Skip to main content

Introduction

  • Chapter
  • First Online:
Book cover Passerine Migration
  • 675 Accesses

Abstract

This chapter gives a general introduction to the migratory movements of birds, and outlines the ultimate factors that govern the migratory behaviour. The remaining part of this monograph mainly deals with the proximate controlling factors. It is emphasized that the realised behaviour of avian migrants results from an interplay of their endogenous migratory programme and the environmental conditions the migrants encounter en route. The definitions of avian migration, migratory stopover, its duration, fuel deposition rate, and departure fuel load accepted in this monograph are given in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alerstam T (2003) Bird migration speed. In: Berthold P, Gwinner E, Sonnenschein E (eds) Avian migration. Springer, Berlin

    Google Scholar 

  • Alerstam T (2011) Optimal bird migration revisited. J Ornithol 152:S5–S25

    Google Scholar 

  • Alerstam T, Hedenström A (1998) The development of bird migration theory. J Avian Biol 29:343–369

    Google Scholar 

  • Alerstam T, Lindström Å (1990) Optimal bird migration: the relative importance of time, energy, and safety. In: Gwinner E (ed) Bird migration. Springer, Berlin

    Google Scholar 

  • Bairlein F (1992) Recent prospects on trans-Saharan migration of songbirds. Ibis 134(Suppl 1):41–46

    Google Scholar 

  • Barriocanal C, Robson D, Montserrat D (2002) Synoptic situation on long-step night migration by a reed warbler Acrocephalus scirpaceus on outward migration. Rev Catalana d’Ornitologia 19:30–34

    Google Scholar 

  • Begon M, Townsend CR, Harper JL (2006) Ecology: from individuals to ecosystems, 4th edn. Blackwell, Oxford

    Google Scholar 

  • Berthold P (1973) Relationships between migratory restlessness and migration distance in six Sylvia species. Ibis 115:594–599

    Google Scholar 

  • Berthold P (1988) The control of migration in European warblers. In: Ouellet H (ed) Acta XIX Congr Int Ornithol, vol 1. University of Ottawa Press, Ottawa

    Google Scholar 

  • Berthold P (1996) Control of bird migration. Chapman and Hall, London

    Google Scholar 

  • Berthold P (2001) Bird migration: a general survey, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Berthold P, Leisler B (1980) Migratory restlessness of the Marsh Warbler Acrocephalus palustris: a reflection of its unusual migration. Naturwissenschaften 67:472

    Google Scholar 

  • Berthold P, Querner U (1981) Genetic basis of the migratory behavior in European warblers. Science 212:77–79

    PubMed  CAS  Google Scholar 

  • Berthold P, Gwinner E, Klein H (1972) Circannuale Periodik bei Grasmücken. I. Periodik des Körpergewichts, der Mauser und der Nachtunruhe bei Sylvia atricapilla and S. borin unter verschiedenen konstanten Bedingungen. J Ornithol 113:170–190

    Google Scholar 

  • Biebach H (1990) Strategies of trans-Sahara migrants. In: Gwinner E (ed) Bird migration. Springer, Berlin

    Google Scholar 

  • Biebach H, Friedrich W, Heine G, Jenni L, Jenni-Eiermann S, Schmidl D (1991) The daily pattern of autumn bird migration in the northern Sahara. Ibis 133:414–422

    Google Scholar 

  • Biebach H, Biebach I, Friedrich W, Heine G, Partecke J, Schmidl D (2000) Strategies of passerine migration across the Mediterranean sea and the Sahara desert: a radar study. Ibis 142:623–634

    Google Scholar 

  • Blem CR (1976) Patterns of lipid storage and utilization in birds. Am Zool 16:671–684

    CAS  Google Scholar 

  • Blem CR (1990) Avian energy storage. In: Power DM (ed) Current ornithology, vol 7. Plenum Press, NY

    Google Scholar 

  • Bolshakov CV (1977) Izuchenie nochnykh migratsiy ptits [metodicheski aspekt] (Study of nocturnal bird migration [methodological aspect]). In: Ilyichev VD (ed) Metody izucheniya migratsiy ptits (Methods of studying bird migration). Nauka, Moscow

    Google Scholar 

  • Bruderer B (2001) Recent studies modifying current views of nocturnal bird migration in the Mediterranean. Avian Ecol Behav 7:11–25

