Skip to main content

View-Dependent Line Drawings for 3D Scenes

  • Conference paper
Book cover Transactions on Edutainment VII

Part of the book series: Lecture Notes in Computer Science ((TEDUTAIN,volume 7145))

  • 1136 Accesses

Abstract

We present a novel density control algorithm to achieve interactive line drawing of 3D scenes. The kernel of our approach is a line selection method that considers both the geometry property of lines and the view-dependent line density in the image space. The latter is measured as a combination of a local entropy and a global entropy subject to the information theory. The view-dependent line drawing is fulfilled by leveraging two entropies, facilitating the preservation of details in important regions. We demonstrate our new approach with a variety of examples and provide comparisons with recent approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Elber, S.: Line illustrations in computer graphics. The Visual Computer 11(6), 290–296 (1995)

    Google Scholar 

  2. Gooch, B., Gooch, A.: Non-Photorealistic Rendering. A. K. Peters (2001)

    Google Scholar 

  3. Rusinkiewcz, S., Cole, F., Decarlo, D., Finkelstein, A.: Line drawings from 3D models. In: Proceedings ACM SIGGRAPH Classes (2008)

    Google Scholar 

  4. Isenberg, T., Brennecke, A.: G-strokes: A concept for simplifying line stylization. Computers & Graphics 30, 754–766 (2006)

    Article  Google Scholar 

  5. Hertzmann, A., Zorin, D.: Illustrating smooth surfaces. In: Proceedings ACM SIGGRAPH, pp. 517–526 (2000)

    Google Scholar 

  6. Lee, Y., Markosian, L., Lee, S., Hughes, J.F.: Line drawings via abstracted shading. ACM Transactions Graphics 26(3) (2007)

    Google Scholar 

  7. Grabli, S., Durand, F., Sillion, F.: Density measure for line-drawing simplification. In: Proceedings of Pacific Graphics, pp. 183–192 (2004)

    Google Scholar 

  8. Wilson, B., Ma, K.-L.: Rendering complexity in computer-generated pen-and-ink illustrations. In: Proceedings of International Symposium on Non-Photorealistic Animation and Rendering, pp. 129–137 (2004)

    Google Scholar 

  9. Isenberg, T., Freudenberg, B., Halper, N., Schlechtweg, S., Strothotte, T.: A developer’s guide to silhouette algorithms for polygonal models. IEEE Computer Graphics and Applications 23(4), 28–37 (2003)

    Article  Google Scholar 

  10. Kalnins, R.D., Davidson, P.L., Markosian, L., Finkelstein, A.: Coherent stylized silhouettes. ACM Transactions on Graphics 22(3), 856–861 (2003)

    Article  Google Scholar 

  11. Cole, F., DeCarlo, D., Finkelstein, A., Kin, K., Morley, K., Santella, A.: Directing gaze in 3D models with stylized focus. In: Eurographics Symposium on Rendering, pp. 377–387 (June 2006)

    Google Scholar 

  12. Barla, P., Thollot, J., Sillion, F.X.: Geometric clustering for line drawing simplification. In: Proceedings of Eurographics Workshop on Rendering, pp. 183–192 (2005)

    Google Scholar 

  13. Shesh, A., Chen, B.: Efficient and dynamic simplification of line drawings. Computer Graphics Forum 27(2), 537–545 (2008)

    Article  Google Scholar 

  14. Shannon, C.E.: A mathematical theory of communication. Bell System Technical Journal 27, 379–423, 623–656 (1948)

    MathSciNet  MATH  Google Scholar 

  15. Elber, G.: Line art rendering via a coverage of isoparametric curves. IEEE Transactions on Visualization and Computer Graphics 1(3), 231–239 (1995)

    Article  Google Scholar 

  16. Cole, F., Golovinskiy, A., Limpaecher, A., Barros, H.S., Finkelstein, A., Funkhouser, T., Rusinkiewicz, S.: Where do people draw lines? ACM Transactions Graphics 27(3) (2008)

    Google Scholar 

  17. Elber, G., Cohen, E.: Hidden curve removal for free form surfaces. In: Proceedings of ACM SIGGRAPH, pp. 95–104 (1990)

    Google Scholar 

  18. DeCarlo, D., Finkelstein, A., Rusinkiewicz, S., Santella, A.: Suggestive contours for conveying shape. ACM Transactions Graphics 22(3), 848–855 (2003)

    Article  Google Scholar 

  19. Ohtake, Y., Belyaev, A., Seidel, H.-P.: Ridge-valley lines on meshes via implicit surface fitting. ACM Transactions Graphics 23(3), 609–612 (2004)

    Article  Google Scholar 

  20. Judd, T., Durand, F., Adelson, E.: Apparent ridges for line drawing. ACM Transactions Graphics 26(3) (2007)

    Google Scholar 

  21. Xie, X., He, Y., Tian, F., Seah, H.-S., Gu, X., Qin, H.: An effective illustrative visualization framework based on photic extremum lines (PELs). IEEE Transactions on Visualization and Computer Graphics 13(6), 1328–1335 (2007)

    Article  Google Scholar 

  22. DeCarlo, D., Finkelstein, A., Rusinkiewicz, S.: Interactive rendering of suggestive contours with temporal coherence. In: Proceedings of International Symposium on Non-Photorealistic Animation and Rendering (NPAR), pp. 15–24 (June 2004)

    Google Scholar 

  23. Jeong, K., Ni, A., Seungyong, L., Markosiana, L.: Detail control in line drawings of 3D meshes. The Visual Computer 21(8-10), 698–706 (2005)

    Article  Google Scholar 

  24. Ni, A., Jeong, K., Lee, S., Markosian, L.: Multiscale line drawings from 3D meshes. In: Proceedings of ACM Symposium on Interactive 3D Graphics and Games, pp. 133–137 (2006)

    Google Scholar 

  25. Lum, E., Ma, K.-L.: Expressive line selection by example. The Visual Computer 21(8-10), 811–820 (2005)

    Article  Google Scholar 

  26. Rosion, P.L.: Grouping curved lines. In: Proceedings of British Machine Vision Conference, pp. 625–644 (1994)

    Google Scholar 

  27. Agrawala, M., Stolte, C.: Rendering effective route maps: improving usability through generalization. In: Proceedings of ACM SIGGRAPH, pp. 241–249 (2001)

    Google Scholar 

  28. Engbers, E.A., Smeulders, A.W.M.: Design considerations for generic grouping in vision. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(4), 445–457 (2003)

    Article  Google Scholar 

  29. Moberts, B., Vilanova, A., van Wijk, J.J.: Evaluation of fiber clustering methods for diffusion tensor imaging. In: Proceedings of IEEE Visualization, pp. 65–72 (2005)

    Google Scholar 

  30. Corouge, I., Gouttard, S., Gerig, G.: Towards a shape model of white matter fiber bundles using diffusion tensor MRI. In: International Symposium on Biomedical Imaging, pp. 344–347 (2004)

    Google Scholar 

  31. Alt, H., Godau, M.: Computing the frechet distance between two polygonal curves. International Journal of Computational Geometry and Applications 5, 75–91 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhang, S., Demiralp, C., Laidlaw, D.H.: Visualizing diffusion tensor MR images using streamtubes and streamsurfaces. IEEE Transactions on Visualization and Computer Graphics 9(4), 454–462 (2003)

    Article  Google Scholar 

  33. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley Interscience (2000)

    Google Scholar 

  34. Pottmann, H., Wallner, J.: Computational Line Geometry. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  35. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann (2006)

    Google Scholar 

  36. Takahashi, S., Fujishiro, I., Takeshima, Y., Nishita, T.: A feature-driven approach to locating optimal viewpoints for volume visualization. IEEE Visualization 23-25, 495–502 (2005)

    Google Scholar 

  37. Cole, F., Finkelstein, A.: Two fast methods for high-quality line visibility. IEEE Transactions on Visualization and Computer Graphics 16(5), 707–717 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, X., Ding, Z., Zhu, C., Chen, W., Peng, Q. (2012). View-Dependent Line Drawings for 3D Scenes. In: Pan, Z., Cheok, A.D., Müller, W., Chang, M., Zhang, M. (eds) Transactions on Edutainment VII. Lecture Notes in Computer Science, vol 7145. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29050-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29050-3_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29049-7

  • Online ISBN: 978-3-642-29050-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics