Skip to main content

Receptors for Purines and Pyrimidines

  • Chapter
  • First Online:
Book cover Purinergic Signalling and the Nervous System

Abstract

The cellular effects of purines and pyrimidines are mediated through an extended superfamily of purinoceptors, which include metabotropic P1 (adenosine) receptors, and P2 nucleotide receptors, further subdivided into ionotropic P2X receptors (ATP-gated cation channels) and metabotropic P2Y receptors (G protein-coupled). This chapter provides in‐depth overview of molecular biology, biophysics, pharmacology, physiology, and distribution of purinoceptors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbracchio MP, Verderio C (2006) Pathophysiological roles of P2 receptors in glial cells. Novartis Found Symp 276:91–103 discussion 103–112, 275–181

    Article  PubMed  CAS  Google Scholar 

  • Abbracchio MP, Boeynaems JM, Barnard EA, Boyer JL, Kennedy C, Miras-Portugal MT, King BF, Gachet C, Jacobson KA, Weisman GA, Burnstock G (2003) Characterization of the UDP-glucose receptor (re-named here the P2Y14 receptor) adds diversity to the P2Y receptor family. Trends Pharmacol Sci 24:52–55

    Article  PubMed  CAS  Google Scholar 

  • Abbracchio MP, Burnstock G, Boeynaems JM, Barnard EA, Boyer JL, Kennedy C, Knight GE, Fumagalli M, Gachet C, Jacobson KA, Weisman GA (2006) International Union of Pharmacology LVIII: update on the P2Y G protein-coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy. Pharmacol Rev 58:281–341

    Article  PubMed  CAS  Google Scholar 

  • Able SL, Fish RL, Bye H, Booth L, Logan YR, Nathaniel C, Hayter P, Katugampola SD (2011) Receptor localization, native tissue binding and ex vivo occupancy for centrally penetrant P2X7 antagonists in the rat. Br J Pharmacol 162:405–414

    Article  PubMed  CAS  Google Scholar 

  • Acuna-Castillo C, Morales B, Huidobro-Toro JP (2000) Zinc and copper modulate differentially the P2X4 receptor. J Neurochem 74:1529–1537

    Article  PubMed  CAS  Google Scholar 

  • Adinolfi E, Cirillo M, Woltersdorf R, Falzoni S, Chiozzi P, Pellegatti P, Callegari MG, Sandona D, Markwardt F, Schmalzing G, Di Virgilio F (2010) Trophic activity of a naturally occurring truncated isoform of the P2X7 receptor. FASEB J 24:3393–3404

    Article  PubMed  CAS  Google Scholar 

  • Adriouch S, Scheuplein F, Bahring R, Seman M, Boyer O, Koch-Nolte F, Haag F (2009) Characterisation of the R276A gain-of-function mutation in the ectodomain of murine P2X7. Purinergic Signal 5:151–161

    Article  PubMed  CAS  Google Scholar 

  • Agca C, Seye C, Kashuba Benson CM, Rikka S, Chan AW, Weisman GA, Agca Y (2009) Development of a novel transgenic rat overexpressing the P2Y2 nucleotide receptor using a lentiviral vector. J Vasc Res 46:447–458

    Article  PubMed  CAS  Google Scholar 

  • Akbar GK, Dasari VR, Webb TE, Ayyanathan K, Pillarisetti K, Sandhu AK, Athwal RS, Daniel JL, Ashby B, Barnard EA, Kunapuli SP (1996) Molecular cloning of a novel P2 purinoceptor from human erythroleukemia cells. J Biol Chem 271:18363–18367

    Article  PubMed  Google Scholar 

  • Allsopp RC, Lalo U, Evans RJ (2010) Lipid raft association and cholesterol sensitivity of P2X1–4 receptors for ATP: chimeras and point mutants identify intracellular amino-terminal residues involved in lipid regulation of P2X1 receptors. J Biol Chem 285:32770–32777

    Article  PubMed  CAS  Google Scholar 

  • Alzola E, Perez-Etxebarria A, Kabre E, Fogarty DJ, Metioui M, Chaib N, Macarulla JM, Matute C, Dehaye JP, Marino A (1998) Activation by P2X7 agonists of two phospholipases A2 (PLA2) in ductal cells of rat submandibular gland. Coupling of the calcium-independent PLA2 with kallikrein secretion. J Biol Chem 273:30208–30217

    Article  PubMed  CAS  Google Scholar 

  • Andre P, Delaney SM, LaRocca T, Vincent D, DeGuzman F, Jurek M, Koller B, Phillips DR, Conley PB (2003) P2Y12 regulates platelet adhesion/activation, thrombus growth, and thrombus stability in injured arteries. J Clin Invest 112:398–406

    PubMed  CAS  Google Scholar 

  • Andreev J, Galisteo ML, Kranenburg O, Logan SK, Chiu ES, Okigaki M, Cary LA, Moolenaar WH, Schlessinger J (2001) Src and Pyk2 mediate G-protein-coupled receptor activation of epidermal growth factor receptor (EGFR) but are not required for coupling to the mitogen-activated protein (MAP) kinase signaling cascade. J Biol Chem 276:20130–20135

    Article  PubMed  CAS  Google Scholar 

  • Antonio L, Stewart A, Xu X, Varanda W, Murrell-Lagnado R, Edwardson J (2011) P2X4 receptors interact with both P2X2 and P2X7 receptors in the form of homotrimers. Br J Pharmacol 163:1069–1077

    Article  PubMed  CAS  Google Scholar 

  • Asatryan L, Popova M, Woodward JJ, King BF, Alkana RL, Davies DL (2008) Roles of ectodomain and transmembrane regions in ethanol and agonist action in purinergic P2X2 and P2X3 receptors. Neuropharmacology 55:835–843

    Article  PubMed  CAS  Google Scholar 

  • Asatryan L, Popova M, Perkins D, Trudell JR, Alkana RL, Davies DL (2011) Ivermectin antagonizes ethanol inhibition in purinergic P2X4 receptors. J Pharmacol Exp Ther 334:720–728

    Article  CAS  Google Scholar 

  • Aschrafi A, Sadtler S, Niculescu C, Rettinger J, Schmalzing G (2004) Trimeric architecture of homomeric P2X2 and heteromeric P2X1+2 receptor subtypes. J Mol Biol 342:333–343

    Article  PubMed  CAS  Google Scholar 

  • Ase AR, Raouf R, Belanger D, Hamel E, Seguela P (2005) Potentiation of P2X1 ATP-gated currents by 5-hydroxytryptamine 2A receptors involves diacylglycerol-dependent kinases and intracellular calcium. J Pharmacol Exp Ther 315:144–154

    Article  PubMed  CAS  Google Scholar 

  • Ashida N, Ueyama T, Rikitake K, Shirai Y, Eto M, Kondoh T, Kohmura E, Saito N (2008) Ca2+ oscillation induced by P2Y2 receptor activation and its regulation by a neuron-specific subtype of PKC (γPKC). Neurosci Lett 446:123–128

    Article  PubMed  CAS  Google Scholar 

  • Auchampach JA, Jin X, Wan TC, Caughey GH, Linden J (1997) Canine mast cell adenosine receptors: cloning and expression of the A3 receptor and evidence that degranulation is mediated by the A2B receptor. Mol Pharmacol 52:846–860

    PubMed  CAS  Google Scholar 

  • Ayyanathan K, Webbs TE, Sandhu AK, Athwal RS, Barnard EA, Kunapuli SP (1996) Cloning and chromosomal localization of the human P2Y1 purinoceptor. Biochem Biophys Res Commun 218:783–788

    Article  PubMed  CAS  Google Scholar 

  • Bagchi S, Liao Z, Gonzalez FA, Chorna NE, Seye CI, Weisman GA, Erb L (2005) The P2Y2 nucleotide receptor interacts with alphav integrins to activate Go and induce cell migration. J Biol Chem 280:39050–39057

    Article  PubMed  CAS  Google Scholar 

  • Bailey MA, Turner CM, Hus-Citharel A, Marchetti J, Imbert-Teboul M, Milner P, Burnstock G, Unwin RJ (2004) P2Y receptors present in the native and isolated rat glomerulus. Nephron Physiol 96:79–90

    Article  CAS  Google Scholar 

  • Ballini E, Virginio C, Medhurst S, Summerfield S, Aldegheri L, Buson A, Carignani C, Chen Y, Giacometti A, Lago I, Powell A, Jarolimek W (2011) Characterization of three diaminopyrimidines as potent and selective antagonists of P2X3 and P2X2/3 receptors with in vivo efficacy in a pain model. Br J Pharmacol 163:1315–1325

    Article  PubMed  CAS  Google Scholar 

  • Balsinde J, Winstead MV, Dennis EA (2002) Phospholipase A2 regulation of arachidonic acid mobilization. FEBS Lett 531:2–6

    Article  PubMed  CAS  Google Scholar 

  • Baltensperger K, Porzig H (1997) The P2U purinoceptor obligatorily engages the heterotrimeric G protein G16 to mobilize intracellular Ca2+ in human erythroleukemia cells. J Biol Chem 272:10151–10159

    Article  PubMed  CAS  Google Scholar 

  • Banfi C, Ferrario S, De Vincenti O, Ceruti S, Fumagalli M, Mazzola A, D’ Ambrosi N, Volonte C, Fratto P, Vitali E, Burnstock G, Beltrami E, Parolari A, Polvani G, Biglioli P, Tremoli E, Abbracchio MP (2005) P2 receptors in human heart: upregulation of P2X6 in patients undergoing heart transplantation, interaction with TNFα and potential role in myocardial cell death. J Mol Cell Cardiol 39:929–939

    Google Scholar 

  • Baqi Y, Hausmann R, Rosefort C, Rettinger J, Schmalzing G, Muller CE (2011) Discovery of Potent Competitive Antagonists and Positive Modulators of the P2X2 Receptor. J Med Chem 54:817–830

    Google Scholar 

  • Bar I, Guns PJ, Metallo J, Cammarata D, Wilkin F, Boeynams JM, Bult H, Robaye B (2008) Knockout mice reveal a role for P2Y6 receptor in macrophages, endothelial cells, and vascular smooth muscle cells. Mol Pharmacol 74:777–784

    Article  PubMed  CAS  Google Scholar 

  • Baraldi PG, del Carmen Nunez M, Morelli A, Falzoni S, Di Virgilio F, Romagnoli R (2003) Synthesis and biological activity of N-arylpiperazine-modified analogues of KN-62, a potent antagonist of the purinergic P2X7 receptor. J Med Chem 46:1318–1329

    Article  PubMed  CAS  Google Scholar 

  • Barden N, Harvey M, Gagne B, Shink E, Tremblay M, Raymond C, Labbe M, Villeneuve A, Rochette D, Bordeleau L, Stadler H, Holsboer F, Muller-Myhsok B (2006) Analysis of single nucleotide polymorphisms in genes in the chromosome 12Q24.31 region points to P2RX7 as a susceptibility gene to bipolar affective disorder. Am J Med Genet B Neuropsychiatr Genet 141B:374–382

    Article  PubMed  CAS  Google Scholar 

  • Barnard EA, Simon J (2001) An elusive receptor is finally caught: P2Y12, an important drug target in platelets. Trends Pharmacol Sci 22:388–391

    Article  PubMed  CAS  Google Scholar 

  • Barrera NP, Ormond SJ, Henderson RM, Murrell-Lagnado RD, Edwardson JM (2005) Atomic force microscopy imaging demonstrates that P2X2 receptors are trimers but that P2X6 receptor subunits do not oligomerize. J Biol Chem 280:10759–10765

    Article  PubMed  CAS  Google Scholar 

  • Baurand A, Raboisson P, Freund M, Leon C, Cazenave JP, Bourguignon JJ, Gachet C (2001) Inhibition of platelet function by administration of MRS2179, a P2Y1 receptor antagonist. Eur J Pharmacol 412:213–221

    Article  PubMed  CAS  Google Scholar 

  • Bean BP (1990) ATP-activated channels in rat and bullfrog sensory neurons: concentration dependence and kinetics. J Neurosci 10:1–10

    PubMed  CAS  Google Scholar 

  • Belous A, Wakata A, Knox CD, Nicoud IB, Pierce J, Anderson CD, Pinson CW, Chari RS (2004) Mitochondrial P2Y-Like receptors link cytosolic adenosine nucleotides to mitochondrial calcium uptake. J Cell Biochem 92:1062–1073

    Article  PubMed  CAS  Google Scholar 

  • Belous AE, Jones CM, Wakata A, Knox CD, Nicoud IB, Pierce J, Chari RS (2006) Mitochondrial calcium transport is regulated by P2Y1- and P2Y2-like mitochondrial receptors. J Cell Biochem 99:1165–1174

    Article  PubMed  CAS  Google Scholar 

  • Benham CD, Tsien RW (1987) A novel receptor-operated Ca2+-permeable channel activated by ATP in smooth muscle. Nature 328:275–278

    Article  PubMed  CAS  Google Scholar 

  • Benned-Jensen T, Rosenkilde MM (2010) Distinct expression and ligand-binding profiles of two constitutively active GPR17 splice variants. Br J Pharmacol 159:1092–1105

    Article  PubMed  CAS  Google Scholar 

  • Bernier LP, Ase AR, Chevallier S, Blais D, Zhao Q, Boue-Grabot E, Logothetis D, Seguela P (2008) Phosphoinositides regulate P2X4 ATP-gated channels through direct interactions. J Neurosci 28:12938–12945

    Article  PubMed  CAS  Google Scholar 

  • Berti-Mattera LN, Wilkins PL, Madhun Z, Suchovsky D (1996) P2-purigenic receptors regulate phospholipase C and adenylate cyclase activities in immortalized Schwann cells. Biochem J 314(Pt 2):555–561

    PubMed  CAS  Google Scholar 

  • Besada P, Shin DH, Costanzi S, Ko H, Mathe C, Gagneron J, Gosselin G, Maddileti S, Harden TK, Jacobson KA (2006) Structure-activity relationships of uridine 5′-diphosphate analogues at the human P2Y6 receptor. J Med Chem 49:5532–5543

    Article  PubMed  CAS  Google Scholar 

  • Bianchi BR, Lynch KJ, Touma E, Niforatos W, Burgard EC, Alexander KM, Park HS, Yu H, Metzger R, Kowaluk E, Jarvis MF, van Biesen T (1999) Pharmacological characterization of recombinant human and rat P2X receptor subtypes. Eur J Pharmacol 376:127–138

    Article  PubMed  CAS  Google Scholar 

  • Bianco F, Fumagalli M, Pravettoni E, D′Ambrosi N, Volonte C, Matteoli M, Abbracchio MP, Verderio C (2005) Pathophysiological roles of extracellular nucleotides in glial cells: differential expression of purinergic receptors in resting and activated microglia. Brain Res Brain Res Rev 48:144–156

    Article  PubMed  CAS  Google Scholar 

  • Bianco F, Ceruti S, Colombo A, Fumagalli M, Ferrari D, Pizzirani C, Matteoli M, Di Virgilio F, Abbracchio MP, Verderio C (2006) A role for P2X7 in microglial proliferation. J Neurochem 99:745–758

    Article  PubMed  CAS  Google Scholar 

  • Blasius R, Weber RG, Lichter P, Ogilvie A (1998) A novel orphan G protein-coupled receptor primarily expressed in the brain is localized on human chromosomal band 2q21. J Neurochem 70:1357–1365

    Article  PubMed  CAS  Google Scholar 

  • Bo X, Zhang Y, Nassar M, Burnstock G, Schoepfer R (1995) A P2X purinoceptor cDNA conferring a novel pharmacological profile. FEBS Lett 375:129–133

    Article  PubMed  CAS  Google Scholar 

  • Bo X, Schoepfer R, Burnstock G (2000) Molecular cloning and characterization of a novel ATP P2X receptor subtype from embryonic chick skeletal muscle. J Biol Chem 275:14401–14407

