Skip to main content

Grasping and Control of Multi-Fingered Hands

  • Chapter

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 80))

Abstract

An important issue in controlling a multi-fingered robotic hand grasping an object is the evaluation of the minimal contact forces able to guarantee the stability of the grasp and its feasibility. This problem can be solved online if suitable sensing information is available. In detail, using finger tactile information and contact force measurements, an efficient algorithm is developed to compute the optimal contact forces, assuming that, during the execution of a manipulation task, both the position of the contact points on the object and the wrench to be balanced by the contact forces may change with time. Since manipulation systems can be redundant also if the single fingers are not –due to the presence of the additional degrees of freedom (DOFs) provided by the contact variables– suitable control strategies taking advantage of such redundancy are adopted, both for single and dual-hand manipulation tasks. Another goal pursued in DEXMART is the development of a human-like grasping approach inspired to neuroscience studies. In order to simplify the synthesis of a grasp, a configuration subspace based on few predominant postural synergies of the robotic hand is computed. This approach is evaluated at kinematic level, showing that power and precise grasps can be performed using up to the third predominant synergy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antonelli, G.: Stability analysis for prioritized closed-loop inverse kinematic algorithms for redundant robotic systems. IEEE Transactions on Robotics 25, 985–994 (2009)

    Article  Google Scholar 

  2. Berselli, G., Borghesan, G., Brandi, M., Melchiorri, C., Natale, C., Palli, G., Pirozzi, S., Vassura, G.: Integrated mechatronic design for a new generation of robotic hands. In: IFAC Symposium on Robot Control, Gifu (2009)

    Google Scholar 

  3. Berselli, G., Piccinini, M., Palli, G., Vassura, G.: Engineering design of fluid-filled soft covers for robotic contact interfaces: Guidelines, nonlinear modelling, and experimental validation. IEEE Transactions on Robotics 27, 436–449 (2011)

    Article  Google Scholar 

  4. Berselli, G., Piccinini, M., Vassura, G.: On designing structured soft covers for robotic limbs with predetermined compliance. In: ASME International Design Engineering Technical Conferences, Montréal (2010)

    Google Scholar 

  5. Berselli, G., Vassura, G.: Differentiated layer design to modify the compliance of soft pads for robotic limbs. In: IEEE International Conference on Robotics and Automation, Kobe (2009)

    Google Scholar 

  6. Biagiotti, L., Lotti, F., Melchiorri, C., Palli, G., Tiezzi, P., Vassura, G.: Development of UB Hand 3: Early results. In: IEEE International Conference on Robotics and Automation, Barcelona (2005)

    Google Scholar 

  7. Bicchi, A., Gabiccini, M., Santello, M.: Modelling natural and artificial hands with synergies. Philosophical Transactions of the Royal Society B: Biological Sciences 366, 3153–3161 (2011)

    Article  Google Scholar 

  8. Bicchi, A., Prattichizzo, D.: Manipulability of cooperative robots with unactuated joints and closed-chain mechanisms. IEEE Transactions on Robotics and Automation 16, 336–345 (2000)

    Article  Google Scholar 

  9. Borghesan, G., Palli, G., Melchiorri, C.: Design of tendon-driven robotic fingers: Modelling and control issues. In: IEEE International Conference on Robotics and Automation, Anchorage, AK (2010)

    Google Scholar 

  10. Brown, C., Asada, H.: Inter-finger coordination and postural synergies in robot hands via mechanical implementation of principal components analysis. In: IEEE/RSJ Interational Conference on Intelligent Robots and Systems, San Diego, CA (2007)

    Google Scholar 

  11. Buss, M., Hashimoto, H., Moore, J.B.: Dextrous hand frasping force optimization. IEEE Transactions on Robotics and Automation 12, 406–418 (1996)

    Article  Google Scholar 

  12. Buss, M., Faybusovich, L., Moore, J.B.: Dikin-type algorithms for dextrous grasping force optimization. International Journal of Robotics Research 17, 831–839 (1998)

    Article  Google Scholar 

  13. Ciocarlie, M., Allen, P.: Hand posture subspaces for dexterous robotic grasping. International Journal of Robotics Research 28, 851–867 (2009)

    Article  Google Scholar 

  14. Ciocarlie, M., Allen, P.: On-line interactive dexterous grasping. In: 6th International Conference on Haptics: Perception, Devices and Scenarios, Madrid (2008)

    Google Scholar 

  15. Ciocarlie, M., Goldfeder, C., Allen, P.: Dimensionality reduction for hand-independent dexterous robotic grasping. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego (2007)

    Google Scholar 

  16. Coelho, J., Grupen, R.: A control basis for learning multifingered grasps. Journal of Robotic Systems 14, 545–557 (1997)