    Google Scholar 

  • Bruderer B, Salewski V, Liechti F (2008) Gedanken zur Evolution des Vogelzuges. Orn Beob 105:165–177

    Google Scholar 

  • Bulyuk V, Chernetsov N (2000) Two migratory flights of sedge warblers Acrocephalus schoenobaenus from Finland to Estonia. Ornis Svecica 10:79–83

    Google Scholar 

  • Chernetsov N (2011) Daytime movements of nocturnal migrants at stopover between two nearby capture sites. J Ornithol 152:1007–1011

    Google Scholar 

  • Chernetsov N, Mukhin A (2006) Spatial behaviour of European robins Erithacus rubecula during migratory stopovers: a telemetry study. Wilson J Ornithol 118:364–373

    Google Scholar 

  • Chernetsov N, Mukhin A, Ktitorov P (2004) Contrasting spatial behaviour of two long-distance passerine migrants at spring stopovers. Avian Ecol Behav 12:53–61

    Google Scholar 

  • Chernetsov N, Kishkinev D, Gashkov S, Kosarev V, Bolshakov CV (2008a) Migratory programme of juvenile pied flycatchers, Ficedula hypoleuca, from Siberia implies a detour around Central Asia. Anim Behav 75:539–545

    Google Scholar 

  • Chernetsov N, Kishkinev D, Mouritsen H (2008b) A long-distance avian migrant compensates for longitudinal displacement during spring migration. Curr Biol 18:188–190

    PubMed  CAS  Google Scholar 

  • Chernetsov N, Kishkinev D, Kosarev V, Bolshakov CV (2011) Not all songbirds calibrate their magnetic compass from twilight cues: a telemetry study. J Exp Biol 214:2540–2543

    PubMed  Google Scholar 

  • Cochran WW, Mouritsen H, Wikelski M (2004) Migrating songbirds recalibrate their magnetic compass daily from twilight cues. Science 304:405–408

    PubMed  CAS  Google Scholar 

  • Connell CE, Odum EP, Kale H (1960) Fat-free weights of birds. Auk 77:1–9

    Google Scholar 

  • Dolnik VR (1975) Migratsionnoye sostoyanie ptits (Migratory disposition of birds). Nauka, Moscow

    Google Scholar 

  • Dolnik VR (ed) (1985) Energeticheskie resursy ptits, pereletayuschikh aridnye i gornye prostranstva Sredney Azii i Kazakhstana (Energy resources of birds migrating across arid and mountainous regions of Middle Asia and Kazakhstan). Zoological Institute, Leningrad

    Google Scholar 

  • Dolnik VR (1990) Bird migration across arid and mountainous regions of Middle Asia and Kasakhstan. In: Gwinner E (ed) Bird migration. Springer, Berlin

    Google Scholar 

  • Egevang C, Stenhouse IJ, Phillips RA, Petersen A, Fox JW, Silk JRD (2010) Tracking of Arctic terns Sterna paradisaea reveals longest animal migration. Proc Natl Acad Sci USA 107:2078–2208

    PubMed  CAS  Google Scholar 

  • Ellegren H, Staav R (1990) Ruggingsflyttning hos blåhaken Luscinia s. svecica. Vår Fågelvärld 49:80–86

    Google Scholar 

  • Fransson T, Jakobsson S, Johansson P, Kullberg C, Lind J, Vallin A (2001) Magnetic cues trigger extensive refuelling. Nature 414:35–36

    PubMed  CAS  Google Scholar 

  • Freake M, Muheim R, Phillips JB (2006) Magnetic maps in animals: a theory comes of age? Q Rev Biol 81:327–347

    PubMed  Google Scholar 

  • Gauthreaux SA Jr (1971) A radar and direct visual study of passerine spring migration in southern Louisiana. Auk 88:343–365

    Google Scholar 

  • Gauthreaux SA Jr (1972) Behavioral responses of migrating birds to daylight and darkness: a radar and direct visual study. Wilson Bull 84:136–148

    Google Scholar 

  • Gauthreaux SA Jr (1982) The ecology and evolution of avian migration systems. In: Farner DS, King JR (eds) Avian biology, vol 6. Academic Press, NY

    Google Scholar 

  • Gavrilov VM (1974) Metabolizm linyayuschikh ptits (Metabolism of moulting birds). Zool Zhurnal 53:1363–1375

    Google Scholar 

  • Gill RE Jr, Piersma T, Hufford G, Servranckx R, Riegen A (2005) Crossing the ultimate ecological barrier: evidence for an 11,000 km-long nonstop flight from Alaska to New Zealand and eastern Australia by bar-tailed godwits. Condor 107:1–20

    Google Scholar 

  • Gill RE Jr, Tibbits TL, Douglas DC, Handel CM, Mulcahy DM, Gottschalck JC, Warnock N, McCaffery BJ, Battley PF, Piersma T (2009) Extreme endurance flights by landbirds crossing the Pacific Ocean: ecological corridor rather than barrier? Proc R Soc Lond B 276:447–457

    Google Scholar 

  • Gschweng M, Kalko EKV, Querner U, Fiedler W, Berthold P (2008) All across Africa: highly individual migration routes of Eleonora’s falcon. Proc R Soc Lond B 275:2887–2896

    Google Scholar 

  • Gwinner E (1968) Circannuale Periodik als Grundlage des jahreszeitlichen Funktionswandels bei Zugvögeln. Untersuchungen am Fitis (Phylloscopus trochilus) und am Waldlaubsänger (P. sibilatrix). J Ornithol 109:70–95

    Google Scholar 

  • Gwinner E (1986) Circannual rhythms in the control of avian migrations. Adv Stud Behav 16:191–228

    Google Scholar 

  • Gwinner E (1996) Circadian and circannual programmes in avian migration. J Exp Biol 99:39–48

    Google Scholar 

  • Gwinner E, Wiltschko W (1978) Endogenously controlled changes in migratory direction of the garden warbler, Sylvia borin. J Comp Physiol A 125:267–273

    Google Scholar 

  • Hall-Karlsson KSS, Fransson T (2008) How far do birds fly during one migratory flight stage? Ring Migr 24:95–100

    Google Scholar 

  • Helbig AJ (1996) Genetic basis, mode of inheritance and evolutionary changes of migratory directions in Palearctic warblers (Aves: Sylviidae). J Exp Biol 199:49–55

    PubMed  Google Scholar 

  • Hobson KA, Robbins MB (2009) Origins of late-breeding nomadic sedge wrens in North America: limitations and potential of hydrogen-isotope analysis of soft tissue. Condor 111:188–192

    Google Scholar 

  • Houston AI (1998) Models of optimal avian migration: state, time and predation. J Avian Biol 29:395–404

    Google Scholar 

  • Kaiser A (1999) Stopover strategies in birds: a review of methods for estimating stopover length. Bird Study 46(Suppl):S299–S308

    Google Scholar 

  • Klaassen M, Biebach H (1994) Energetics of fattening and starvation in the long-distance migratory garden warbler, Sylvia borin, during the migratory phase. J Comp Physiol B 164:362–371

    Google Scholar 

  • Klaassen M, Kersten M, Ens BJ (1990) Energetic requirements for maintenance and premigratory body mass gain of waders wintering in Africa. Ardea 78:209–220

    Google Scholar 

  • Klaassen M, Lindström Å, Zijlstra R (1997) Composition of fuel stores and digestive limitations to fuel deposition rate in the long-distance migratory thrush nightingale, Luscinia luscinia. Physiol Zool 70:125–133

    PubMed  CAS  Google Scholar 

  • Kramer G (1949) Über Richtungstendenzen bei der nächtlichen Zugunruhe gekäfigter Vögel. In: Mayr E, Schüz E (eds) Ornithologie als biologische Wissenschaft. Carl Winter Universitätsverlag, Heidelberg

    Google Scholar 

  • Krebs JR, Davies NB (eds) (1991) Behavioural ecology: an evolutionary approach, 3rd edn. Blackwell, Oxford

    Google Scholar 

  • Kullberg C, Lind J, Fransson T, Jakobsson S, Vallin A (2003) Magnetic cues and time of season affect fuel deposition in migratory thrush nightingales (Luscinia luscinia). Proc R Soc Lond B 270:373–378

    Google Scholar 

  • Kullberg C, Henshaw I, Jakobsson S, Johansson P, Fransson T (2007) Fuelling decisions in migratory birds: geomagnetic cues override the seasonal effect. Proc R Soc Lond B 274:2145–2151