    Article  PubMed  CAS  Google Scholar 

  • Bo X, Jiang LH, Wilson HL, Kim M, Burnstock G, Surprenant A, North RA (2003) Pharmacological and biophysical properties of the human P2X5 receptor. Mol Pharmacol 63:1407–1416

    Article  PubMed  CAS  Google Scholar 

  • Boarder M, Webb TE (2001) P2Y receptors structure and function. In: Abbracchio MP, Williams M (eds) Purinergic and pyrimidinergic signalling. Handbook of experimental pharmacology, vol 151/I, Springer, Heidelberg, pp 65–88

    Google Scholar 

  • Bodor ET, Waldo GL, Hooks SB, Corbitt J, Boyer JL, Harden TK (2003) Purification and functional reconstitution of the human P2Y12 receptor. Mol Pharmacol 64:1210–1216

    Article  PubMed  CAS  Google Scholar 

  • Boeynaems JM, Wilkin F, Marteau F, Duhant X, Savi P, Gonzalez NS, Robaye B, Communi D (2003) P2Y receptors: new subtypes, new functions. Drug Devel Res 59:30–35

    Article  CAS  Google Scholar 

  • Bogdanov YD, Dale L, King BF, Whittock N, Burnstock G (1997) Early expression of a novel nucleotide receptor in the neural plate of Xenopus embryos. J Biol Chem 272:12583–12590

    Article  PubMed  CAS  Google Scholar 

  • Bogdanov Y, Rubino A, Burnstock G (1998a) Characterisation of subtypes of the P2X and P2Y families of ATP receptors in the foetal human heart. Life Sci 62:697–703

    Article  PubMed  CAS  Google Scholar 

  • Bogdanov YD, Wildman SS, Clements MP, King BF, Burnstock G (1998b) Molecular cloning and characterization of rat P2Y4 nucleotide receptor. Br J Pharmacol 124:428–430

    Article  PubMed  CAS  Google Scholar 

  • Boison D (2008) Adenosine as a neuromodulator in neurological diseases. Curr Opin Pharmacol 8:2–7

    Article  PubMed  CAS  Google Scholar 

  • Boldt W, Klapperstuck M, Buttner C, Sadtler S, Schmalzing G, Markwardt F (2003) Glu496Ala polymorphism of human P2X7 receptor does not affect its electrophysiological phenotype. Am J Physiol Cell Physiol 284:C749–C756

    PubMed  CAS  Google Scholar 

  • Bolego C, Pinna C, Abbracchio MP, Cattabeni F, Puglisi L (1995) The biphasic response of rat vesical smooth muscle to ATP. Br J Pharmacol 114:1557–1562

    Article  PubMed  CAS  Google Scholar 

  • Bongartz EV, Rettinger J, Hausmann R (2011) Aminoglycoside block of P2X2 receptors heterologously expressed in Xenopus laevis oocytes. Purinergic Signal 6:393–403

    Article  CAS  Google Scholar 

  • Boue-Grabot E, Archambault V, Seguela P (2000) A protein kinase C site highly conserved in P2X subunits controls the desensitization kinetics of P2X2 ATP-gated channels. J Biol Chem 275:10190–10195

    Article  PubMed  CAS  Google Scholar 

  • Bouvier M (2001) Oligomerization of G-protein-coupled transmitter receptors. Nat Rev Neurosci 2:274–286

    Article  PubMed  CAS  Google Scholar 

  • Bowler WB, Birch MA, Gallagher JA, Bilbe G (1995) Identification and cloning of human P2U purinoceptor present in osteoclastoma, bone, and osteoblasts. J Bone Miner Res 10:1137–1145

    Article  PubMed  CAS  Google Scholar 

  • Bowser DN, Khakh BS (2004) ATP excites interneurons and astrocytes to increase synaptic inhibition in neuronal networks. J Neurosci 24:8606–8620

    Article  PubMed  CAS  Google Scholar 

  • Boyer JL, Romero-Avila T, Schachter JB, Harden TK (1996a) Identification of competitive antagonists of the P2Y1 receptor. Mol Pharmacol 50:1323–1329

    PubMed  CAS  Google Scholar 

  • Boyer JL, Siddiqi S, Fischer B, Romero-Avila T, Jacobson KA, Harden TK (1996b) Identification of potent P2Y-purinoceptor agonists that are derivatives of adenosine 5′-monophosphate. Br J Pharmacol 118:1959–1964

    Article  PubMed  CAS  Google Scholar 

  • Boyer JL, Mohanram A, Camaioni E, Jacobson KA, Harden TK (1998) Competitive and selective antagonism of P2Y1 receptors by N6-methyl 2′-deoxyadenosine 3′,5′-bisphosphate. Br J Pharmacol 124:1–3

    Article  PubMed  CAS  Google Scholar 

  • Boyer JL, Delaney SM, Villanueva D, Harden TK (2000) A molecularly identified P2Y receptor simultaneously activates phospholipase C and inhibits adenylyl cyclase and is nonselectively activated by all nucleoside triphosphates. Mol Pharmacol 57:805–810

    PubMed  CAS  Google Scholar 

  • Boyer JL, Adams M, Ravi RG, Jacobson KA, Harden TK (2002) 2-Chloro N(6)-methyl-(N)-methanocarba-2′-deoxyadenosine-3′,5′-bisphosphate is a selective high affinity P2Y1 receptor antagonist. Br J Pharmacol 135:2004–2010

    Article  PubMed  CAS  Google Scholar 

  • Bradley HJ, Baldwin JM, Goli GR, Johnson B, Zou J, Sivaprasadarao A, Baldwin SA, Jiang LH (2011) Residues 155 and 348 contribute to the determination of P2X7 receptor function via distinct mechanisms revealed by single-nucleotide polymorphisms. J Biol Chem 286:8176–8187

    Article  PubMed  CAS  Google Scholar 

  • Brake AJ, Wagenbach MJ, Julius D (1994) New structural motif for ligand-gated ion channels defined by an ionotropic ATP receptor. Nature 371:519–523

    Article  PubMed  CAS  Google Scholar 

  • Brambilla R, Burnstock G, Bonazzi A, Ceruti S, Cattabeni F, Abbracchio MP (1999) Cyclo-oxygenase-2 mediates P2Y receptor-induced reactive astrogliosis. Br J Pharmacol 126:563–567

    Article  PubMed  CAS  Google Scholar 

  • Brambilla R, Ceruti S, Malorni W, Cattabeni F, Abbracchio MP (2000) A novel gliotic P2 receptor mediating cyclooxygenase-2 induction in rat and human astrocytes. J Auton Nerv Syst 81:3–9

    Article  PubMed  CAS  Google Scholar 

  • Brambilla R, Neary JT, Cattabeni F, Cottini L, D’Ippolito G, Schiller PC, Abbracchio MP (2002) Induction of COX-2 and reactive gliosis by P2Y receptors in rat cortical astrocytes is dependent on ERK1/2 but independent of calcium signalling. J Neurochem 83:1285–1296

    Article  PubMed  CAS  Google Scholar 

  • Brambilla R, Neary JT, Fumagalli M, Cottini L, Cattabeni F, Schiller PR, Abbracchio MP (2003) P2Y receptors in brain astroglial cells: identification of a gliotic P2Y receptor coupled to activation of a calcium-independent Ras/ERK1/2 pathway. Drug Dev Res 59:161–170

    Article  CAS  Google Scholar 

  • Brandle U, Spielmanns P, Osteroth R, Sim J, Surprenant A, Buell G, Ruppersberg JP, Plinkert PK, Zenner HP, Glowatzki E (1997) Desensitization of the P2X2 receptor controlled by alternative splicing. FEBS Lett 404:294–298

    Article  PubMed  CAS  Google Scholar 

  • Braun K, Rettinger J, Ganso M, Kassack M, Hildebrandt C, Ullmann H, Nickel P, Schmalzing G, Lambrecht G (2001) NF449: a subnanomolar potency antagonist at recombinant rat P2X1 receptors. Naunyn Schmiedebergs Arch Pharmacol 364:285–290

    Article  PubMed  CAS  Google Scholar 

  • Briddon SJ, Gandia J, Amaral OB, Ferre S, Lluis C, Franco R, Hill SJ, Ciruela F (2008) Plasma membrane diffusion of G protein-coupled receptor oligomers. Biochim Biophys Acta 1783:2262–2268

    Article  PubMed  CAS  Google Scholar 

  • Brink C, Dahlen SE, Drazen J, Evans JF, Hay DW, Nicosia S, Serhan CN, Shimizu T, Yokomizo T (2003) International union of pharmacology XXXVII. Nomenclature for leukotriene and lipoxin receptors. Pharmacol Rev 55:195–227

    Article  PubMed  CAS  Google Scholar 

  • Brinson AE, Harden TK (2001) Differential regulation of the uridine nucleotide-activated P2Y4 and P2Y6 receptors. SER-333 and SER-334 in the carboxyl terminus are involved in agonist-dependent phosphorylation desensitization and internalization of the P2Y4 receptor. J Biol Chem 276:11939–11948

    Article  PubMed  CAS  Google Scholar 

  • Broom DC, Matson DJ, Bradshaw E, Buck ME, Meade R, Coombs S, Matchett M, Ford KK, Yu W, Yuan J, Sun SH, Ochoa R, Krause JE, Wustrow DJ, Cortright DN (2008) Characterization of N-(adamantan-1-ylmethyl)-5-[(3R-amino-pyrrolidin-1-yl)methyl]-2-chloro-ben zamide, a P2X7 antagonist in animal models of pain and inflammation. J Pharmacol Exp Ther 327:620–633

    Article  PubMed  CAS  Google Scholar 

  • Brotherton-Pleiss CE, Dillon MP, Ford AP, Gever JR, Carter DS, Gleason SK, Lin CJ, Moore AG, Thompson AW, Villa M, Zhai Y (2010) Discovery and optimization of RO-85, a novel drug-like, potent, and selective P2X3 receptor antagonist. Bioorg Med Chem Lett 20:1031–1036

    Article  PubMed  CAS  Google Scholar 

  • Brown J, Brown CA (2002) Evaluation of reactive blue 2 derivatives as selective antagonists for P2Y receptors. Vascul Pharmacol 39:309–315

    Article  PubMed  CAS  Google Scholar 

  • Brown DA, Yule DI (2007) Protein kinase C regulation of P2X3 receptors is unlikely to involve direct receptor phosphorylation. Biochim Biophys Acta 1773:166–175

    Article  PubMed  CAS  Google Scholar 

  • Brown DA, Filippov AK, Barnard EA (2000a) Inhibition of potassium and calcium currents in neurones by molecularly-defined P2Y receptors. J Auton Nerv Syst 81:31–36

    Article  PubMed  CAS  Google Scholar 

  • Brown SG, King BF, Kim YC, Burnstock G, Jacobson KA (2000b) Activity of novel adenine nucleotide derivatives as agonists and antagonists at recombinant rat P2X receptors. Drug Dev Res 49:253–259

    Article  PubMed  CAS  Google Scholar 

  • Brown SG, Townsend-Nicholson A, Jacobson KA, Burnstock G, King BF (2002) Heteromultimeric P2X1/2 receptors show a novel sensitivity to extracellular pH. J Pharmacol Exp Ther 300:673–680

    Article  PubMed  CAS  Google Scholar 

  • Browne LE, Jiang LH, North RA (2010) New structure enlivens interest in P2X receptors. Trends Pharmacol Sci 31:229–237

    Article  PubMed  CAS  Google Scholar 

  • Brunschweiger A, Muller CE (2006) P2 receptors activated by uracil nucleotides–an update. Curr Med Chem 13:289–312

    Article  PubMed  CAS  Google Scholar 

  • Buell G, Lewis C, Collo G, North RA, Surprenant A (1996a) An antagonist-insensitive P2X receptor expressed in epithelia and brain. EMBO J 15:55–62

    PubMed  CAS  Google Scholar 

  • Buell G, Michel AD, Lewis C, Collo G, Humphrey PP, Surprenant A (1996b) P2X1 receptor activation in HL60 cells. Blood 87:2659–2664

    PubMed  CAS  Google Scholar 

  • Buonanno A, Fischbach GD (2001) Neuregulin and ErbB receptor signaling pathways in the nervous system. Curr Opin Neurobiol 11:287–296

    Article  PubMed  CAS  Google Scholar 

  • Burgard EC, Niforatos W, van Biesen T, Lynch KJ, Kage KL, Touma E, Kowaluk EA, Jarvis MF (2000) Competitive antagonism of recombinant P2X2/3 receptors by 2′, 3′-O-(2,4,6-trinitrophenyl) adenosine 5′-triphosphate (TNP-ATP). Mol Pharmacol 58:1502–1510

    PubMed  CAS  Google Scholar 

  • Burnstock G (1978) A basis for distinguishing two types of purinergic receptor. In: Bolis L, Straub RW (eds) Cell membrane receptors for drugs and hormones. Raven Press, New York

    Google Scholar 

  • Burnstock G (1980) Purinergic nerves and receptors. Prog Biochem Pharmacol 16:141–154

    PubMed  CAS  Google Scholar 

  • Burnstock G (2000) P2X receptors in sensory neurones. Br J Anaesth 84:476–488

    Article  PubMed  CAS  Google Scholar 

  • Burnstock G (2003) Introduction: ATP and its metabolites as potent extracellular agonists. In: Schwiebert EM (ed) Current topics in membranes, vol 54. Purinergic receptors and signalling. Academic Press, San Diego, pp 1–27

    Google Scholar 

  • Burnstock G (2007) Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev 87:659–797

    Article  PubMed  CAS  Google Scholar 

  • Burnstock G (2009a) Purinergic receptors and pain. Curr Pharm Des 15:1717–1735

    Article  PubMed  CAS  Google Scholar 

  • Burnstock G (2009b) Purinergic regulation of vascular tone and remodelling. Auton Autacoid Pharmacol 29:63–72

    Article  PubMed  CAS  Google Scholar 

  • Burnstock G, Kennedy C (1985) Is there a basis for distinguishing two types of P2-purinoceptor? Gen Pharmacol 16:433–440

    Article  PubMed  CAS  Google Scholar 

  • Burnstock G, Kennedy C (2011) P2X receptors in health and disease. Adv Pharmacol 61:333–372

    Article  PubMed  CAS  Google Scholar 

  • Burnstock G, Knight GE (2004) Cellular distribution and functions of P2 receptor subtypes in different systems. Int Rev Cytol 240:31–304

    Article  PubMed  CAS  Google Scholar 

  • Burrell HE, Bowler WB, Gallagher JA, Sharpe GR (2003) Human keratinocytes express multiple P2Y-receptors: evidence for functional P2Y1, P2Y2, and P2Y4 receptors. J Invest Dermatol 120:440–447

    Article  PubMed  CAS  Google Scholar 

  • Buscher R, Hoerning A, Patel HH, Zhang S, Arthur DB, Grasemann H, Ratjen F, Insel PA (2006) P2Y2 receptor polymorphisms and haplotypes in cystic fibrosis and their impact on Ca2+ influx. Pharmacogenet Genomics 16:199–205

    PubMed  Google Scholar 

  • Buvinic S, Briones R, Huidobro-Toro JP (2002) P2Y1 and P2Y2 receptors are coupled to the NO/cGMP pathway to vasodilate the rat arterial mesenteric bed. Br J Pharmacol 136:847–856

    Article  PubMed  CAS  Google Scholar 

  • Cabello N, Gandia J, Bertarelli DC, Watanabe M, Lluis C, Franco R, Ferre S, Lujan R, Ciruela F (2009) Metabotropic glutamate type 5, dopamine D2 and adenosine A2a receptors form higher-order oligomers in living cells. J Neurochem 109:1497–1507

    Article  PubMed  CAS  Google Scholar 

  • Cabrini G, Falzoni S, Forchap SL, Pellegatti P, Balboni A, Agostini P, Cuneo A, Castoldi G, Baricordi OR, Di Virgilio F (2005) A His-155 to Tyr polymorphism confers gain-of-function to the human P2X7 receptor of human leukemic lymphocytes. J Immunol 175:82–89

    PubMed  CAS  Google Scholar 

  • Camaioni E, Boyer JL, Mohanram A, Harden TK, Jacobson KA (1998) Deoxyadenosine bisphosphate derivatives as potent antagonists at P2Y1 receptors. J Med Chem 41:183–190

    Article  PubMed  CAS  Google Scholar 

  • Camden JM, Schrader AM, Camden RE, Gonzalez FA, Erb L, Seye CI, Weisman GA (2005) P2Y2 nucleotide receptors enhance α-secretase-dependent amyloid precursor protein processing. J Biol Chem 280:18696–18702

    Article  PubMed  CAS  Google Scholar 

  • Canals M, Marcellino D, Fanelli F, Ciruela F, de Benedetti P, Goldberg SR, Neve K, Fuxe K, Agnati LF, Woods AS, Ferre S, Lluis C, Bouvier M, Franco R (2003) Adenosine A2A-dopamine D2 receptor-receptor heteromerization: qualitative and quantitative assessment by fluorescence and bioluminescence energy transfer. J Biol Chem 278:46741–46749

    Article  PubMed  CAS  Google Scholar 

  • Canals M, Burgueno J, Marcellino D, Cabello N, Canela EI, Mallol J, Agnati L, Ferre S, Bouvier M, Fuxe K, Ciruela F, Lluis C, Franco R (2004) Homodimerization of adenosine A2A receptors: qualitative and quantitative assessment by fluorescence and bioluminescence energy transfer. J Neurochem 88:726–734

    Article  PubMed  CAS  Google Scholar 

  • Cankurtaran-Sayar S, Sayar K, Ugur M (2009) P2X7 receptor activates multiple selective dye-permeation pathways in RAW 264.7 and human embryonic kidney 293 cells. Mol Pharmacol 76:1323–1332

    Article  PubMed  CAS  Google Scholar 

  • Cannon CP, Husted S, Harrington RA, Scirica BM, Emanuelsson H, Peters G, Storey RF (2007) Safety, tolerability, and initial efficacy of AZD6140, the first reversible oral adenosine diphosphate receptor antagonist, compared with clopidogrel, in patients with non-ST-segment elevation acute coronary syndrome: primary results of the DISPERSE-2 trial. J Am Coll Cardiol 50:1844–1851

    Article  PubMed  CAS  Google Scholar 

  • Cantagrel V, Lossi AM, Boulanger S, Depetris D, Mattei MG, Gecz J, Schwartz CE, Van Maldergem L, Villard L (2004) Disruption of a new X linked gene highly expressed in brain in a family with two mentally retarded males. J Med Genet 41:736–742

    Article  PubMed  CAS  Google Scholar 

  • Cantrell AR, Catterall WA (2001) Neuromodulation of Na+ channels: an unexpected form of cellular plasticity. Nat Rev Neurosci 2:397–407

    Article  PubMed  CAS  Google Scholar 

  • Cao L, Broomhead HE, Young MT, North RA (2009) Polar residues in the second transmembrane domain of the rat P2X2 receptor that affect spontaneous gating, unitary conductance, and rectification. J Neurosci 29:14257–14264

    Article  PubMed  CAS  Google Scholar 

  • Capra V, Ravasi S, Accomazzo MR, Citro S, Grimoldi M, Abbracchio MP, Rovati GE (2005) CysLT1 receptor is a target for extracellular nucleotide-induced heterologous desensitization: a possible feedback mechanism in inflammation. J Cell Sci 118:5625–5636

    Article  PubMed  CAS  Google Scholar 

  • Cario-Toumaniantz C, Loirand G, Ladoux A, Pacaud P (1998) P2X7 receptor activation-induced contraction and lysis in human saphenous vein smooth muscle. Circ Res 83:196–203

    Article  PubMed  CAS  Google Scholar 

  • Carpenter D, Meadows HJ, Brough S, Chapman G, Clarke C, Coldwell M, Davis R, Harrison D, Meakin J, McHale M, Rice SQ, Tomlinson WJ, Wood M, Sanger GJ (1999) Site-specific splice variation of the human P2X4 receptor. Neurosci Lett 273:183–186

    Article  PubMed  CAS  Google Scholar 

  • Carriba P, Ortiz O, Patkar K, Justinova Z, Stroik J, Themann A, Muller C, Woods AS, Hope BT, Ciruela F, Casado V, Canela EI, Lluis C, Goldberg SR, Moratalla R, Franco R, Ferre S (2007) Striatal adenosine A2A and cannabinoid CB1 receptors form functional heteromeric complexes that mediate the motor effects of cannabinoids. Neuropsychopharmacology 32:2249–2259

    Article  PubMed  CAS  Google Scholar 

  • Carter RL, Fricks IP, Barrett MO, Burianek LE, Zhou Y, Ko H, Das A, Jacobson KA, Lazarowski ER, Harden TK (2009) Quantification of Gi-mediated inhibition of adenylyl cyclase activity reveals that UDP is a potent agonist of the human P2Y14 receptor. Mol Pharmacol 76:1341–1348

    Article  PubMed  CAS  Google Scholar 

  • Cattaneo M (2005) The P2 receptors and congenital platelet function defects. Semin Thromb Hemost 31:168–173

    Article  PubMed  CAS  Google Scholar 

  • Cattaneo M (2010) New P2Y12 inhibitors. Circulation 121:171–179

    Article  PubMed  Google Scholar 

  • Cattaneo M, Lecchi A, Randi AM, McGregor JL, Mannucci PM (1992) Identification of a new congenital defect of platelet function characterized by severe impairment of platelet responses to adenosine diphosphate. Blood 80:2787–2796

    PubMed  CAS  Google Scholar 

  • Cattaneo M, Lombardi R, Zighetti ML, Gachet C, Ohlmann P, Cazenave JP, Mannucci PM (1997) Deficiency of (33P)2MeS-ADP binding sites on platelets with secretion defect, normal granule stores and normal thromboxane A2 production. Evidence that ADP potentiates platelet secretion independently of the formation of large platelet aggregates and thromboxane A2 production. Thromb Haemost 77:986–990

    PubMed  CAS  Google Scholar 

  • Cattaneo M, Zighetti ML, Lombardi R, Martinez C, Lecchi A, Conley PB, Ware J, Ruggeri ZM (2003) Molecular bases of defective signal transduction in the platelet P2Y12 receptor of a patient with congenital bleeding. Proc Natl Acad Sci U S A 100:1978–1983

    Article  PubMed  CAS  Google Scholar 

  • Cattaneo M, Lecchi A, Ohno M, Joshi BV, Besada P, Tchilibon S, Lombardi R, Bischofberger N, Harden TK, Jacobson KA (2004) Antiaggregatory activity in human platelets of potent antagonists of the P2Y1 receptor. Biochem Pharmacol 68:1995–2002

    Article  PubMed  CAS  Google Scholar 

  • Centemeri C, Bolego C, Abbracchio MP, Cattabeni F, Puglisi L, Burnstock G, Nicosia S (1997) Characterization of the Ca2+ responses evoked by ATP and other nucleotides in mammalian brain astrocytes. Br J Pharmacol 121:1700–1706

    Article  PubMed  CAS  Google Scholar 

  • Ceruti S, Villa G, Genovese T, Mazzon E, Longhi R, Rosa P, Bramanti P, Cuzzocrea S, Abbracchio MP (2009) The P2Y-like receptor GPR17 as a sensor of damage and a new potential target in spinal cord injury. Brain 132:2206–2218

    Article  PubMed  Google Scholar 

  • Ceruti S, Vigano F, Boda E, Ferrario S, Magni G, Boccazzi M, Rosa P, Buffo A, Abbracchio MP (2011) Expression of the new P2Y-like receptor GPR17 during oligodendrocyte precursor cell maturation regulates sensitivity to ATP-induced death. Glia 59:363–378

    Article  PubMed  Google Scholar 

  • Chabre M, le Maire M (2005) Monomeric G-protein-coupled receptor as a functional unit. Biochemistry 44:9395–9403

    Article  PubMed  CAS  Google Scholar 

  • Chambers JK, Macdonald LE, Sarau HM, Ames RS, Freeman K, Foley JJ, Zhu Y, McLaughlin MM, Murdock P, McMillan L, Trill J, Swift A, Aiyar N, Taylor P, Vawter L, Naheed S, Szekeres P, Hervieu G, Scott C, Watson JM, Murphy AJ, Duzic E, Klein C, Bergsma DJ, Wilson S, Livi GP (2000) A G protein-coupled receptor for UDP-glucose. J Biol Chem 275:10767–10771

    Article  PubMed  CAS  Google Scholar 

  • Chang K, Hanaoka K, Kumada M, Takuwa Y (1995) Molecular cloning and functional analysis of a novel P2 nucleotide receptor. J Biol Chem 270:26152–26158

    Article  PubMed  CAS  Google Scholar 

  • Charlton SJ, Brown CA, Weisman GA, Turner JT, Erb L, Boarder MR (1996) PPADS and suramin as antagonists at cloned P2Y- and P2U-purinoceptors. Br J Pharmacol 118:704–710

    Article  PubMed  CAS  Google Scholar 

  • Charlton ME, Williams AS, Fogliano M, Sweetnam PM, Duman RS (1997) The isolation and characterization of a novel G protein-coupled receptor regulated by immunologic challenge. Brain Res 764:141–148

    Article  PubMed  CAS  Google Scholar 

  • Chaumont S, Khakh BS (2008) Patch-clamp coordinated spectroscopy shows P2X2 receptor permeability dynamics require cytosolic domain rearrangements but not Panx-1 channels. Proc Natl Acad Sci U S A 105:12063–12068

    Article  PubMed  CAS  Google Scholar 

  • Chaumont S, Compan V, Toulme E, Richler E, Housley GD, Rassendren F, Khakh BS (2008) Regulation of P2X2 receptors by the neuronal calcium sensor VILIP1. Sci Signal. 1, ra8

    Google Scholar 

  • Chen BC, Lin WW (2001) PKC- and ERK-dependent activation of I kappa B kinase by lipopolysaccharide in macrophages: enhancement by P2Y receptor-mediated CaMK activation. Br J Pharmacol 134:1055–1065

    Article  PubMed  CAS  Google Scholar 

  • Chen CC, Akopian AN, Sivilotti L, Colquhoun D, Burnstock G, Wood JN (1995) A P2X purinoceptor expressed by a subset of sensory neurons. Nature 377:428–431

    Article  PubMed  CAS  Google Scholar 

  • Chen ZP, Krull N, Xu S, Levy A, Lightman SL (1996) Molecular cloning and functional characterization of a rat pituitary G protein-coupled adenosine triphosphate (ATP) receptor. Endocrinology 137:1833–1840

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Parker MS, Barnes AP, Deininger P, Bobbin RP (2000) Functional expression of three P2X2 receptor splice variants from guinea pig cochlea. J Neurophysiol 83:1502–1509

    PubMed  CAS  Google Scholar 

  • Chen Y, Wu H, Wang S, Koito H, Li J, Ye F, Hoang J, Escobar SS, Gow A, Arnett HA, Trapp BD, Karandikar NJ, Hsieh J, Lu QR (2009) The oligodendrocyte-specific G protein-coupled receptor GPR17 is a cell-intrinsic timer of myelination. Nat Neurosci 12:1398–1406

    Article  PubMed  CAS  Google Scholar 

  • Chen D, Wang W, Guo W, Yu Q, Burnstock G, He C, Xiang Z, Zheng H (2011) Expression of P2Y6 receptors in the developing mouse skeletal muscle and after injury and repair. J Anat 218:643–651

    Article  PubMed  CAS  Google Scholar 

  • Cheng AW, Kong LW, Tung EK, Siow NL, Choi RC, Zhu SQ, Peng BH, Tsim KW (2003) cDNA encodes Xenopus P2Y1 nucleotide receptor: expression at the neuromuscular junctions. Neuroreport 14:351–357

    Article  PubMed  CAS  Google Scholar 

  • Chessell IP, Michel AD, Humphrey PP (1998a) Effects of antagonists at the human recombinant P2X7 receptor. Br J Pharmacol 124:1314–1320

    Article  PubMed  CAS  Google Scholar 

  • Chessell IP, Simon J, Hibell AD, Michel AD, Barnard EA, Humphrey PP (1998b) Cloning and functional characterisation of the mouse P2X7 receptor. FEBS Lett 439:26–30

    Article  PubMed  CAS  Google Scholar 

  • Cheung KK, Ryten M, Burnstock G (2003) Abundant and dynamic expression of G protein-coupled P2Y receptors in mammalian development. Dev Dyn 228:254–266

    Article  PubMed  CAS  Google Scholar 

  • Chhatriwala M, Ravi RG, Patel RI, Boyer JL, Jacobson KA, Harden TK (2004) Induction of novel agonist selectivity for the ADP-activated P2Y1 receptor versus the ADP-activated P2Y12 and P2Y13 receptors by conformational constraint of an ADP analog. J Pharmacol Exp Ther 311:1038–1043

    Article  PubMed  CAS  Google Scholar 

  • Chiu J, DeSalle R, Lam HM, Meisel L, Coruzzi G (1999) Molecular evolution of glutamate receptors: a primitive signaling mechanism that existed before plants and animals diverged. Mol Biol Evol 16:826–838

    Article  PubMed  CAS  Google Scholar 

  • Choi RC, Man ML, Ling KK, Ip NY, Simon J, Barnard EA, Tsim KW (2001) Expression of the P2Y1 nucleotide receptor in chick muscle: its functional role in the regulation of acetylcholinesterase and acetylcholine receptor. J Neurosci 21:9224–9234

    PubMed  CAS  Google Scholar 

  • Choi RC, Siow NL, Cheng AW, Ling KK, Tung EK, Simon J, Barnard EA, Tsim KW (2003) ATP acts via P2Y1 receptors to stimulate acetylcholinesterase and acetylcholine receptor expression: transduction and transcription control. J Neurosci 23:4445–4456

    PubMed  CAS  Google Scholar 

  • Choi RC, Wong CSS, Simon J, Barnard EA (2005a) Agonist-induced homo-dimerisation of P2Y1 receptors demonstated by fluorescence resonance energy transfer analysis. Br J Pharmacol 146:11P

    Google Scholar 

  • Choi RC, Wong CSS, Simon J, Barnard EA (2005b) Roles of the C-terminal domain in signal transduction, dimerisation, desensitisation and internalisation of the P2Y1 receptor. Br J Pharmacol 146:C005

    Google Scholar 

  • Choi RC, Simon J, Tsim KW, Barnard EA (2008) Constitutive and agonist-induced dimerizations of the P2Y1 receptor: relationship to internalization and scaffolding. J Biol Chem 283:11050–11063

    Article  PubMed  CAS  Google Scholar 

  • Chorna NE, Santiago-Perez LI, Erb L, Seye CI, Neary JT, Sun GY, Weisman GA, Gonzalez FA (2004) P2Y receptors activate neuroprotective mechanisms in astrocytic cells. J Neurochem 91:119–132

    Article  PubMed  CAS  Google Scholar 

  • Ciana P, Fumagalli M, Trincavelli ML, Verderio C, Rosa P, Lecca D, Ferrario S, Parravicini C, Capra V, Gelosa P, Guerrini U, Belcredito S, Cimino M, Sironi L, Tremoli E, Rovati GE, Martini C, Abbracchio MP (2006) The orphan receptor GPR17 identified as a new dual uracil nucleotides/cysteinyl-leukotrienes receptor. EMBO J 25:4615–4627

    Article  PubMed  CAS  Google Scholar 

  • Ciruela F, Casado V, Mallol J, Canela EI, Lluis C, Franco R (1995) Immunological identification of A1 adenosine receptors in brain cortex. J Neurosci Res 42:818–828