    Article  MATH  Google Scholar 

  17. Cutkosky, M.: On grasp choice, grasp models, and the design of hands for manufacturing tasks. IEEE Transactions on Robotics and Automation 5, 269–279 (1989)

    Article  Google Scholar 

  18. DEXMART Project website, http://www.dexmart.eu/

  19. Faybusovich, L.: Dikin’s algorithm for matrix linear programming problems. In: Henry, J., Yvon, J.-P. (eds.) System Modelling and Optimization, pp. 237–247. Springer, New York (1994)

    Chapter  Google Scholar 

  20. Feix, T., Pawlik, R., Schmiedmayer, H., Romero, J., Kragic, D.: The generation of a comprehensive grasp taxonomy. In: Robotics: Science and Systems, Workshop on Understanding the Human Hand for Advancing Robotic Manipulation, Seattle, WA (2009)

    Google Scholar 

  21. Ficuciello, F., Palli, G., Melchiorri, C., Siciliano, B.: Experimental evaluation of postural synergies during reach to grasp with the UB Hand IV. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA (2011)

    Google Scholar 

  22. Gabiccini, M., Bicchi, A.: On the role of hand synergies in the optimal choice of grasping forces. In: Robotics: Science and Systems, Zaragoza (2010)

    Google Scholar 

  23. Geng, T., Lee, M., Hulse, M.: Transferring human grasping synergies to a robot. Mechatronics 284, 272–284 (2011)

    Article  Google Scholar 

  24. Gioioso, G., Salvietti, G., Malvezzi, M., Prattichizzo, D.: Mapping synergies from human to robotic hands with dissimilar kinematics: An object based approach. In: IEEE International Conference on Robotics and Automation, Workshop on Manipulation Under Uncertainty, Shanghai (2011)

    Google Scholar 

  25. Han, L., Trinkle, J.C.: The instantaneous kinematics of manipulation. In: IEEE International Conference on Robotics and Automation, Leuven (1998)

    Google Scholar 

  26. Han, L., Trinkle, J.C., Li, Z.X.: Grasp analysis as linear matrix inequality problems. IEEE Transactions on Robotics and Automation 16, 663–674 (2000)

    Article  Google Scholar 

  27. Helmke, U., Hüper, K., Moore, J.B.: Quadratically convergent algorithms for optimal dexterous hand grasping. IEEE Transactions on Robotics and Automation 18, 138–146 (2002)

    Article  Google Scholar 

  28. Helmke, U., Moore, J.B.: Optimization and Dynamic Systems. Springer, New York (1993)

    Google Scholar 

  29. Iberall, T.: Human prehension and dexterous robot hands. International Journal of Robotics Research 16, 285–299 (1997)

    Article  Google Scholar 

  30. Li, Z.X., Quin, Z., Jiang, S., Han, L.: Coordinated motion generation and real-time grasping force control for multifingered manipulation. In: IEEE International Conference on Robotics and Automation, Leuven (1998)

    Google Scholar 

  31. Lippiello, V., Ruggiero, F., Villani, L.: Exploiting redundancy in closed-loop inverse kinematics for dexterous object manipulation. In: International Conference on Advanced Robotics, Munich (2009)

    Google Scholar 

  32. Lippiello, V., Siciliano, B., Villani, L.: Online dextrous-hand grasping force optimization with dynamic torque constraints selection. In: IEEE International Conference on Robotics and Automation, Shanghai (2011)

    Google Scholar 

  33. Lippiello, V., Siciliano, B., Villani, L.: A grasping force optimization algorithm with dynamic torque constraints selection for multi-fingered robotic hands. In: American Control Conference, San Francisco, CA (2011)

    Google Scholar 

  34. Liu, G., Xu, J., Li, Z.: On geometric algorithms for real-time grasping force optimization. IEEE Transactions on Control System Technology 12, 843–859 (2004)

    Article  Google Scholar 

  35. Lotti, F., Vassura, G.: A novel approach to mechanical design of articulated fingers for robotic hands. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Lausanne (2002)

    Google Scholar 

  36. Mansard, N., Chaumette, F.: Task sequencing for high-level sensor-based control. IEEE Transactions on Robotics and Automation 23, 60–72 (2007)

    Google Scholar 

  37. Mason, C., Gomez, J., Ebner, T.: Hand synergies during reach-to-grasp. Journal of Neurophysiology 86, 2896–2910 (2001)

    Google Scholar 

  38. Matrone, G., Cipriani, C., Secco, E., Magenes, G., Carrozza, M.: Principal components analysis based control of a multi-dof underactuated prosthetic hand. Journal of NeuroEngineering and Rehabilitation 7(16), 1–16 (2010)

    Google Scholar 

  39. Montana, D.: The kinematics of contact and grasp. International Journal of Robotics Research 7(3), 17–32 (1988)

    Article  Google Scholar 

  40. Montana, D.: The kinematics of multi-fingered manipulation. IEEE Transactions on Robotics and Automation 11, 491–503 (1995)