    Google Scholar 

  • Liechti F, Komenda-Zehnder S, Bruderer B (2012) Orientation of passerine trans-Sahara migrants: the directional shift (‘Zugknick’) reconsidered for free-flying birds. Anim Behav 83:63–68

    Google Scholar 

  • Lindström Å, Piersma T (1993) Mass changes in migrating birds: the evidence for fat and protein storage re-examined. Ibis 135:70–78

    Google Scholar 

  • López-López P, Limiñana R, Mellone U, Urios V (2010) From the Mediterranean Sea to Madagascar: are there ecological barriers for the long-distance migrant Eleonora’s falcon? Landscape Ecol 25:803–813

    Google Scholar 

  • Lyuleeva DS (1970) Energiya poleta u lastochek i strizhey (Energy of flight in swallows and swifts). Doklady Acad Sci USSR 190:1467–1469

    Google Scholar 

  • McLandress MR, Raveling DG (1981) Changes in diet and body composition of Canada geese before spring migration. Auk 98:65–79

    Google Scholar 

  • Moore FR (1990) Evidence for redetermination of migratory direction following wind displacement. Auk 107:425–428

    Google Scholar 

  • Muheim R, Phillips JB, Åkesson S (2006) Polarized light cues underlie compass calibration in migratory songbirds. Science 313:837–839

    PubMed  CAS  Google Scholar 

  • Muheim R, Åkesson S, Phillips JB (2007) Magnetic compass of migratory Savannah sparrows is calibrated by skylight polarization at sunrise and sunset. J Ornithol 148(Suppl 2):S485–S494

    Google Scholar 

  • Muheim R, Phillips JB, Deutschlander ME (2009) White-throated sparrows calibrate their magnetic compass by polarized light cues during both autumn and spring migration. J Exp Biol 212:3466–3472

    PubMed  Google Scholar 

  • Murphy ME (1991) Energetics and nutrition of molt. In: Carey C (ed) Avian energetics and nutritional ecology. Chapman and Hall, NY

    Google Scholar 

  • Nathan R, Perry G, Cronin JT, Strand AE, Cain ML (2003) Methods for estimating long-distance dispersal. Oikos 103:261–273

    Google Scholar 

  • Newton I (2008) The migration ecology of birds. Academic Press, London

    Google Scholar 

  • Noskov GA, Rymkevich TA (2005) Formy migratsionnoy aktivnosti v godovom tsikle ptits (Forms of migratory activity in the annual cycle of birds). In: Iovchenko NP (ed) Ornitologicheskie issledovaniya v Priladozhye (Ornithological research in the Ladoga area). St. Petersburg University Press, St. Petersburg

    Google Scholar 

  • Noskov GA, Rymkevich TA (2008) Migratsionnaya aktivnost’ v godovom tsikle vorobyinykh ptits i formy ee proyavleniya (Migratory activity in the annual cycle of passerines and the forms of its manifestation). Zool Zhurnal 87:446–457

    Google Scholar 

  • Odum EP, Rogers DT, Hicks DL (1964) Homeostasis of the nonfat components of migrating birds. Science 143:1037–1039

    PubMed  CAS  Google Scholar 

  • Odum EP, Marshall SG, Marples TG (1965) The caloric content of migrating birds. Ecology 46:901–904

    Google Scholar 

  • Paxton KL, Van Riper C III, O’Brien C (2008) Movements patterns and stopover ecology of Wilson’s warblers during spring migration on the lower Colorado river in southwestern Arizona. Condor 110:672–681

    Google Scholar 

  • Piersma T (1990) Pre-migratory ‘fattening’ usually involved more than the deposition of fat alone. Ring Migr 11:113–115

    Google Scholar 

  • Piersma T, Pérez-Tris J, Mouritsen H, Bauchinger U, Bairlein F (2005) Is there a ‘migratory syndrome’ common to all migrant birds? Ann NY Acad Sci 1046:282–293

    PubMed  Google Scholar 

  • Pulido F, Berthold P, Mohr G, Querner U (2001) Heritability of the timing of autumn migration in a natural bird population. Proc R Soc Lond B 268:953–959

    CAS  Google Scholar 

  • Rabøl J (1985) The moving goal area and the orientation system of migrant birds. Dansk Orn Foren Tidsskr 79:29–42

    Google Scholar 

  • Rabøl J (2010) Orientation by passerine birds under conflicting magnetic and stellar conditions: no calibration in relation to the magnetic field. Dansk Orn Foren Tidskr 104:85–102

    Google Scholar 

  • Rappole JH (2005) Evolution of Old and New World migration systems: a response to Bell. Ardea 93:125–131

    Google Scholar 

  • Rohwer S, Hobson KA, Rohwer VG (2009) Migratory double breeding in Neotropical migrant birds. Proc Natl Acad Sci USA 106:19050–19055

    PubMed  CAS  Google Scholar 

  • Salewski V, Bruderer B (2007) The evolution of bird migration—a synthesis. Naturwissenschaften 94:268–279

    PubMed  CAS  Google Scholar 

  • Schaub M, Kania W, Köppen U (2005) Variation of primary production during winter induces synchrony in survival rates in migratory white storks Ciconia ciconia. J Anim Ecol 74:656–666

    Google Scholar 

  • Schmaljohann H, Liechti F, Bruderer B (2007) Songbird migration across the Sahara: the non-stop hypothesis rejected! Proc R Soc Lond B 274:735–739

    Google Scholar 

  • Schwilch R, Grattarola A, Spina F, Jenni L (2002) Protein loss during long-distance migratory flight in passerine birds: adaptation and constraints. J Exp Biol 205:687–695

    PubMed  CAS  Google Scholar 

  • Terrill SB (1990) Evolutionary aspects of orientation and migration in birds. Experientia 46:395–404

    Google Scholar 

  • Terrill SB, Able KP (1988) Bird migration terminology. Auk 105:205–206

    Google Scholar 

  • Thorup K, Bisson I-A, Bowlin MS, Holland RA, Wingfield JC, Ramenofsky M, Wikelski M (2007) Evidence for a navigational map stretching across the continental U.S. in a migratory songbird. Proc Natl Acad Sci USA 104:18115–18119

    PubMed  CAS  Google Scholar 

  • Titov N (1999) Home ranges in two passerine nocturnal migrants at a stopover site in autumn. Avian Ecol Behav 3:69–78

    Google Scholar 

  • Tøttrup AP, Klaassen RHG, Strandberg R, Thorup K, Kristensen MW, Jørgensen PS, Fox J, Afanasyev V, Rahbek C, Alerstam T (2012) The annual cycle of a trans-equatorial Eurasian-African passerine migrant: different spatio-temporal strategies for autumn and spring migration. Proc R Soc B 279:1008–1016

    PubMed  Google Scholar 

  • Wang Y, Moore FR (1993) Relation between migratory activity and energetic condition among thrushes (Turdinae) following passage across the Gulf of Mexico. Condor 95:934–943

    Google Scholar 

  • Ward MP, Raim A (2011) The fly-and-social foraging hypothesis for diurnal migration: why American crows migrate during the day. Behav Ecol Sociobiol 65:1411–1418

    Google Scholar 

  • Weber TP, Houston AI (1997) A general model for time-minimising avian migration. J Theor Biol 185:447–458

    Google Scholar 

  • Wikelski M, Tarlow EM, Raim A, Diehl RH, Larkin RP, Visser GH (2003) Costs of migration in free-flying songbirds. Nature 423:704

    PubMed  CAS  Google Scholar 

  • Williams TC, Williams JM (1990) The orientation of transoceanic migrants. In: Gwinner E (ed) Bird migration. Springer, Berlin

    Google Scholar 

  • Winker K (2000) Migration and speciation. Nature 404:36

    PubMed  CAS  Google Scholar 

  • Yohannes E, Hobson KA, Pearson DJ, Wassenaar LI (2005) Stable isotope analysis of feathers help identify autumn stopover sites of three long-distance migrants in northeastern Africa. J Avian Biol 36:235–241

    Google Scholar 

  • Yohannes E, Biebach H, Nikolaus G, Pearson DJ (2009) Passerine migration strategies and body mass variation along geographic sectors across east Africa, the Middle East and the Arabian Peninsula. J Ornithol 150:369–381

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikita Chernetsov .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chernetsov, N. (2012). Introduction. In: Passerine Migration. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29020-6_1

Download citation

Publish with us

Policies and ethics