    Article  PubMed  CAS  Google Scholar 

  • Ciruela F, Casado V, Rodrigues RJ, Lujan R, Burgueno J, Canals M, Borycz J, Rebola N, Goldberg SR, Mallol J, Cortes A, Canela EI, Lopez-Gimenez JF, Milligan G, Lluis C, Cunha RA, Ferre S, Franco R (2006) Presynaptic control of striatal glutamatergic neurotransmission by adenosine A1–A2A receptor heteromers. J Neurosci 26:2080–2087

    Article  PubMed  CAS  Google Scholar 

  • Clark G, Roux SJ (2009) Extracellular nucleotides: Ancient signaling molecules. Plant Science 177:239–244

    Article  CAS  Google Scholar 

  • Clarke LL, Boucher RC (1992) Chloride secretory response to extracellular ATP in human normal and cystic fibrosis nasal epithelia. Am J Physiol 263:C348–356

    PubMed  CAS  Google Scholar 

  • Clarke LL, Harline MC, Otero MA, Glover GG, Garrad RC, Krugh B, Walker NM, Gonzalez FA, Turner JT, Weisman GA (1999) Desensitization of P2Y2 receptor-activated transepithelial anion secretion. Am J Physiol 276:C777–C787

    PubMed  CAS  Google Scholar 

  • Clarke CE, Benham CD, Bridges A, George AR, Meadows HJ (2000a) Mutation of histidine 286 of the human P2X4 purinoceptor removes extracellular pH sensitivity. J Physiol 523(Pt 3):697–703

    Article  PubMed  CAS  Google Scholar 

  • Clarke LL, Harline MC, Gawenis LR, Walker NM, Turner JT, Weisman GA (2000b) Extracellular UTP stimulates electrogenic bicarbonate secretion across CFTR knockout gallbladder epithelium. Am J Physiol Gastrointest Liver Physiol 279:G132–G138

    PubMed  CAS  Google Scholar 

  • Clifford EE, Parker K, Humphreys BD, Kertesy SB, Dubyak GR (1998) The P2X1 receptor, an adenosine triphosphate-gated cation channel, is expressed in human platelets but not in human blood leukocytes. Blood 91:3172–3181

    PubMed  CAS  Google Scholar 

  • Clyne JD, LaPointe LD, Hume RI (2002) The role of histidine residues in modulation of the rat P2X2 purinoceptor by zinc and pH. J Physiol 539:347–359

    Article  PubMed  CAS  Google Scholar 

  • Cockcroft S, Gomperts BD (1979) ATP induces nucleotide permeability in rat mast cells. Nature 279:541–542

    Article  PubMed  CAS  Google Scholar 

  • Cockcroft S, Gomperts BD (1980) The ATP4- receptor of rat mast cells. Biochem J 188:789–798

    PubMed  CAS  Google Scholar 

  • Coddou C, Morales B, Gonzalez J, Grauso M, Gordillo F, Bull P, Rassendren F, Huidobro-Toro JP (2003) Histidine 140 plays a key role in the inhibitory modulation of the P2X4 nucleotide receptor by copper but not zinc. J Biol Chem 278:36777–36785

    Article  PubMed  CAS  Google Scholar 

  • Coddou C, Acuna-Castillo C, Bull P, Huidobro-Toro JP (2007) Dissecting the facilitator and inhibitor allosteric metal sites of the P2X4 receptor channel: critical roles of CYS132 for zinc potentiation and ASP138 for copper inhibition. J Biol Chem 282:36879–36886

    Article  PubMed  CAS  Google Scholar 

  • Coddou C, Codocedo JF, Li S, Lillo JG, Acuna-Castillo C, Bull P, Stojilkovic SS, Huidobro-Toro JP (2009) Reactive oxygen species potentiate the P2X2 receptor activity through intracellular Cys430. J Neurosci 29:12284–12291

    Article  PubMed  CAS  Google Scholar 

  • Coddou C, Yan Z, Obsil T, Huidobro-Toro JP, Stojilkovic SS (2011) Activation and regulation of purinergic P2X receptor channels. Pharmacol Rev 63:641–683

    Article  PubMed  CAS  Google Scholar 

  • Collo G, North RA, Kawashima E, Merlo-Pich E, Neidhart S, Surprenant A, Buell G (1996) Cloning of P2X5 and P2X6 receptors and the distribution and properties of an extended family of ATP-gated ion channels. J Neurosci 16:2495–2507

    PubMed  CAS  Google Scholar 

  • Communi D, Marteau F, Ben Addi A, Suarez Gonzalez N, Robaye B, Boeynaems J-M (2005a) Nucleotide receptor P2Y13. AfCS-Nature Molecule Pages ID A000700

    Google Scholar 

  • Communi D, Robaye B, oeynaems J-M (2005b) Nucleotide receptor P2Y4. AfCS-Nature Molecule Pages. ID A001691

    Google Scholar 

  • Communi D, Pirotton S, Parmentier M, Boeynaems JM (1995) Cloning and functional expression of a human uridine nucleotide receptor. J Biol Chem 270:30849–30852

    Article  PubMed  CAS  Google Scholar 

  • Communi D, Motte S, Boeynaems JM, Pirotton S (1996a) Pharmacological characterization of the human P2Y4 receptor. Eur J Pharmacol 317:383–389

    Article  PubMed  CAS  Google Scholar 

  • Communi D, Parmentier M, Boeynaems JM (1996b) Cloning, functional expression and tissue distribution of the human P2Y6 receptor. Biochem Biophys Res Commun 222:303–308

    Article  PubMed  CAS  Google Scholar 

  • Communi D, Govaerts C, Parmentier M, Boeynaems JM (1997) Cloning of a human purinergic P2Y receptor coupled to phospholipase C and adenylyl cyclase. J Biol Chem 272:31969–31973

    Article  PubMed  CAS  Google Scholar 

  • Communi D, Paindavoine P, Place GA, Parmentier M, Boeynaems JM (1999a) Expression of P2Y receptors in cell lines derived from the human lung. Br J Pharmacol 127:562–568

    Article  PubMed  CAS  Google Scholar 

  • Communi D, Robaye B, Boeynaems JM (1999b) Pharmacological characterization of the human P2Y11 receptor. Br J Pharmacol 128:1199–1206

    Article  PubMed  CAS  Google Scholar 

  • Communi D, Janssens R, Robaye B, Zeelis N, Boeynaems JM (2000) Rapid up-regulation of P2Y messengers during granulocytic differentiation of HL-60 cells. FEBS Lett 475:39–42

    Article  PubMed  CAS  Google Scholar 

  • Communi D, Gonzalez NS, Detheux M, Brezillon S, Lannoy V, Parmentier M, Boeynaems JM (2001a) Identification of a novel human ADP receptor coupled to Gi. J Biol Chem 276:41479–41485

    Article  PubMed  CAS  Google Scholar 

  • Communi D, Suarez-Huerta N, Dussossoy D, Savi P, Boeynaems JM (2001b) Cotranscription and intergenic splicing of human P2Y11 and SSF1 genes. J Biol Chem 276:16561–16566

    Article  PubMed  CAS  Google Scholar 

  • Compan V, Ulmann L, Stelmashenko O, Chemin J, Chaumont S, Rassendren F (2012) P2X2 and P2X5 subunits define a new heteromeric receptor with P2X7-like properties. J Neurosci 32:4284–4296

    Google Scholar 

  • Conigrave AD, Lee JY, van der Weyden L, Jiang L, Ward P, Tasevski V, Luttrell BM, Morris MB (1998) Pharmacological profile of a novel cyclic AMP-linked P2 receptor on undifferentiated HL-60 leukemia cells. Br J Pharmacol 124:1580–1585

    Article  PubMed  CAS  Google Scholar 

  • Conigrave AD, Fernando KC, Gu B, Tasevski V, Zhang W, Luttrell BM, Wiley JS (2001) P2Y11 receptor expression by human lymphocytes: evidence for two cAMP-linked purinoceptors. Eur J Pharmacol 426:157–163

    Article  PubMed  CAS  Google Scholar 

  • Conley PB, Delaney SM (2003) Scientific and therapeutic insights into the role of the platelet P2Y12 receptor in thrombosis. Curr Opin Hematol 10:333–338

    Article  PubMed  CAS  Google Scholar 

  • Cook SP, McCleskey EW (1997) Desensitization, recovery and Ca2+-dependent modulation of ATP-gated P2X receptors in nociceptors. Neuropharmacology 36:1303–1308

    Article  PubMed  CAS  Google Scholar 

  • Cook SP, Rodland KD, McCleskey EW (1998) A memory for extracellular Ca2+ by speeding recovery of P2X receptors from desensitization. J Neurosci 18:9238–9244

    PubMed  CAS  Google Scholar 

  • Corringer PJ, Baaden M, Bocquet N, Delarue M, Dufresne V, Nury H, Prevost M, Van Renterghem C (2010) Atomic structure and dynamics of pentameric ligand-gated ion channels: new insight from bacterial homologues. J Physiol 588:565–572

    Article  PubMed  CAS  Google Scholar 

  • Costa-Junior HM, Sarmento Vieira F, Coutinho-Silva R (2011) C terminus of the P2X7 receptor: treasure hunting. Purinergic Signal 7:7–19

    Article  PubMed  CAS  Google Scholar 

  • Costanzi S, Mamedova L, Gao ZG, Jacobson KA (2004) Architecture of P2Y nucleotide receptors: structural comparison based on sequence analysis, mutagenesis, and homology modeling. J Med Chem 47:5393–5404

    Article  PubMed  CAS  Google Scholar 

  • Costanzi S, Tikhonova IG, Ohno M, Roh EJ, Joshi BV, Colson AO, Houston D, Maddileti S, Harden TK, Jacobson KA (2007) P2Y1 antagonists: combining receptor-based modeling and QSAR for a quantitative prediction of the biological activity based on consensus scoring. J Med Chem 50:3229–3241

    Article  PubMed  CAS  Google Scholar 

  • Coutinho-Silva R, Persechini PM (1997) P2Z purinoceptor-associated pores induced by extracellular ATP in macrophages and J774 cells. Am J Physiol 273:C1793–C1800

    PubMed  CAS  Google Scholar 

  • Coutinho-Silva R, Parsons M, Robson T, Lincoln J, Burnstock G (2003a) P2X and P2Y purinoceptor expression in pancreas from streptozotocin-diabetic rats. Mol Cell Endocrinol 204:141–154

    Article  PubMed  CAS  Google Scholar 

  • Coutinho-Silva R, Stahl L, Raymond MN, Jungas T, Verbeke P, Burnstock G, Darville T, Ojcius DM (2003b) Inhibition of chlamydial infectious activity due to P2X7R-dependent phospholipase D activation. Immunity 19:403–412

    Article  PubMed  CAS  Google Scholar 

  • Cox MA, Gomes B, Palmer K, Du K, Wiekowski M, Wilburn B, Petro M, Chou CC, Desquitado C, Schwarz M, Lunn C, Lundell D, Narula SK, Zavodny PJ, Jenh CH (2005) The pyrimidinergic P2Y6 receptor mediates a novel release of proinflammatory cytokines and chemokines in monocytic cells stimulated with UDP. Biochem Biophys Res Commun 330:467–473

    Article  PubMed  CAS  Google Scholar 

  • Cressman VL, Lazarowski E, Homolya L, Boucher RC, Koller BH, Grubb BR (1999) Effect of loss of P2Y2 receptor gene expression on nucleotide regulation of murine epithelial Cl- transport. J Biol Chem 274:26461–26468

    Article  PubMed  CAS  Google Scholar 

  • Cristalli G, Podda GM, Costanzi S, Lambertucci C, Lecchi A, Vittori S, Volpini R, Zighetti ML, Cattaneo M (2005) Effects of 5′-phosphate derivatives of 2-hexynyl adenosine and 2-phenylethynyl adenosine on responses of human platelets mediated by P2Y receptors. J Med Chem 48:2763–2766

    Article  PubMed  CAS  Google Scholar 

  • Dahlquist R, Diamant B (1974) Interaction of ATP and calcium on the rat mast cell: effect on histamine release. Acta Pharmacol Toxicol (Copenh) 34:368–384

    Article  CAS  Google Scholar 

  • Daly ME, Dawood BB, Lester WA, Peake IR, Rodeghiero F, Goodeve AC, Makris M, Wilde JT, Mumford AD, Watson SP, Mundell SJ (2009) Identification and characterization of a novel P2Y12 variant in a patient diagnosed with type 1 von Willebrand disease in the European MCMDM-1VWD study. Blood 113:4110–4113

    Article  PubMed  CAS  Google Scholar 

  • D’Ambrosi N, Iafrate M, Saba E, Rosa P, Volonte C (2007) Comparative analysis of P2Y4 and P2Y6 receptor architecture in native and transfected neuronal systems. Biochim Biophys Acta 1768:1592–1599

    Article  PubMed  CAS  Google Scholar 

  • D’Arco M, Giniatullin R, Leone V, Carloni P, Birsa N, Nair A, Nistri A, Fabbretti E (2009) The C-terminal Src inhibitory kinase (Csk)-mediated tyrosine phosphorylation is a novel molecular mechanism to limit P2X3 receptor function in mouse sensory neurons. J Biol Chem 284:21393–21401

    Article  PubMed  CAS  Google Scholar 

  • Das A, Zhou Y, Ivanov AA, Carter RL, Harden TK, Jacobson KA (2009) Enhanced potency of nucleotide-dendrimer conjugates as agonists of the P2Y14 receptor: multivalent effect in G protein-coupled receptor recognition. Bioconjug Chem 20:1650–1659

    Article  PubMed  CAS  Google Scholar 

  • Das A, Ko H, Burianek LE, Barrett MO, Harden TK, Jacobson KA (2010) Human P2Y14 receptor agonists: truncation of the hexose moiety of uridine-5’-diphosphoglucose and its replacement with alkyl and aryl groups. J Med Chem 53:471–480

    Article  PubMed  CAS  Google Scholar 

  • Davies DL, Kochegarov AA, Kuo ST, Kulkarni AA, Woodward JJ, King BF, Alkana RL (2005) Ethanol differentially affects ATP-gated P2X3 and P2X4 receptor subtypes expressed in Xenopus oocytes. Neuropharmacology 49:243–253

    Article  PubMed  CAS  Google Scholar 

  • Dawson GR, Wafford KA, Smith A, Marshall GR, Bayley PJ, Schaeffer JM, Meinke PT, McKernan RM (2000) Anticonvulsant and adverse effects of avermectin analogs in mice are mediated through the γ-aminobutyric acidA receptor. J Pharmacol Exp Ther 295:1051–1060

    PubMed  CAS  Google Scholar 

  • De Roo M, Boue-Grabot E, Schlichter R (2010) Selective potentiation of homomeric P2X2 ionotropic ATP receptors by a fast non-genomic action of progesterone. Neuropharmacology 58:569–577

    Article  PubMed  CAS  Google Scholar 

  • Deckert J, Nothen MM, Rietschel M, Wildenauer D, Bondy B, Ertl MA, Knapp M, Schofield PR, Albus M, Maier W, Propping P (1996) Human adenosine A2a receptor (A2aAR) gene: systematic mutation screening in patients with schizophrenia. J Neural Transm 103:1447–1455

    Article  PubMed  CAS  Google Scholar 

  • Delmas P, Crest M, Brown DA (2004) Functional organization of PLC signaling microdomains in neurons. Trends Neurosci 27:41–47

    Article  PubMed  CAS  Google Scholar 

  • Dent JA (2010) The evolution of pentameric ligand-gated ion channels. In: Thany SH (ed) Insect nicotinic acetylcholine receptors. Landes Bioscience and Springer Science, Business Media

    Google Scholar 

  • Devader C, Drew CM, Geach TJ, Tabler J, Townsend-Nicholson A, Dale L (2007) A novel nucleotide receptor in Xenopus activates the cAMP second messenger pathway. FEBS Lett 581:5332–5336

    Google Scholar 

  • Di Virgilio F (1995) The P2Z purinoceptor: an intriguing role in immunity, inflammation and cell death. Immunol Today 16:524–528

    Article  PubMed  Google Scholar 

  • Di Virgilio F, Pizzo P, Zanovello P, Bronte V, Collavo D (1990) Extracellular ATP as a possible mediator of cell-mediated cytotoxicity. Immunol Today 11:274–277

    Article  PubMed  Google Scholar 

  • Di Virgilio F, Ferrari D, Falzoni S, Chiozzi P, Munerati M, Steinberg TH, Baricordi OR (1996) P2 purinoceptors in the immune system. Ciba Found Symp 198:290–302 discussion 302–295

    PubMed  Google Scholar 

  • Diaz-Hernandez M, Cox JA, Migita K, Haines W, Egan TM, Voigt MM (2002) Cloning and characterization of two novel zebrafish P2X receptor subunits. Biochem Biophys Res Commun 295:849–853

    Article  PubMed  CAS  Google Scholar 

  • Ding S, Sachs F (1999a) Ion permeation and block of P2X2 purinoceptors: single channel recordings. J Membr Biol 172:215–223

    Article  PubMed  CAS  Google Scholar 

  • Ding S, Sachs F (1999b) Single channel properties of P2X2 purinoceptors. J Gen Physiol 113:695–720

    Article  PubMed  CAS  Google Scholar 

  • Ding S, Sachs F (2000) Inactivation of P2X2 purinoceptors by divalent cations. J Physiol 522(Pt 2):199–214

    Article  PubMed  CAS  Google Scholar 

  • Dolphin AC (2003) G protein modulation of voltage-gated calcium channels. Pharmacol Rev 55:607–627

    Article  PubMed  CAS  Google Scholar 

  • Donnelly-Roberts D, McGaraughty S, Shieh CC, Honore P, Jarvis MF (2008) Painful purinergic receptors. J Pharmacol Exp Ther 324:409–415

    Article  PubMed  CAS  Google Scholar 

  • Donnelly-Roberts DL, Namovic MT, Han P, Jarvis MF (2009a) Mammalian P2X7 receptor pharmacology: comparison of recombinant mouse, rat and human P2X7 receptors. Br J Pharmacol 157:1203–1214

    Article  PubMed  CAS  Google Scholar 

  • Donnelly-Roberts DL, Namovic MT, Surber B, Vaidyanathan SX, Perez-Medrano A, Wang Y, Carroll WA, Jarvis MF (2009b) [3H]A-804598 ([3H]2-cyano-1-[(1S)-1-phenylethyl]-3-quinolin-5-ylguanidine) is a novel, potent, and selective antagonist radioligand for P2X7 receptors. Neuropharmacology 56:223–229

    Article  PubMed  CAS  Google Scholar 

  • Douglass J, Patel RI, Redick C, Brubaker K, Jones AC, Shaver SR, Yerxa B, Baurand A, Gachet C, Boyer JL (2002) Ribose and nucleobase modifications to nucleotides that confer antagonist properties against the P2Y12 platelet receptor. Haematologica 87:S1–S22

    Google Scholar 

  • Duan S, Anderson CM, Keung EC, Chen Y, Swanson RA (2003) P2X7 receptor-mediated release of excitatory amino acids from astrocytes. J Neurosci 23:1320–1328

    PubMed  CAS  Google Scholar 

  • Duckwitz W, Hausmann R, Aschrafi A, Schmalzing G (2006) P2X5 subunit assembly requires scaffolding by the second transmembrane domain and a conserved aspartate. J Biol Chem 281:39561–39572

    Article  PubMed  CAS  Google Scholar 

  • Duclert A, Changeux JP (1995) Acetylcholine receptor gene expression at the developing neuromuscular junction. Physiol Rev 75:339–368

    PubMed  CAS  Google Scholar 

  • Dunn PM, Blakeley AG (1988) Suramin: a reversible P2-purinoceptor antagonist in the mouse vas deferens. Br J Pharmacol 93:243–245

    Article  PubMed  CAS  Google Scholar 

  • Dunn PM, Liu M, Zhong Y, King BF, Burnstock G (2000) Diinosine pentaphosphate: an antagonist which discriminates between recombinant P2X3 and P2X2/3 receptors and between two P2X receptors in rat sensory neurones. Br J Pharmacol 130:1378–1384

    Article  PubMed  CAS  Google Scholar 

  • Dutton JL, Poronnik P, Li GH, Holding CA, Worthington RA, Vandenberg RJ, Cook DI, Barden JA, Bennett MR (2000) P2X1 receptor membrane redistribution and down-regulation visualized by using receptor-coupled green fluorescent protein chimeras. Neuropharmacology 39:2054–2066

    Article  PubMed  CAS  Google Scholar 

  • Ecke D, Fischer B, Reiser G (2008a) Diastereoselectivity of the P2Y11 nucleotide receptor: mutational analysis. Br J Pharmacol 155:1250–1255

    Article  PubMed  CAS  Google Scholar 

  • Ecke D, Hanck T, Tulapurkar ME, Schafer R, Kassack M, Stricker R, Reiser G (2008b) Hetero-oligomerization of the P2Y11 receptor with the P2Y1 receptor controls the internalization and ligand selectivity of the P2Y11 receptor. Biochem J 409:107–116

    Article  PubMed  CAS  Google Scholar 

  • Egan TM, Khakh BS (2004) Contribution of calcium ions to P2X channel responses. J Neurosci 24:3413–3420

    Article  PubMed  CAS  Google Scholar 

  • Egan TM, Samways DS, Li Z (2006) Biophysics of P2X receptors. Pflugers Arch 452:501–512

    Article  PubMed  CAS  Google Scholar 

  • El-Ajouz S, Ray D, Allsopp RC, Evans RJ (2011) Molecular basis of selective antagonism of the P2X1 receptor for ATP by NF449 and suramin; contribution of basic amino acids in the cysteine rich loop. Br J Pharmacol165:390–400

    Google Scholar 

  • Eliahu SE, Camden J, Lecka J, Weisman GA, Sevigny J, Gelinas S, Fischer B (2009) Identification of hydrolytically stable and selective P2Y1 receptor agonists. Eur J Med Chem 44:1525–1536

    Article  PubMed  CAS  Google Scholar 

  • Elliott MR, Chekeni FB, Trampont PC, Lazarowski ER, Kadl A, Walk SF, Park D, Woodson RI, Ostankovich M, Sharma P, Lysiak JJ, Harden TK, Leitinger N, Ravichandran KS (2009) Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature 461:282–286

    Article  PubMed  CAS  Google Scholar 

  • el-Moatassim C, Dubyak GR (1993) Dissociation of the pore-forming and phospholipase D activities stimulated via P2z purinergic receptors in BAC1.2F5 macrophages. Product inhibition of phospholipase D enzyme activity. J Biol Chem 268:15571–15578

    PubMed  CAS  Google Scholar 

  • El-Tayeb A, Qi A, Muller CE (2006) Synthesis and structure-activity relationships of uracil nucleotide derivatives and analogues as agonists at human P2Y2, P2Y4, and P2Y6 receptors. J Med Chem 49:7076–7087

    Article  PubMed  CAS  Google Scholar 

  • Ennion SJ, Evans RJ (2001) Agonist-stimulated internalisation of the ligand-gated ion channel P2X1 in rat vas deferens. FEBS Lett 489:154–158

    Article  PubMed  CAS  Google Scholar 

  • Ennion SJ, Evans RJ (2002a) Conserved cysteine residues in the extracellular loop of the human P2X1 receptor form disulfide bonds and are involved in receptor trafficking to the cell surface. Mol Pharmacol 61:303–311

    Article  PubMed  CAS  Google Scholar 

  • Ennion SJ, Evans RJ (2002b) P2X1 receptor subunit contribution to gating revealed by a dominant negative PKC mutant. Biochem Biophys Res Commun 291:611–616

    Article  PubMed  CAS  Google Scholar 

  • Ennion S, Hagan S, Evans RJ (2000) The role of positively charged amino acids in ATP recognition by human P2X1 receptors. J Biol Chem 275:29361–29367

    Article  PubMed  CAS  Google Scholar 

  • Ennion SJ, Powell AD, Seward EP (2004) Identification of the P2Y12 receptor in nucleotide inhibition of exocytosis from bovine chromaffin cells. Mol Pharmacol 66:601–611

    Article  PubMed  CAS  Google Scholar 

  • Erb L, Garrad R, Wang Y, Quinn T, Turner JT, Weisman GA (1995) Site-directed mutagenesis of P2U purinoceptors. Positively charged amino acids in transmembrane helices 6 and 7 affect agonist potency and specificity. J Biol Chem 270:4185–4188

    Article  PubMed  CAS  Google Scholar 

  • Erb L, Liu J, Ockerhausen J, Kong Q, Garrad RC, Griffin K, Neal C, Krugh B, Santiago-Perez LI, Gonzalez FA, Gresham HD, Turner JT, Weisman GA (2001) An RGD sequence in the P2Y2 receptor interacts with αVβ3 integrins and is required for Go-mediated signal transduction. J Cell Biol 153:491–501

    Article  PubMed  CAS  Google Scholar 

  • Espada S, Ortega F, Molina-Jijon E, Rojo AI, Perez-Sen R, Pedraza-Chaverri J, Miras-Portugal MT, Cuadrado A (2010) The purinergic P2Y13 receptor activates the Nrf2/HO-1 axis and protects against oxidative stress-induced neuronal death. Free Radic Biol Med 49:416–426

    Article  PubMed  CAS  Google Scholar 

  • Evans RJ (1996) Single channel properties of ATP-gated cation channels (P2X receptors) heterologously expressed in Chinese hamster ovary cells. Neurosci Lett 212:212–214

    Article  PubMed  CAS  Google Scholar 

  • Evans RJ (2009) Orthosteric and allosteric binding sites of P2X receptors. Eur Biophys J 38:319–327

    Article  PubMed  CAS  Google Scholar 

  • Evans RJ, Kennedy C (1994) Characterization of P2-purinoceptors in the smooth muscle of the rat tail artery: a comparison between contractile and electrophysiological responses. Br J Pharmacol 113:853–860

    Article  PubMed  CAS  Google Scholar 

  • Evans RJ, Surprenant A (1992) Vasoconstriction of guinea-pig submucosal arterioles following sympathetic nerve stimulation is mediated by the release of ATP. Br J Pharmacol 106:242–249

    Article  PubMed  CAS  Google Scholar 

  • Evans RJ, Lewis C, Buell G, Valera S, North RA, Surprenant A (1995) Pharmacological characterization of heterologously expressed ATP-gated cation channels (P2x purinoceptors). Mol Pharmacol 48:178–183

    PubMed  CAS  Google Scholar 

  • Evans RJ, Lewis C, Virginio C, Lundstrom K, Buell G, Surprenant A, North RA (1996) Ionic permeability of, and divalent cation effects on, two ATP-gated cation channels (P2X receptors) expressed in mammalian cells. J Physiol 497(Pt 2):413–422

    PubMed  CAS  Google Scholar 

  • Fabbretti E, Sokolova E, Masten L, D’Arco M, Fabbro A, Nistri A, Giniatullin R (2004) Identification of negative residues in the P2X3 ATP receptor ectodomain as structural determinants for desensitization and the Ca2+-sensing modulatory sites. J Biol Chem 279:53109–53115

    Article  PubMed  CAS  Google Scholar 

  • Fabre JE, Nguyen M, Latour A, Keifer JA, Audoly LP, Coffman TM, Koller BH (1999) Decreased platelet aggregation, increased bleeding time and resistance to thromboembolism in P2Y1-deficient mice. Nat Med 5:1199–1202

    Article  PubMed  CAS  Google Scholar 

  • Fabre AC, Malaval C, Ben Addi A, Verdier C, Pons V, Serhan N, Lichtenstein L, Combes G, Huby T, Briand F, Collet X, Nijstad N, Tietge UJ, Robaye B, Perret B, Boeynaems JM, Martinez LO (2010) P2Y13 receptor is critical for reverse cholesterol transport. Hepatology 52:1477–1483

    Google Scholar 

  • Fam SR, Paquet M, Castleberry AM, Oller H, Lee CJ, Traynelis SF, Smith Y, Yun CC, Hall RA (2005) P2Y1 receptor signaling is controlled by interaction with the PDZ scaffold NHERF-2. Proc Natl Acad Sci U S A 102:8042–8047

    Article  PubMed  CAS  Google Scholar 

  • Faria RX, Defarias FP, Alves LA (2005) Are second messengers crucial for opening the pore associated with P2X7 receptor? Am J Physiol Cell Physiol 288:C260–C271

    Article  PubMed  CAS  Google Scholar 

  • Felder CC, Williams HL, Axelrod J (1991) A transduction pathway associated with receptors coupled to the inhibitory guanine nucleotide binding protein Gi that amplifies ATP-mediated arachidonic acid release. Proc Natl Acad Sci U S A 88:6477–6480

    Article  PubMed  CAS  Google Scholar 

  • Ferrari D, Villalba M, Chiozzi P, Falzoni S, Ricciardi-Castagnoli P, Di Virgilio F (1996) Mouse microglial cells express a plasma membrane pore gated by extracellular ATP. J Immunol 156:1531–1539

    PubMed  CAS  Google Scholar 

  • Filippov AK, Webb TE, Barnard EA, Brown DA (1997) Inhibition by heterologously-expressed P2Y2 nucleotide receptors of N-type calcium currents in rat sympathetic neurones. Br J Pharmacol 121:849–851

    Article  PubMed  CAS  Google Scholar 

  • Filippov AK, Webb TE, Barnard EA, Brown DA (1998) P2Y2 nucleotide receptors expressed heterologously in sympathetic neurons inhibit both N-type Ca2+ and M-type K+ currents. J Neurosci 18:5170–5179

    PubMed  CAS  Google Scholar 

  • Filippov AK, Webb TE, Barnard EA, Brown DA (1999) Dual coupling of heterologously-expressed rat P2Y6 nucleotide receptors to N-type Ca2+ and M-type K+ currents in rat sympathetic neurones. Br J Pharmacol 126:1009–1017

    Article  PubMed  CAS  Google Scholar 

  • Filippov AK, Brown DA, Barnard EA (2000) The P2Y1 receptor closes the N-type Ca2+ channel in neurones, with both adenosine triphosphates and diphosphates as potent agonists. Br J Pharmacol 129:1063–1066

    Article  PubMed  CAS  Google Scholar 

  • Filippov AK, Simon J, Barnard EA, Brown DA (2003) Coupling of the nucleotide P2Y4 receptor to neuronal ion channels. Br J Pharmacol 138:400–406

    Article  PubMed  CAS  Google Scholar 

  • Filippov AK, Fernandez-Fernandez JM, Marsh SJ, Simon J, Barnard EA, Brown DA (2004) Activation and inhibition of neuronal G protein-gated inwardly rectifying K+ channels by P2Y nucleotide receptors. Mol Pharmacol 66:468–477

    PubMed  CAS  Google Scholar 

  • Filippov AK, Simon J, Barnard EA, Brown DA (2010) The scaffold protein NHERF2 determines the coupling of P2Y1 nucleotide and mGluR5 glutamate receptor to different ion channels in neurons. J Neurosci 30:11068–11072

    Article  PubMed  CAS  Google Scholar 

  • Filtz TM, Li Q, Boyer JL, Nicholas RA, Harden TK (1994) Expression of a cloned P2Y purinergic receptor that couples to phospholipase C. Mol Pharmacol. 46:8–14

    PubMed  CAS  Google Scholar 

  • Finta C, Warner SC, Zaphiropoulos PG (2002) Intergenic mRNAs. Minor gene products or tools of diversity? Histol Histopathol 17:677–682

    PubMed  CAS  Google Scholar 

  • Fischbach GD, Rosen KM (1997) ARIA: a neuromuscular junction neuregulin. Annu Rev Neurosci 20:429–458

    Article  PubMed  CAS  Google Scholar 

  • Fischer B, Boyer JL, Hoyle CH, Ziganshin AU, Brizzolara AL, Knight GE, Zimmet J, Burnstock G, Harden TK, Jacobson KA (1993) Identification of potent, selective P2Y-purinoceptor agonists: structure-activity relationships for 2-thioether derivatives of adenosine 5’-triphosphate. J Med Chem 36:3937–3946

    Article  PubMed  CAS  Google Scholar 

  • Fischer B, Chulkin A, Boyer JL, Harden KT, Gendron FP, Beaudoin AR, Chapal J, Hillaire-Buys D, Petit P (1999) 2-thioether 5’-O-(1-thiotriphosphate)adenosine derivatives as new insulin secretagogues acting through P2Y-Receptors. J Med Chem 42:3636–3646

    Article  PubMed  CAS  Google Scholar 

  • Fischer W, Wirkner K, Weber M, Eberts C, Koles L, Reinhardt R, Franke H, Allgaier C, Gillen C, Illes P (2003) Characterization of P2X3, P2Y1 and P2Y4 receptors in cultured HEK293-hP2X3 cells and their inhibition by ethanol and trichloroethanol. J Neurochem 85:779–790

    Article  PubMed  CAS  Google Scholar 

  • Fischer R, Kalthof B, Rank E, Stelte-Ludwig B, Wuttke M (2004) Preparation of benzofuro-1,4-diazepin-2-ones as P2X4 receptor antagonists for the treatment of arteriosclerosis and restenosis. DE 10312969A1, pp 1–14

    Google Scholar 

  • Fisher JA, Girdler G, Khakh BS (2004) Time-resolved measurement of state-specific P2X2 ion channel cytosolic gating motions. J Neurosci 24:10475–10487

    Article  PubMed  CAS  Google Scholar 

  • Florenzano F, Viscomi MT, Amadio S, D’Ambrosi N, Volonte C, Molinari M (2008) Do ATP and NO interact in the CNS? Prog Neurobiol 84:40–56

    Article  PubMed  CAS  Google Scholar 

  • Flores-Soto E, Garcia JR, Sommer B, Chavez J, Lopez CB, Montano LM (2011) PPADS, a P2X receptor antagonist, as a novel inhibitor of the reverse mode of the Na+/Ca2+ exchanger in guinea pig airway smooth muscle. Eur J Pharmacol

    Google Scholar 

  • Fodor J, Matta C, Juhasz T, Olah T, Gonczi M, Szijgyarto Z, Gergely P, Csernoch L, Zakany R (2009) Ionotropic purinergic receptor P2X4 is involved in the regulation of chondrogenesis in chicken micromass cell cultures. Cell Calcium 45:421–430

    Article  PubMed  CAS  Google Scholar 

  • Fong AY, Krstew EV, Barden J, Lawrence AJ (2002) Immunoreactive localisation of P2Y1 receptors within the rat and human nodose ganglia and rat brainstem: comparison with [α 33P]deoxyadenosine 5’-triphosphate autoradiography. Neuroscience 113:809–823

    Article  PubMed  CAS  Google Scholar 

  • Ford KK, Matchett M, Krause JE, Yu W (2005) The P2X3 antagonist P1, P5-di[inosine-5’] pentaphosphate binds to the desensitized state of the receptor in rat dorsal root ganglion neurons. J Pharmacol Exp Ther 315:405–413

    Article  PubMed  CAS  Google Scholar 

  • Foster CJ, Prosser DM, Agans JM, Zhai Y, Smith MD, Lachowicz JE, Zhang FL, Gustafson E, Monsma FJ Jr, Wiekowski MT, Abbondanzo SJ, Cook DN, Bayne ML, Lira SA, Chintala MS (2001) Molecular identification and characterization of the platelet ADP receptor targeted by thienopyridine antithrombotic drugs. J Clin Invest 107:1591–1598

    Article  PubMed  CAS  Google Scholar 

  • Franke H, Krugel U, Illes P (1999) P2 receptor-mediated proliferative effects on astrocytes in vivo. Glia 28:190–200

    Article  PubMed  CAS  Google Scholar 

  • Franke H, Krugel U, Grosche J, Heine C, Hartig W, Allgaier C, Illes P (2004) P2Y receptor expression on astrocytes in the nucleus accumbens of rats. Neuroscience 127:431–441

    Article  PubMed  CAS  Google Scholar 

  • Fredholm BB, Abbracchio MP, Burnstock G, Daly JW, Harden TK, Jacobson KA, Leff P, Williams M (1994) Nomenclature and classification of purinoceptors. Pharmacol Rev 46:143–156

    PubMed  CAS  Google Scholar 

  • Fredholm BB, AP IJ, Jacobson KA, Klotz KN, Linden J (2001) International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 53:527–552

    PubMed  CAS  Google Scholar 

  • Fredholm BB, Assender JW, Irenius E, Kodama N, Saito N (2003) Synergistic effects of adenosine A1 and P2Y receptor stimulation on calcium mobilization and PKC translocation in DDT1 MF-2 cells. Cell Mol Neurobiol 23:379–400

    Article  PubMed  CAS  Google Scholar 

  • Fredholm BB, Chen JF, Cunha RA, Svenningsson P, Vaugeois JM (2005) Adenosine and brain function. Int Rev Neurobiol 63:191–270

    Article  PubMed  CAS  Google Scholar 

  • Fredholm BB, AP IJ, Jacobson KA, Linden J, Muller CE (2011) International Union of Basic and Clinical Pharmacology. LXXXI. Nomenclature and classification of adenosine receptors–an update. Pharmacol Rev 63:1–34

    Article  PubMed  CAS  Google Scholar 

  • Fredriksson R, Lagerstrom MC, Lundin LG, Schioth HB (2003) The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol 63:1256–1272

    Article  PubMed  CAS  Google Scholar 

  • Freeman K, Tsui P, Moore D, Emson PC, Vawter L, Naheed S, Lane P, Bawagan H, Herrity N, Murphy K, Sarau HM, Ames RS, Wilson S, Livi GP, Chambers JK (2001) Cloning, pharmacology, and tissue distribution of G-protein-coupled receptor GPR105 (KIAA0001) rodent orthologs. Genomics 78:124–128

    Article  PubMed  CAS  Google Scholar 

  • Fretz H, Houille O, Hilpert K, Peter O, Breu V, Giller T, Valdenaire O, Riederer M (2005) Novel pyrazolidine-3,5-dione derivatives are P2Y12 receptor antagonists and inhibit ADP-triggered blood platelet aggregation. 229th National Meeting of the American Chemical Soc., San Diego, Abstract MEDI 80

    Google Scholar 

  • Fricks IP, Maddileti S, Carter RL, Lazarowski ER, Nicholas RA, Jacobson KA, Harden TK (2008) UDP is a competitive antagonist at the human P2Y14 receptor. J Pharmacol Exp Ther 325:588–594

    Article  PubMed  CAS  Google Scholar 

  • Friel DD (1988) An ATP-sensitive conductance in single smooth muscle cells from the rat vas deferens. J Physiol 401:361–380

    PubMed  CAS  Google Scholar 

  • Fujiwara Y, Kubo Y (2004) Density-dependent changes of the pore properties of the P2X2 receptor channel. J Physiol 558:31–43

    Article  PubMed  CAS  Google Scholar 

  • Fujiwara Y, Kubo Y (2006) Regulation of the desensitization and ion selectivity of ATP-gated P2X2 channels by phosphoinositides. J Physiol 576:135–149

    Article  PubMed  CAS  Google Scholar 

  • Fujiwara S, Yamashita Y, Choi YL, Watanabe H, Kurashina K, Soda M, Enomoto M, Hatanaka H, Takada S, Ozawa K, Mano H (2007) Transforming activity of purinergic receptor P2Y, G protein coupled, 8 revealed by retroviral expression screening. Leuk Lymphoma 48:978–986

    Article  PubMed  CAS  Google Scholar 

  • Fuller SJ, Stokes L, Skarratt KK, Gu BJ, Wiley JS (2009) Genetics of the P2X7 receptor and human disease. Purinergic Signal 5:257–262

    Article  PubMed  CAS  Google Scholar 

  • Fumagalli M, Brambilla R, D’Ambrosi N, Volonte C, Matteoli M, Verderio C, Abbracchio MP (2003) Nucleotide-mediated calcium signaling in rat cortical astrocytes: Role of P2X and P2Y receptors. Glia 43:218–203

    Article  PubMed  Google Scholar 

  • Fumagalli M, Trincavelli L, Lecca D, Martini C, Ciana P, Abbracchio MP (2004) Cloning, pharmacological characterisation and distribution of the rat G-protein-coupled P2Y13 receptor. Biochem Pharmacol 68:113–124

    Article  PubMed  CAS  Google Scholar 

  • Furlong TJ, Pierce KD, Selbie LA, Shine J (1992) Molecular characterization of a human brain adenosine A2 receptor. Brain Res Mol Brain Res 15:62–66

    Article  PubMed  CAS  Google Scholar 

  • Gachet C (2001) ADP receptors of platelets and their inhibition. Thromb Haemost 86:222–232

    PubMed  CAS  Google Scholar 

  • Gachet C, Hechler B (2005) The platelet P2 receptors in thrombosis. Semin Thromb Hemost 31:162–167

    Article  PubMed  CAS  Google Scholar 

  • Gandia J, Galino J, Amaral OB, Soriano A, Lluis C, Franco R, Ciruela F (2008) Detection of higher-order G protein-coupled receptor oligomers by a combined BRET-BiFC technique. FEBS Lett 582:2979–2984

    Article  PubMed  CAS  Google Scholar 

  • Gao Z, Ni Y, Szabo G, Linden J (1999a) Palmitoylation of the recombinant human A1 adenosine receptor: enhanced proteolysis of palmitoylation-deficient mutant receptors. Biochem J 342(Pt 2):387–395

    Article  PubMed  CAS  Google Scholar 

  • Gao Z, Robeva AS, Linden J (1999b) Purification of A1 adenosine receptor-G-protein complexes: effects of receptor down-regulation and phosphorylation on coupling. Biochem J 338(Pt 3):729–736

    Article  PubMed  CAS  Google Scholar 

  • Gao ZG, Mamedova L, Tchilibon S, Gross AS, Jacobson KA (2004) 2,2’-Pyridylisatogen tosylate antagonizes P2Y1 receptor signaling without affecting nucleotide binding. Biochem Pharmacol 68:231–237

    Article  PubMed  CAS  Google Scholar 

  • Gao Y, Liu H, Deng L, Zhu G, Xu C, Li G, Liu S, Xie J, Liu J, Kong F, Wu R, Liang S (2011) Effect of emodin on neuropathic pain transmission mediated by P2X2/3 receptor of primary sensory neurons. Brain Res Bull 84:406–413

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Guzman M, Soto F, Laube B, Stuhmer W (1996) Molecular cloning and functional expression of a novel rat heart P2X purinoceptor. FEBS Lett 388:123–127

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Guzman M, Soto F, Gomez-Hernandez JM, Lund PE, Stuhmer W (1997a) Characterization of recombinant human P2X4 receptor reveals pharmacological differences to the rat homologue. Mol Pharmacol 51:109–118

    PubMed  CAS  Google Scholar 

  • Garcia-Guzman M, Stuhmer W, Soto F (1997b) Molecular characterization and pharmacological properties of the human P2X3 purinoceptor. Brain Res Mol Brain Res 47:59–66

    Article  PubMed  CAS  Google Scholar 

  • Gargett CE, Wiley JS (1997) The isoquinoline derivative KN-62 a potent antagonist of the P2Z-receptor of human lymphocytes. Br J Pharmacol 120:1483–1490

    Article  PubMed  CAS  Google Scholar 

  • Garrad RC, Otero MA, Erb L, Theiss PM, Clarke LL, Gonzalez FA, Turner JT, Weisman GA (1998) Structural basis of agonist-induced desensitization and sequestration of the P2Y2 nucleotide receptor. Consequences of truncation of the C terminus. J Biol Chem 273:29437–29444

    Article  PubMed  CAS  Google Scholar 

  • Gerevich Z, Borvendeg SJ, Schroder W, Franke H, Wirkner K, Norenberg W, Furst S, Gillen C, Illes P (2004) Inhibition of N-type voltage-activated calcium channels in rat dorsal root ganglion neurons by P2Y receptors is a possible mechanism of ADP-induced analgesia. J Neurosci 24:797–807

    Article  PubMed  CAS  Google Scholar 

  • Gerevich Z, Muller C, Illes P (2005) Metabotropic P2Y1 receptors inhibit P2X3 receptor-channels in rat dorsal root ganglion neurons. Eur J Pharmacol 521:34–38

    Article  PubMed  CAS  Google Scholar 

  • Gerevich Z, Zadori Z, Muller C, Wirkner K, Schroder W, Rubini P, Illes P (2007a) Metabotropic P2Y receptors inhibit P2X3 receptor-channels via G protein-dependent facilitation of their desensitization. Br J Pharmacol 151:226–236

    Article  PubMed  CAS  Google Scholar 

  • Gerevich Z, Zadori ZS, Koles L, Kopp L, Milius D, Wirkner K, Gyires K, Illes P (2007b) Dual effect of acid pH on purinergic P2X3 receptors depends on the histidine 206 residue. J Biol Chem 282:33949–33957

    Article  PubMed  CAS  Google Scholar 

  • Gerwins P, Fredholm BB (1992) ATP and its metabolite adenosine act synergistically to mobilize intracellular calcium via the formation of inositol 1,4,5-trisphosphate in a smooth muscle cell line. J Biol Chem 267:16081–16087

    PubMed  CAS  Google Scholar 

  • Gessi S, Merighi S, Varani K, Borea PA (2011) Adenosine receptors in health and disease. Adv Pharmacol 61:41–75

    Article  PubMed  CAS  Google Scholar 

  • Gever JR, Cockayne DA, Dillon MP, Burnstock G, Ford AP (2006) Pharmacology of P2X channels. Pflugers Arch 452:513–537

    Article  PubMed  CAS  Google Scholar 

  • Gever JR, Soto R, Henningsen RA, Martin RS, Hackos DH, Panicker S, Rubas W, Oglesby IB, Dillon MP, Milla ME, Burnstock G, Ford AP (2010) AF-353, a novel, potent and orally bioavailable P2X3/P2X2/3 receptor antagonist. Br J Pharmacol 160:1387–1398

    Article  PubMed  CAS  Google Scholar 

  • Ghanem E, Robaye B, Leal T, Leipziger J, Van Driessche W, Beauwens R, Boeynaems JM (2005) The role of epithelial P2Y2 and P2Y4 receptors in the regulation of intestinal chloride secretion. Br J Pharmacol 146:364–369

    Article  PubMed  CAS  Google Scholar 

  • Gines S, Hillion J, Torvinen M, Le Crom S, Casado V, Canela EI, Rondin S, Lew JY, Watson S, Zoli M, Agnati LF, Verniera P, Lluis C, Ferre S, Fuxe K, Franco R (2000) Dopamine D1 and adenosine A1 receptors form functionally interacting heteromeric complexes. Proc Natl Acad Sci U S A 97:8606–8611

    Article  PubMed  CAS  Google Scholar 

  • Giniatullin R, Sokolova E, Nistri A (2003) Modulation of P2X3 receptors by Mg2+ on rat DRG neurons in culture. Neuropharmacology 44:132–140

    Article  PubMed  CAS  Google Scholar 

  • Giniatullin R, Nistri A, Fabbretti E (2008) Molecular mechanisms of sensitization of pain-transducing P2X3 receptors by the migraine mediators CGRP and NGF. Mol Neurobiol 37:83–90

    Article  PubMed  CAS  Google Scholar 

  • Ginsburg-Shmuel T, Haas M, Schumann M, Reiser G, Kalid O, Stern N, Fischer B (2010) 5-OMe-UDP is a potent and selective P2Y6-receptor agonist. J Med Chem 53:1673–1685

    Article  PubMed  CAS  Google Scholar 

  • Godecke S, Decking UK, Godecke A, Schrader J (1996) Cloning of the rat P2u receptor and its potential role in coronary vasodilation. Am J Physiol 270:C570–C577

    PubMed  CAS  Google Scholar 

  • Gong QJ, Li YY, Xin WJ, Wei XH, Cui Y, Wang J, Liu Y, Liu CC, Liu XG (2010) Differential effects of adenosine A1 receptor on pain-related behavior in normal and nerve-injured rats. Brain Res 1361:23–30

    Article  PubMed  CAS  Google Scholar 

  • Gonzales EB, Kawate T, Gouaux E (2009) Pore architecture and ion sites in acid-sensing ion channels and P2X receptors. Nature 460:599–604

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez NS, Communi D, Hannedouche S, Boeynaems JM (2004) The fate of P2Y-related orphan receptors: GPR80/99 and GPR91 are receptors of dicarboxylic acids. Purinergic Signal 1:17–20

    Article  PubMed  CAS  Google Scholar 

  • Gordon JL (1986) Extracellular ATP: effects, sources and fate. Biochem J 233:309–319

    PubMed  CAS  Google Scholar 

  • Greig AV, James SE, McGrouther DA, Terenghi G, Burnstock G (2003a) Purinergic receptor expression in the regeneration epidermis in a rat model of normal and delayed wound healing. Exp Dermatol 12:860–871

    Article  PubMed  CAS  Google Scholar 

  • Greig AV, Linge C, Cambrey A, Burnstock G (2003b) Purinergic receptors are part of a signaling system for keratinocyte proliferation, differentiation, and apoptosis in human fetal epidermis. J Invest Dermatol 121:1145–1149

    Article  PubMed  CAS  Google Scholar 

  • Grishin EV, Savchenko GA, Vassilevski AA, Korolkova YV, Boychuk YA, Viatchenko-Karpinski VY, Nadezhdin KD, Arseniev AS, Pluzhnikov KA, Kulyk VB, Voitenko NV, Krishtal OO (2010) Novel peptide from spider venom inhibits P2X3 receptors and inflammatory pain. Ann Neurol 67:680–683

    PubMed  CAS  Google Scholar 

  • Grote A, Hans M, Boldogkoi Z, Zimmer A, Steinhauser C, Jabs R (2008) Nanomolar ambient ATP decelerates P2X3 receptor kinetics. Neuropharmacology 55:1212–1218

    Article  PubMed  CAS  Google Scholar 

  • Grubb BD, Evans RJ (1999) Characterization of cultured dorsal root ganglion neuron P2X receptors. Eur J Neurosci 11:149–154

    Article  PubMed  CAS  Google Scholar 

  • Gu JG, MacDermott AB (1997) Activation of ATP P2X receptors elicits glutamate release from sensory neuron synapses. Nature 389:749–753

    Article  PubMed  CAS  Google Scholar 

  • Gu BJ, Zhang W, Worthington RA, Sluyter R, Dao-Ung P, Petrou S, Barden JA, Wiley JS (2001) A Glu-496 to Ala polymorphism leads to loss of function of the human P2X7 receptor. J Biol Chem 276:11135–11142

    Article  PubMed  CAS  Google Scholar 

  • Gu BJ, Sluyter R, Skarratt KK, Shemon AN, Dao-Ung LP, Fuller SJ, Barden JA, Clarke AL, Petrou S, Wiley JS (2004) An Arg307 to Gln polymorphism within the ATP-binding site causes loss of function of the human P2X7 receptor. J Biol Chem 279:31287–31295

    Article  PubMed  CAS  Google Scholar 

  • Guerra L, Favia M, Fanelli T, Calamita G, Svetlo M, Bagorda A, Jacobson KA, Reshkin SJ, Casavola V (2004) Stimulation of Xenopus P2Y1 receptor activates CFTR in A6 cells. Pflugers Arch 449:66–75

    Article  PubMed  CAS  Google Scholar 

  • Guile SD, Alcaraz L, Birkinshaw TN, Bowers KC, Ebden MR, Furber M, Stocks MJ (2009) Antagonists of the P2X7 receptor. From lead identification to drug development. J Med Chem 52:3123–3141

    Article  PubMed  CAS  Google Scholar 

  • Guimaraes MZ (2008) Isoform specificity of P2X2 purinergic receptor C-terminus binding to tubulin. Neurochem Int 52:314–320

    Article  PubMed  CAS  Google Scholar 

  • Gunosewoyo H, Kassiou M (2010) P2X purinergic receptor ligands: recently patented compounds. Expert Opin Ther Pat 20:625–646

    Article  PubMed  CAS  Google Scholar 

  • Gunosewoyo H, Guo JL, Bennett MR, Coster MJ, Kassiou M (2008) Cubyl amides: novel P2X7 receptor antagonists. Bioorg Med Chem Lett 18:3720–3723

    Article  PubMed  CAS  Google Scholar 

  • Guo C, Masin M, Qureshi OS, Murrell-Lagnado RD (2007) Evidence for functional P2X4/P2X7 heteromeric receptors. Mol Pharmacol 72:1447–1456

    Article  PubMed  CAS  Google Scholar 

  • Guo W, Xu X, Gao X, Burnstock G, He C, Xiang Z (2008) Expression of P2X5 receptors in the mouse CNS. Neuroscience 156:673–692

    Article  PubMed  CAS  Google Scholar 

  • Gurung IS, Martinez-Pinna J, Mahaut-Smith MP (2008) Novel consequences of voltage-dependence to G-protein-coupled P2Y1 receptors. Br J Pharmacol 154:882–889

    Article  PubMed  CAS  Google Scholar 

  • Haas S, Brockhaus J, Verkhratsky A, Kettenmann H (1996) ATP-induced membrane currents in ameboid microglia acutely isolated from mouse brain slices. Neuroscience 75:257–261

    Article  PubMed  CAS  Google Scholar 

  • Haines WR, Torres GE, Voigt MM, Egan TM (1999) Properties of the novel ATP-gated ionotropic receptor composed of the P2X1 and P2X5 isoforms. Mol Pharmacol 56:720–727

    PubMed  CAS  Google Scholar 

  • Hall RA, Ostedgaard LS, Premont RT, Blitzer JT, Rahman N, Welsh MJ, Lefkowitz RJ (1998) A C-terminal motif found in the β2-adrenergic receptor, P2Y1 receptor and cystic fibrosis transmembrane conductance regulator determines binding to the Na+/H+ exchanger regulatory factor family of PDZ proteins. Proc Natl Acad Sci U S A 95:8496–8501

    Article  PubMed  CAS  Google Scholar 

  • Ham M, Mizumori M, Watanabe C, Wang JH, Inoue T, Nakano T, Guth PH, Engel E, Kaunitz JD, Akiba Y (2010) Endogenous luminal surface adenosine signaling regulates duodenal bicarbonate secretion in rats. J Pharmacol Exp Ther 335:607–613

    Article  PubMed  CAS  Google Scholar 

  • Harden TK (2004) Nucleotide receptor P2Y14. AfCS-nature molecule. Pages ID A002814

    Google Scholar 

  • Harrington LS, Mitchell JA (2005) P2X1 receptors and the endothelium. Mem Inst Oswaldo Cruz 100(Suppl 1):111–112

    Article  PubMed  CAS  Google Scholar 

  • Hasko G, Pacher P, Vizi ES, Illes P (2005) Adenosine receptor signaling in the brain immune system. Trends Pharmacol Sci 26:511–516

    Article  PubMed  CAS  Google Scholar 

  • Hasko G, Linden J, Cronstein B, Pacher P (2008) Adenosine receptors: therapeutic aspects for inflammatory and immune diseases. Nat Rev Drug Discov 7:759–770

    Article  PubMed  CAS  Google Scholar 

  • Hausmann R, Rettinger J, Gerevich Z, Meis S, Kassack MU, Illes P, Lambrecht G, Schmalzing G (2006) The suramin analog 4,4’,4’’,4’’’-(carbonylbis(imino-5,1,3-benzenetriylbis (carbonylimino)))tetra-kis-benzenesulfonic acid (NF110) potently blocks P2X3 receptors: subtype selectivity is determined by location of sulfonic acid groups. Mol Pharmacol 69:2058–2067

    Article  PubMed  CAS  Google Scholar 

  • He W, Miao FJ, Lin DC, Schwandner RT, Wang Z, Gao J, Chen JL, Tian H, Ling L (2004) Citric acid cycle intermediates as ligands for orphan G-protein-coupled receptors. Nature 429:188–193

    Article  PubMed  CAS  Google Scholar 

  • Hechler B, Vigne P, Leon C, Breittmayer JP, Gachet C, Frelin C (1998) ATP derivatives are antagonists of the P2Y1 receptor: similarities to the platelet ADP receptor. Mol Pharmacol 53:727–733

    PubMed  CAS  Google Scholar 

  • Hechler B, Lenain N, Marchese P, Vial C, Heim V, Freund M, Cazenave JP, Cattaneo M, Ruggeri ZM, Evans R, Gachet C (2003) A role of the fast ATP-gated P2X1 cation channel in thrombosis of small arteries in vivo. J Exp Med 198:661–667

    Article  PubMed  CAS  Google Scholar 

  • Hechler B, Cattaneo M, Gachet C (2005) The P2 receptors in platelet function. Semin Thromb Hemost 31:150–161

    Article  PubMed  CAS  Google Scholar 

  • Henderson DJ, Elliot DG, Smith GM, Webb TE, Dainty IA (1995) Cloning and characterisation of a bovine P2Y receptor. Biochem Biophys Res Commun 212:648–656

    Article  PubMed  CAS  Google Scholar 

  • Herold CL, Li Q, Schachter JB, Harden TK, Nicholas RA (1997) Lack of nucleotide-promoted second messenger signaling responses in 1321N1 cells expressing the proposed P2Y receptor, p2y7. Biochem Biophys Res Commun 235:717–721

    Article  PubMed  CAS  Google Scholar 

  • Herold CL, Qi AD, Harden TK, Nicholas RA (2004) Agonist versus antagonist action of ATP at the P2Y4 receptor is determined by the second extracellular loop. J Biol Chem 279:11456–11464

    Article  PubMed  CAS  Google Scholar 

  • Hewinson J, Mackenzie AB (2007) P2X7 receptor-mediated reactive oxygen and nitrogen species formation: from receptor to generators. Biochem Soc Trans 35:1168–1170

    Article  PubMed  CAS  Google Scholar 

  • Hibell AD, Kidd EJ, Chessell IP, Humphrey PP, Michel AD (2000) Apparent species differences in the kinetic properties of P2X7 receptors. Br J Pharmacol 130:167–173

    Article  PubMed  CAS  Google Scholar 

  • Hibell AD, Thompson KM, Xing M, Humphrey PP, Michel AD (2001) Complexities of measuring antagonist potency at P2X7 receptor orthologs. J Pharmacol Exp Ther 296:947–957

    PubMed  CAS  Google Scholar 

  • Hille B (1994) Modulation of ion-channel function by G-protein-coupled receptors. Trends Neurosci 17:531–536

    Article  PubMed  CAS  Google Scholar 

  • Hillion J, Canals M, Torvinen M, Casado V, Scott R, Terasmaa A, Hansson A, Watson S, Olah ME, Mallol J, Canela EI, Zoli M, Agnati LF, Ibanez CF, Lluis C, Franco R, Ferre S, Fuxe K (2002) Coaggregation, cointernalization, and codesensitization of adenosine A2A receptors and dopamine D2 receptors. J Biol Chem 277:18091–18097

    Article  PubMed  CAS  Google Scholar 

  • Hillmann P, Ko GY, Spinrath A, Raulf A, von Kugelgen I, Wolff SC, Nicholas RA, Kostenis E, Holtje HD, Muller CE (2009) Key determinants of nucleotide-activated G protein-coupled P2Y2 receptor function revealed by chemical and pharmacological experiments, mutagenesis and homology modeling. J Med Chem 52:2762–2775

    Article  PubMed  CAS  Google Scholar 

  • Ho C, Hicks J, Salter MW (1995) A novel P2-purinoceptor expressed by a subpopulation of astrocytes from the dorsal spinal cord of the rat. Br J Pharmacol 116:2909–2918

    Article  PubMed  CAS  Google Scholar 

  • Hoebertz A, Mahendran S, Burnstock G, Arnett TR (2002) ATP and UTP at low concentrations strongly inhibit bone formation by osteoblasts: a novel role for the P2Y2 receptor in bone remodeling. J Cell Biochem 86:413–419

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann C, Moro S, Nicholas RA, Harden TK, Jacobson KA (1999) The role of amino acids in extracellular loops of the human P2Y1 receptor in surface expression and activation processes. J Biol Chem 274:14639–14647

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann C, Ziegler N, Reiner S, Krasel C, Lohse MJ (2008) Agonist-selective, receptor-specific interaction of human P2Y receptors with β-arrestin-1 and -2. J Biol Chem 283:30933–30941

    Article  PubMed  CAS  Google Scholar 

  • Hollopeter G, Jantzen HM, Vincent D, Li G, England L, Ramakrishnan V, Yang RB, Nurden P, Nurden A, Julius D, Conley PB (2001) Identification of the platelet ADP receptor targeted by antithrombotic drugs. Nature 409:202–207

    Article  PubMed  CAS  Google Scholar 

  • Honore P, Donnelly-Roberts D, Namovic MT, Hsieh G, Zhu CZ, Mikusa JP, Hernandez G, Zhong C, Gauvin DM, Chandran P, Harris R, Medrano AP, Carroll W, Marsh K, Sullivan JP, Faltynek CR, Jarvis MF (2006) A-740003 [N-(1-{[(cyanoimino)(5-quinolinylamino) methyl]amino}-2,2-dimethylpropyl)-2-(3,4-dimethoxyphenyl)acetamide], a novel and selective P2X7 receptor antagonist, dose-dependently reduces neuropathic pain in the rat. J Pharmacol Exp Ther 319:1376–1385

    Article  PubMed  CAS  Google Scholar 

  • Horner S, Menke K, Hildebrandt C, Kassack MU, Nickel P, Ullmann H, Mahaut-Smith MP, Lambrecht G (2005) The novel suramin analogue NF864 selectively blocks P2X1 receptors in human platelets with potency in the low nanomolar range. Naunyn Schmiedebergs Arch Pharmacol 372:1–13

    Article  PubMed  CAS  Google Scholar 

  • Hou M, Moller S, Edvinsson L, Erlinge D (1999) MAPKK-dependent growth factor-induced upregulation of P2Y2 receptors in vascular smooth muscle cells. Biochem Biophys Res Commun 258:648–652

    Article  PubMed  CAS  Google Scholar 

  • Hou M, Moller S, Edvinsson L, Erlinge D (2000) Cytokines induce upregulation of vascular P2Y2 receptors and increased mitogenic responses to UTP and ATP. Arterioscler Thromb Vasc Biol 20:2064–2069

    Article  PubMed  CAS  Google Scholar 

  • Hou M, Harden TK, Kuhn CM, Baldetorp B, Lazarowski E, Pendergast W, Moller S, Edvinsson L, Erlinge D (2002) UDP acts as a growth factor for vascular smooth muscle cells by activation of P2Y6 receptors. Am J Physiol Heart Circ Physiol 282:H784–H792

    PubMed  CAS  Google Scholar 

  • Housley GD, Kanjhan R, Raybould NP, Greenwood D, Salih SG, Jarlebark L, Burton LD, Setz VC, Cannell MB, Soeller C, Christie DL, Usami S, Matsubara A, Yoshie H, Ryan AF, Thorne PR (1999) Expression of the P2X2 receptor subunit of the ATP-gated ion channel in the cochlea: implications for sound transduction and auditory neurotransmission. J Neurosci 19:8377–8388

    PubMed  CAS  Google Scholar 

  • Housley GD, Jagger DJ, Greenwood D, Raybould NP, Salih SG, Jarlebark LE, Vlajkovic SM, Kanjhan R, Nikolic P, Munoz DJ, Thorne PR (2002) Purinergic regulation of sound transduction and auditory neurotransmission. Audiol Neurootol 7:55–61