    Article  Google Scholar 

  41. Murray, R., Li, Z.X., Sastry, S.: A Mathematical Introduction to Robotic Manipulation. CRC Press, Boca Raton (1994)

    MATH  Google Scholar 

  42. Napier, J.: The prehensile movements of the human hand. Journal of Bone and Joint Surgery 38-B, 902–913 (1956)

    Google Scholar 

  43. Okamura, A.M., Smaby, N., Cutkosky, M.R.: An overview of dextrous manipulation. In: IEEE International Conference on Robotics and Automation, San Francisco, CA (2000)

    Google Scholar 

  44. Palli, G., Borghesan, G., Melchiorri, C.: Modelling, identification and control of tendon-based actuation systems. IEEE Transactions on Robotics 27, 1–14 (2011)

    Article  Google Scholar 

  45. Platt, R., Fagg, A.H., Grupen, R.: Null-space grasp control: Theory and experiments. IEEE Transactions on Robotics 26, 282–295 (2010)

    Article  Google Scholar 

  46. Ponce, J., Sullivan, S., Sudsang, A., Boissonnat, J., Merlet, J.: On computing four-finger equilibrium and force-closure grasps of polyhedral objects. International Journal of Robotic Research 16, 11–35 (1996)

    Article  Google Scholar 

  47. Prattichizzo, D., Malvezzi, M., Bicchi, A.: On motion and force controllability of grasping hands with postural synergies. In: Robotics: Science and Systems, Zaragoza (2010)

    Google Scholar 

  48. Prattichizzo, D., Malvezzi, M., Gabiccini, M., Bicchi, A.: On the manipulability ellipsoids of underactuated robotic hands with compliance. Robotics and Autonomous Systems 60, 337–346 (2012)

    Article  Google Scholar 

  49. Prattichizzo, D., Trinkle, J.C.: Grasping. In: Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics, pp. 671–700. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  50. Remond, C., Perdereau, V., Drouin, M.: A multi-fingered hand control structure with on-line grasping force optimization. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Como (2001)

    Google Scholar 

  51. Romero, J., Feix, T., Kjellstrom, H., Kragic, D.: Spatio-temporal modelling of grasping actions. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei (2010)

    Google Scholar 

  52. Santello, M., Flanders, M., Soechting, J.: Postural hand synergies for tool use. Journal of Neuroscience 18, 10105–10115 (1998)

    Google Scholar 

  53. Saut, J.P., Remond, C., Perdereau, V., Drouin, M.: Online computation of grasping force in multi-fingered hands. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton (2005)

    Google Scholar 

  54. Shlegl, T., Buss, M., Omata, T., Schmidt, G.: Fast dextrous regrasping with optimal contact force and contact sensor-based impedance control. In: IEEE International Conference on Robotics and Automation, Seoul (2001)

    Google Scholar 

  55. Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G.: Robotics: Modelling, Planning and Control. Springer, London (2009)

    Google Scholar 

  56. Uchiyama, M.: A unified approach to load sharing, motion decomposing, and force sensing of dual arm robots. In: Miura, H., Arimoto, S. (eds.) Robotics Research: The Fifth International Symposium, pp. 225–232. MIT Press, Cambridge (1994)

    Google Scholar 

  57. Vilaplana, J., Coronado, J.: A neural network model for coordination of hand gesture during reach to grasp. Neural Networks 19, 12–30 (2006)

    Article  MATH  Google Scholar 

  58. Walker, I.D., Marcus, S.I., Freeman, R.A.: Distribution of dynamic loads for multiple cooperating robot manipulators. Journal of Robotic Systems 9, 35–47 (1989)

    Article  Google Scholar 

  59. Wimboeck, T., Jan, B., Hirzinger, G.: Synergy-level impedance control for a multifingered hand. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA (2011)

    Google Scholar 

  60. Xu, J., Lou, Y., Li, Z.: Grasping force optimization for whole hand grasping. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing (2006)

    Google Scholar 

  61. Zheng, Y.F., Luh, J.Y.S.: Optimal load distribution for two industrial robots handling a single object. In: IEEE International Conference on Robotics and Automation, Philadelphia, PA (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi Villani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag GmbH Berlin Heidelberg

About this chapter

Cite this chapter

Villani, L., Ficuciello, F., Lippiello, V., Palli, G., Ruggiero, F., Siciliano, B. (2012). Grasping and Control of Multi-Fingered Hands. In: Siciliano, B. (eds) Advanced Bimanual Manipulation. Springer Tracts in Advanced Robotics, vol 80. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29041-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29041-1_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29040-4

  • Online ISBN: 978-3-642-29041-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics