Skip to main content

Non-Disjoint Discretization for Aggregating One-Dependence Estimator Classifiers

  • Conference paper
Hybrid Artificial Intelligent Systems (HAIS 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7209))

Included in the following conference series:

Abstract

There is still lack of clarity about the best manner in which to handle numeric attributes when applying Bayesian network classifiers. Discretization methods entail an unavoidable loss of information. Nonetheless, a number of studies have shown that appropriate discretization can outperform straightforward use of common, but often unrealistic parametric distribution (e.g. Gaussian). Previous studies have shown the Averaged One-Dependence Estimators (AODE) classifier and its variant Hybrid AODE (HAODE, which deals with numeric and discrete variables) to be robust towards the discretization method applied. However, all the discretization techniques taken into account so far formed non-overlapping intervals for a numeric attribute. We argue that the idea of non-disjoint discretization, already justified in Naive Bayes classifiers, can also be profitably extended to AODE and HAODE, albeit with some variations; and our experimental results seem to support this hypothesis, specially for the latter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Webb, G.I., Boughton, J.R., Wang, Z.: Not So Naive Bayes: Aggregating One-Dependence Estimators. Mach. Learn. 58(1), 5–24 (2005)

    Article  MATH  Google Scholar 

  2. Zheng, F., Webb, G.I.: A Comparative Study of Semi-naive Bayes Methods in Classification Learning. In: Simoff, S.J., Williams, G.J., Galloway, J., Kolyshkina, I. (eds.) Proc. of the 4th AusDM Conf., pp. 141–156 (2005)

    Google Scholar 

  3. Flores, M.J., Gámez, J.A., Martínez, A.M., Puerta, J.M.: GAODE and HAODE: two proposals based on AODE to deal with continuous variables. In: Danyluk, A.P., Bottou, L., Littman, M.L. (eds.) ICML. ACM Int. Conf. Proc. Series, vol. 382, p. 40. ACM (2009)

    Google Scholar 

  4. Flores, M.J., Gámez, J.A., Martínez, A.M., Puerta, J.M.: Handling numeric attributes when comparing bayesian network classifiers: does the discretization method matter? Appl. Intell. 34(3), 372–385 (2011)

    Article  Google Scholar 

  5. Yang, Y., Webb, G.I.: Non-disjoint discretization for naive-bayes classifiers. In: Sammut, C., Hoffmann, A. (eds.) Proc. of the 9th Int. Conf. on Mach. Learn (ICML 2002), pp. 666–673. Morgan Kaufmann, San Francisco (2002)

    Google Scholar 

  6. Zheng, Z., Webb, G.I.: Lazy Learning of Bayesian Rules. Mach. Learn. 41(1), 53–84 (2000)

    Article  Google Scholar 

  7. Keogh, E.J., Pazzani, M.J.: Learning augmented Bayesian classifiers: A comparison of distribution-based and classification-based approaches. In: Proc. of the 7th Int. Workshop on AI and Statistics, pp. 225–230 (1999)

    Google Scholar 

  8. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd edn. Morgan Kaufmann (2005)

    Google Scholar 

  9. Yang, Y., Webb, G.I.: Proportional k-Interval Discretization for Naive-Bayes Classifiers. In: Flach, P.A., De Raedt, L. (eds.) ECML 2001. LNCS (LNAI), vol. 2167, pp. 564–575. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  10. Yang, Y., Webb, G.I.: Discretization for Naive-Bayes Learning: Managing Discretization Bias and Variance. Mach. Learn. 74(1), 39–74 (2009)

    Article  Google Scholar 

  11. Frank, A., Asuncion, A.: UCI machine learning repository (2010), http://archive.ics.uci.edu/ml

  12. Hettich, S., Bay, S.D.: The UCI KDD Archive (1999), http://kdd.ics.uci.edu .

  13. Fayyad, U.M., Irani, K.B.: Multi-interval discretization of continuousvalued attributes for classification learning. In: 13th Int. Joint Conf. on AI, vol. 2, pp. 1022–1027. Morgan Kaufmann (1993)

    Google Scholar 

  14. Domingos, P., Pazzani, M.J.: On the optimality of the simple bayesian classifier under zero-one loss. Mach. Learn. 29(2-3), 103–130 (1997)

    Article  MATH  Google Scholar 

  15. Kohavi, R., Wolpert, D.H.: Bias plus variance decomposition for zero-one loss functions. In: Proc. of the 13th Int. Mach. Learn., pp. 275–283 (1996)

    Google Scholar 

  16. Dietterich, T.G.: Approximate statistical tests for comparing supervised classification learning algorithms. Neural Comput. 10, 1895–1923 (1998)

    Article  Google Scholar 

  17. Webb, G.I., Conilione, P.: Estimating bias and variance from data (2002)

    Google Scholar 

  18. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)

    MathSciNet  MATH  Google Scholar 

  19. Webb, G.I., Boughton, J., Zheng, F., Ting, K.M., Salem, H.: Learning by extrapolation from marginal to full-multivariate probability distributions: decreasingly naive Bayesian classification. Machine Learning (in-press)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Martínez, A.M., Webb, G.I., Flores, M.J., Gámez, J.A. (2012). Non-Disjoint Discretization for Aggregating One-Dependence Estimator Classifiers. In: Corchado, E., Snášel, V., Abraham, A., Woźniak, M., Graña, M., Cho, SB. (eds) Hybrid Artificial Intelligent Systems. HAIS 2012. Lecture Notes in Computer Science(), vol 7209. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28931-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28931-6_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28930-9

  • Online ISBN: 978-3-642-28931-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics