L., Bulygin, A.N., Kuvshinskii, E.V.: Asymmetric hydromechanics. J. Appl. Math. Mech. 29(2), 333–336 (1965)

    Article  Google Scholar 

  5. Altenbach, H., Eremeyev, V.A.: On the equations of the Cosserat-type shells. Comput. Continuum Mech. 2(4), 11–18 (2009)

    Google Scholar 

  6. Altenbach, H., Zhilin, P.A.: General theory of elastic simple shells. Uspekhi Mekh. 11(4), 107–148 (1988)

    Google Scholar 

  7. Altenbach, H., Altenbach, J., Kissing, W.: Mechanics of Composite Structural Elements. Springer, Berlin (2004)

    Google Scholar 

  8. Altenbach, J., Altenbach, H., Eremeyev, V.: On generalized Cosserat-type theories of plates and shells: a short review and bibliography. Arch. Appl. Mech. 80(1), 73–92 (2010)

    Article  Google Scholar 

  9. Behura, J., Batzle, M., Hofmann, R., Dorgan, J.: Heavy oils: their shear story. Geophysics 72(5), E175–E183 (2007)

    Article  Google Scholar 

  10. Berezin, Y.A., Spodareva, L.A.: Longitudinal waves in grainy media. J. Appl. Mech. Tech. Phys. 42(2), 316–320 (2001)

    Article  Google Scholar 

  11. Cosserat, E., Cosserat, F.: Théorie des corps déformables. In: Chwolson, O.D. (ed.) Traité Physique, pp. 953–1173. Librairie Scientifique A. Hermann et Fils, Paris (1909)

    Google Scholar 

  12. Eremeyev, V.A., Lebedev, L.P., Altenbach, H.: Foundations of Micropolar Mechanics. SpringerBriefs in Applied Sciences and Technology. Springer, Heidelberg (2012)

    Google Scholar 

  13. Erofeyev, V.I.: Wave Processes in Solids with Microstructure. World Scientific, London (2003)

    Google Scholar 

  14. Filippov, A.F.: Differential Equations with Discontinuous Righthand Sides. Mathematics and Its Applications. Kluwer Academic, Dordrecht (1988)

    Google Scholar 

  15. Gauthier, R.D., Jahsman, W.E.: A quest for micropolar elastic constants, pt. 1. Trans. ASME J. Appl. Mech. 42(2), 369–374 (1975)

    Article  Google Scholar 

  16. Gauthier, R.D., Jahsman, W.E.: A quest for micropolar elastic constants, pt. 2. Arch. Mech. 33(5), 717–737 (1981)

    Google Scholar 

  17. Godunov, S.K.: Uravneniya Matematicheskoi Fiziki (Equations of Mathematical Physics). Nauka, Moscow (1979)

    Google Scholar 

  18. Godunov, S.K., Peshkov, I.M.: Symmetric hyperbolic equations in the nonlinear elasticity theory. Comput. Math. Math. Phys. 48(6), 975–995 (2008)

    Article  Google Scholar 

  19. Godunov, S.K., Romenskii, E.I.: Elements of Continuum Mechanics and Conservation Laws. Kluwer Academic / Plenum, New York (2003)

    Google Scholar 

  20. Goodarz, A.: A generalized continuum theory for granular materials. Int. J. Non-Linear Mech. 17(1), 21–55 (1982)

    Article  Google Scholar 

  21. Goursat, É.: A Course in Mathematical Analysis, Differential Equations, vol. II(2). Dover Publications, New York (1917)

    Google Scholar 

  22. Green, A.E., Naghdi, P.M., Wainwright, W.L.: A general theory of a Cosserat surface. Arch. Ration. Mech. Anal. 20(4), 287–308 (1965)

    Article  Google Scholar 

  23. Kalugin, A.G.: Mekhanika Anizotropnykh Zhidkostei (Mechanics of Anisotropic Liquids). Izd. Czentra Prikl. Issled. Mekh.-Mat. Fakult. MGU, Moscow (2005)

    Google Scholar 

  24. Koiter, W.T.: Couple stresses in the theory of elasticity. Proc. Kon. Nederl. Akad. Wetensch. B 67, 17–44 (1964)

    Google Scholar 

  25. Kondaurov, V.I.: Non-linear equations of the dynamics of an elastic micropolar medium. J. Appl. Math. Mech. 48(3), 291–299 (1984)

    Article  Google Scholar 

  26. Kulesh, M.A., Matveenko, V.P., Shardakov, I.N.: Construction of analytical solutions of some two-dimensional problems in the moment theory of elasticity. Mech. Solids 37(5), 56–67 (2002)

    Google Scholar 

  27. Kulesh, M.A., Matveenko, V.P., Shardakov, I.N.: On the propagation of elastic surface waves in the Cosserat medium. Dokl. Phys. 50(11), 601–604 (2005)

    Article  CAS  Google Scholar 

  28. Kulikovskii, A.G., Sveshnikova, E.I.: Nonlinear Waves in Elastic Media. CRC Press, Boca Raton (1995)

    Google Scholar 

  29. Lakes, R.: Experimental methods for study of Cosserat elastic solids and other generalized elastic continua. In: Mühlhaus, H. (ed.) Continuum Models for Materials with Micro-Structure, chap. 1, pp. 1–22. Wiley, New York (1995)

    Google Scholar 

  30. Lyalin, A.E., Pirozhkov, V.A., Stepanov, R.D.: On the propagation of surface waves in the Cosserat medium. Akustich. Zh. 28(6), 838–840 (1982)

    Google Scholar 

  31. Mindlin, R.D., Tiersten, H.F.: Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal. 11(5), 415–448 (1962)

    Article  Google Scholar 

  32. Neumann, J., Richtmyer, R.D.: A method for the numerical calculation of hydrodynamic shocks. J. Appl. Phys. 21(3), 232–237 (1950)

    Article  Google Scholar 

  33. Pal’mov, V.A.: Fundamental equations of the theory of asymmetric elasticity. J. Appl. Math. Mech. 28(3), 496–505 (1964)

    Article  Google Scholar 

  34. Pal’mov, V.A.: Vibrations of Elasto-Plastic Bodies. Foundation of Engineering Mechanics. Springer, Berlin (1998)

    Google Scholar 

  35. Parton, V.Z., Perlin, P.I.: Mathematical Methods of the Theory of Elasticity, vols. 1–2. Mir, Moscow (1984)

    Google Scholar 

  36. Pavlov, I.S., Potapov, A.I.: Two-dimensional model of a granular medium. Mech. Solids 42(2), 250–259 (2007)

    Article  Google Scholar 

  37. Richtmyer, R.: Principles of Advanced Mathematical Physics. Springer, New York (1978–1986)

    Google Scholar 

  38. Sadovskaya, O.V.: Numerical analysis of 3D dynamic problems of the Cosserat elasticity theory subject to boundary symmetry conditions. Comput. Math. Math. Phys. 49(2), 304–313 (2009)

    Article  Google Scholar 

  39. Sadovskaya, O.V., Sadovskii, V.M.: Constitutive equations of the heteromodular moment elastic medium. In: Hirschel, E.H., Krause, E. (eds.) Successes of Continuum Mechanics (to the 70-th Anniversary of Acad. V.A. Levin): Collected Papers, pp. 662–673, Vladivostok (2009)

    Google Scholar 

  40. Sadovskaya, O.V., Sadovskii, V.M.: Analysis of rotational motion of material microstructure particles by equations of the Cosserat elasticity theory. Acoust. Phys. 56(6), 942–950 (2010)

    Article  Google Scholar 

  41. Sadovskaya, O.V., Sadovskiy, V.M.: Numerical analysis of elastic waves propagation in the framework of Cosserat theory. In: IV European Conference on Computational Mechanics: Solids, Structures and Coupled Problems in Engineering (ECCM 2010): Proceedings, pp. 1–11. Springer, Paris (2010)

    Google Scholar 

  42. Sadovskaya, O.V., Sadovsky, V.M.: Numerical analysis of elastic waves propagation in Cosserat continuum. In: Proceedings of VIII International Conference on Mathematical and Numerical Aspects of Wave Propagation “Waves 2007”, pp. 327–329. University of Reading, Reading (2007)

    Google Scholar 

  43. Sadovskii, V.M.: Razryvnye Resheniya v Zadachakh Dinamiki Uprugoplasticheskikh Sred (Discontinuous Solutions in Dynamic Elastic-Plastic Problems). Fizmatlit, Moscow (1997)

    Google Scholar 

  44. Sadovskii, V.M.: Thermodynamically consistent system of conservation laws of nonsymmetric elasticity theory. Dal’nevost. Mat. Zh. 11(2), 201–212 (2011)

    Google Scholar 

  45. Sadovskii, V.M., Sadovskaya, O.V., Varygina, M.P.: Numerical modeling of three-dimensional wave motion in couple-stress media. Comput. Continuum Mech. 2(4), 111–121 (2009)

    Google Scholar 

  46. Schwartz, L.M., Johnson, D.L., Feng, S.: Vibrational modes in granular materials. Phys. Rev. Lett. 52(10), 831–834 (1984)

    Article  Google Scholar 

  47. Shemyakin, E.I.: Dinamicheskie Zadachi Teorii Uprugosti i Plastichnosti (Dynamic Problems of the Theory of Elasticity and Plastisity). Izd. Novosib. University, Novosibirsk (1968)

    Google Scholar 

  48. Shkutin, L.I.: Mekhanika Deformaczii Gibkikh Tel (Mechanics of Deformations of Flexible Bodies). Nauka, SO RAN, Novosibirsk (1988)

    Google Scholar 

  49. Valyukhov, S.G., Verveiko, N.D., Smotrova, O.A.: Mikropolyarnaya Model Svyaznykh Sypuchikh Materialov (Micropolar Model of Cohesive Granular Materials). Izd. Voronezh. University, Voronezh (1999)

    Google Scholar 

  50. Varygina, M.P., Sadovskaya, O.V.: Parallel computational algorithm for the solution of dynamic problems of the Cosserat elasticity theory. Vestnik Krasnoyarsk. Gos. Univ. Fiz-Mat. Nauki 4, 211–215 (2005)

    Google Scholar 

  51. Varygina, M.P., Kireev, I.V., Sadovskaya, O.V., Sadovskii, V.M.: Software for wavy motion analysis in moment materials on parallel supercomputers. Vestnik Sib. Gos. Aerokosm. Univ. 23(2), 104–108 (2009)

    Google Scholar 

  52. Varygina, M.P., Sadovskaya, O.V., Sadovskii, V.M.: Resonant properties of moment Cosserat continuum. J. Appl. Mech. Tech. Phys. 51(3), 405–413 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oxana Sadovskaya .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sadovskaya, O., Sadovskii, V. (2012). Rotational Degrees of Freedom of Particles. In: Mathematical Modeling in Mechanics of Granular Materials. Advanced Structured Materials, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29053-4_10

Download citation

Publish with us

Policies and ethics