    Article  PubMed  CAS  Google Scholar 

  • Houston D, Ohno M, Nicholas RA, Jacobson KA, Harden TK (2006) [32P]2-iodo-N6-methyl-(N)-methanocarba-2’-deoxyadenosine-3’,5’-bisphosphat e ([32P]MRS2500), a novel radioligand for quantification of native P2Y1 receptors. Br J Pharmacol 147:459–467

    Article  PubMed  CAS  Google Scholar 

  • Houston D, Costanzi S, Jacobson KA, Harden TK (2008) Development of selective high affinity antagonists, agonists, and radioligands for the P2Y1 receptor. Comb Chem High Throughput Screen 11:410–419

    Article  PubMed  CAS  Google Scholar 

  • Hulsmann M, Nickel P, Kassack M, Schmalzing G, Lambrecht G, Markwardt F (2003) NF449, a novel picomolar potency antagonist at human P2X1 receptors. Eur J Pharmacol 470:1–7

    Article  PubMed  CAS  Google Scholar 

  • Humphreys BD, Virginio C, Surprenant A, Rice J, Dubyak GR (1998) Isoquinolines as antagonists of the P2X7 nucleotide receptor: high selectivity for the human versus rat receptor homologues. Mol Pharmacol 54:22–32

    PubMed  CAS  Google Scholar 

  • Hur EM, Kim KT (2002) G protein-coupled receptor signalling and cross-talk: achieving rapidity and specificity. Cell Signal 14:397–405

    Article  PubMed  CAS  Google Scholar 

  • Hussl S, Boehm S (2006) Functions of neuronal P2Y receptors. Pflugers Arch 452:538–551

    Article  PubMed  CAS  Google Scholar 

  • Huwiler A, Wartmann M, van den Bosch H, Pfeilschifter J (2000) Extracellular nucleotides activate the p38-stress-activated protein kinase cascade in glomerular mesangial cells. Br J Pharmacol 129:612–618

    Article  PubMed  CAS  Google Scholar 

  • Idzko M, Panther E, Sorichter S, Herouy Y, Berod L, Geissler M, Mockenhaupt M, Elsner P, Girolomoni G, Norgauer J (2004) Characterization of the biological activities of uridine diphosphate in human dendritic cells: Influence on chemotaxis and CXCL8 release. J Cell Physiol 201:286–293

    Article  PubMed  CAS  Google Scholar 

  • Iglesias R, Locovei S, Roque A, Alberto AP, Dahl G, Spray DC, Scemes E (2008) P2X7 receptor-Pannexin1 complex: pharmacology and signaling. Am J Physiol Cell Physiol 295:C752–C760

    Article  PubMed  CAS  Google Scholar 

  • Ikeda SR (1996) Voltage-dependent modulation of N-type calcium channels by G-protein β γ subunits. Nature 380:255–258

    Article  PubMed  CAS  Google Scholar 

  • Illes P, Klotz KN, Lohse MJ (2000) Signaling by extracellular nucleotides and nucleosides. Naunyn Schmiedebergs Arch Pharmacol 362:295–298

    Article  PubMed  CAS  Google Scholar 

  • Illes P, Verkhratsky A, Burnstock G, Franke H (2012) P2X receptors and their roles in astroglia in the central and peripheral nervous system. Neuroscientist (in press)

    Google Scholar 

  • Inbe H, Watanabe S, Miyawaki M, Tanabe E, Encinas JA (2004) Identification and characterization of a cell-surface receptor, P2Y15, for AMP and adenosine. J Biol Chem 279:19790–19799

    Article  PubMed  CAS  Google Scholar 

  • Ingall AH, Dixon J, Bailey A, Coombs ME, Cox D, McInally JI, Hunt SF, Kindon ND, Teobald BJ, Willis PA, Humphries RG, Leff P, Clegg JA, Smith JA, Tomlinson W (1999) Antagonists of the platelet P2T receptor: a novel approach to antithrombotic therapy. J Med Chem 42:213–220

    Article  PubMed  CAS  Google Scholar 

  • Inoue R, Brading AF (1990) The properties of the ATP-induced depolarization and current in single cells isolated from the guinea-pig urinary bladder. Br J Pharmacol 100:619–625

    Article  PubMed  CAS  Google Scholar 

  • Ivanov AA, Fricks I, Kendall Harden T, Jacobson KA (2007a) Molecular dynamics simulation of the P2Y14 receptor. Ligand docking and identification of a putative binding site of the distal hexose moiety. Bioorg Med Chem Lett. 17:761–766

    Google Scholar 

  • Ivanov AA, Ko H, Cosyn L, Maddileti S, Besada P, Fricks I, Costanzi S, Harden TK, Calenbergh SV, Jacobson KA (2007b) Molecular modeling of the human P2Y2 receptor and design of a selective agonist, 2′-amino-2′-deoxy-2-thiouridine 5′-triphosphate. J Med Chem 50:1166–1176

    Article  PubMed  CAS  Google Scholar 

  • Jaakola VP, Griffith MT, Hanson MA, Cherezov V, Chien EY, Lane JR, Ijzerman AP, Stevens RC (2008) The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 322:1211–1217

    Article  PubMed  CAS  Google Scholar 

  • Jacobson KA (2010) GPCR ligand-dendrimer (GLiDe) conjugates: future smart drugs? Trends Pharmacol Sci 31:575–579

    Article  PubMed  CAS  Google Scholar 

  • Jacobson KA, Gao ZG (2006) Adenosine receptors as therapeutic targets. Nat Rev Drug Discov 5:247–264

    Article  PubMed  CAS  Google Scholar 

  • Jacobson MA, Johnson RG, Luneau CJ, Salvatore CA (1995) Cloning and chromosomal localization of the human A2b adenosine receptor gene (ADORA2B) and its pseudogene. Genomics 27:374–376

    Article  PubMed  CAS  Google Scholar 

  • Jacobson KA, Kim YC, Wildman SS, Mohanram A, Harden TK, Boyer JL, King BF, Burnstock G (1998) A pyridoxine cyclic phosphate and its 6-azoaryl derivative selectively potentiate and antagonize activation of P2X1 receptors. J Med Chem 41:2201–2206

    Article  PubMed  CAS  Google Scholar 

  • Jacobson KA, Jarvis MF, Williams M (2002) Purine and pyrimidine (P2) receptors as drug targets. J Med Chem 45:4057–4093

    Article  PubMed  CAS  Google Scholar 

  • Jacobson KA, Costanzi S, Ivanov AA, Tchilibon S, Besada P, Gao ZG, Maddileti S, Harden TK (2006) Structure activity and molecular modeling analyses of ribose- and base-modified uridine 5′-triphosphate analogues at the human P2Y2 and P2Y4 receptors. Biochem Pharmacol 71:540–549

    Article  PubMed  CAS  Google Scholar 

  • Jaime-Figueroa S, Greenhouse R, Padilla F, Dillon MP, Gever JR, Ford AP (2005) Discovery and synthesis of a novel and selective drug-like P2X1 antagonist. Bioorg Med Chem Lett 15:3292–3295

    Article  PubMed  CAS  Google Scholar 

  • Janssens R, Communi D, Pirotton S, Samson M, Parmentier M, Boeynaems JM (1996) Cloning and tissue distribution of the human P2Y1 receptor. Biochem Biophys Res Commun 221:588–593

    Article  PubMed  CAS  Google Scholar 

  • Jantzen HM, Milstone DS, Gousset L, Conley PB, Mortensen RM (2001) Impaired activation of murine platelets lacking G αi2. J Clin Invest 108:477–483

    PubMed  CAS  Google Scholar 

  • Jarvis MF, Khakh BS (2009) ATP-gated P2X cation-channels. Neuropharmacology 56:208–215

    Article  PubMed  CAS  Google Scholar 

  • Jarvis MF, Burgard EC, McGaraughty S, Honore P, Lynch K, Brennan TJ, Subieta A, Van Biesen T, Cartmell J, Bianchi B, Niforatos W, Kage K, Yu H, Mikusa J, Wismer CT, Zhu CZ, Chu K, Lee CH, Stewart AO, Polakowski J, Cox BF, Kowaluk E, Williams M, Sullivan J, Faltynek C (2002) A-317491, a novel potent and selective non-nucleotide antagonist of P2X3 and P2X2/3 receptors, reduces chronic inflammatory and neuropathic pain in the rat. Proc Natl Acad Sci U S A 99:17179–17184

    Article  PubMed  CAS  Google Scholar 

  • Jenner P, Mori A, Hauser R, Morelli M, Fredholm BB, Chen JF (2009) Adenosine, adenosine A 2A antagonists, and Parkinson’s disease. Parkinsonism Relat Disord 15:406–413

    Article  PubMed  CAS  Google Scholar 

  • Jensik PJ, Holbird D, Collard MW, Cox TC (2001) Cloning and characterization of a functional P2X receptor from larval bullfrog skin. Am J Physiol Cell Physiol 281:C954–C962

    PubMed  CAS  Google Scholar 

  • Jiang L, Foster FM, Ward P, Tasevski V, Luttrell BM, Conigrave AD (1997a) Extracellular ATP triggers cyclic AMP-dependent differentiation of HL-60 cells. Biochem Biophys Res Commun 232:626–630

    Article  PubMed  CAS  Google Scholar 

  • Jiang Q, Guo D, Lee BX, Van Rhee AM, Kim YC, Nicholas RA, Schachter JB, Harden TK, Jacobson KA (1997b) A mutational analysis of residues essential for ligand recognition at the human P2Y1 receptor. Mol Pharmacol 52:499–507

    PubMed  CAS  Google Scholar 

  • Jiang LH, Mackenzie AB, North RA, Surprenant A (2000) Brilliant blue G selectively blocks ATP-gated rat P2X7 receptors. Mol Pharmacol 58:82–88

    PubMed  CAS  Google Scholar 

  • Jiang LH, Kim M, Spelta V, Bo X, Surprenant A, North RA (2003) Subunit arrangement in P2X receptors. J Neurosci 23:8903–8910

    PubMed  CAS  Google Scholar 

  • Jiang L, Bardini M, Keogh A, dos Remedios CG, Burnstock G (2005a) P2X1 receptors are closely associated with connexin 43 in human ventricular myocardium. Int J Cardiol 98:291–297

    Article  PubMed  Google Scholar 

  • Jiang LH, Rassendren F, Mackenzie A, Zhang YH, Surprenant A, North RA (2005b) N-methyl-D-glucamine and propidium dyes utilize different permeation pathways at rat P2X7 receptors. Am J Physiol Cell Physiol 289:C1295–C1302

    Article  PubMed  CAS  Google Scholar 

  • Jin J, Kunapuli SP (1998) Coactivation of two different G protein-coupled receptors is essential for ADP-induced platelet aggregation. Proc Natl Acad Sci U S A 95:8070–8074

    Article  PubMed  CAS  Google Scholar 

  • Jin J, Dasari VR, Sistare FD, Kunapuli SP (1998) Distribution of P2Y receptor subtypes on haematopoietic cells. Br J Pharmacol 123:789–794

    Article  PubMed  CAS  Google Scholar 

  • Jones CA, Chessell IP, Simon J, Barnard EA, Miller KJ, Michel AD, Humphrey PP (2000) Functional characterization of the P2X4 receptor orthologues. Br J Pharmacol 129:388–394

    Article  PubMed  CAS  Google Scholar 

  • Jones CA, Vial C, Sellers LA, Humphrey PP, Evans RJ, Chessell IP (2004) Functional regulation of P2X6 receptors by N-linked glycosylation: identification of a novel α β-methylene ATP-sensitive phenotype. Mol Pharmacol 65:979–985

    Article  PubMed  CAS  Google Scholar 

  • Joost P, Methner A (2002) Phylogenetic analysis of 277 human G-protein-coupled receptors as a tool for the prediction of orphan receptor ligands. Genome Biol. 3, RESEARCH0063

    Google Scholar 

  • Jung KY, Moon HD, Lee GE, Lim HH, Park CS, Kim YC (2007) Structure-activity relationship studies of spinorphin as a potent and selective human P2X3 receptor antagonist. J Med Chem 50:4543–4547

    Article  PubMed  CAS  Google Scholar 

  • Kaan TK, Yip PK, Patel S, Davies M, Marchand F, Cockayne DA, Nunn PA, Dickenson AH, Ford AP, Zhong Y, Malcangio M, McMahon SB (2010) Systemic blockade of P2X3 and P2X2/3 receptors attenuates bone cancer pain behaviour in rats. Brain 133:2549–2564

    Article  PubMed  Google Scholar 

  • Kaczmarek E, Erb L, Koziak K, Jarzyna R, Wink MR, Guckelberger O, Blusztajn JK, Trinkaus-Randall V, Weisman GA, Robson SC (2005) Modulation of endothelial cell migration by extracellular nucleotides: involvement of focal adhesion kinase and phosphatidylinositol 3-kinase-mediated pathways. Thromb Haemost 93:735–742

    PubMed  CAS  Google Scholar 

  • Kahlenberg JM, Lundberg KC, Kertesy SB, Qu Y, Dubyak GR (2005) Potentiation of caspase-1 activation by the P2X7 receptor is dependent on TLR signals and requires NF-κB-driven protein synthesis. J Immunol 175:7611–7622

    PubMed  CAS  Google Scholar 

  • Kaiser RA, Buxton IL (2002) Nucleotide-mediated relaxation in guinea-pig aorta: selective inhibition by MRS2179. Br J Pharmacol 135:537–545

    Article  PubMed  CAS  Google Scholar 

  • Kamiya T, Saitoh O, Yoshioka K, Nakata H (2003) Oligomerization of adenosine A2A and dopamine D2 receptors in living cells. Biochem Biophys Res Commun 306:544–549

    Article  PubMed  CAS  Google Scholar 

  • Kanaoka Y, Boyce JA (2004) Cysteinyl leukotrienes and their receptors: cellular distribution and function in immune and inflammatory responses. J Immunol 173:1503–1510

    PubMed  CAS  Google Scholar 

  • Kannan S (2003) Neutrophil chemotaxis: potential role of chemokine receptors in extracellular nucleotide induced Mac-1 expression. Med Hypotheses 61:577–579

    Article  PubMed  CAS  Google Scholar 

  • Karoly R, Mike A, Illes P, Gerevich Z (2008) The unusual state-dependent affinity of P2X3 receptors can be explained by an allosteric two-open-state model. Mol Pharmacol 73:224–234

    Article  PubMed  CAS  Google Scholar 

  • Kassack MU, Braun K, Ganso M, Ullmann H, Nickel P, Boing B, Muller G, Lambrecht G (2004) Structure-activity relationships of analogues of NF449 confirm NF449 as the most potent and selective known P2X1 receptor antagonist. Eur J Med Chem 39:345–357

    Article  PubMed  CAS  Google Scholar 

  • Kauffenstein G, Bergmeier W, Eckly A, Ohlmann P, Leon C, Cazenave JP, Nieswandt B, Gachet C (2001) The P2Y12 receptor induces platelet aggregation through weak activation of the αIIbβ3 integrin–a phosphoinositide 3-kinase-dependent mechanism. FEBS Lett 505:281–290

    Article  PubMed  CAS  Google Scholar 

  • Kauffenstein G, Hechler B, Cazenave JP, Gachet C (2004) Adenine triphosphate nucleotides are antagonists at the P2Y receptor. J Thromb Haemost 2:1980–1988

    Article  PubMed  CAS  Google Scholar 

  • Kaulich M, Streicher F, Mayer R, Müller I, Müller C (2003) E. Flavonoids - novel lead compounds for the development of P2Y2 receptor antagonists. Drug Devel Res 59:72–81

    Article  CAS  Google Scholar 

  • Kawamura M, Gachet C, Inoue K, Kato F (2004) Direct excitation of inhibitory interneurons by extracellular ATP mediated by P2Y1 receptors in the hippocampal slice. J Neurosci 24:10835–10845

    Article  PubMed  CAS  Google Scholar 

  • Kawate T, Michel JC, Birdsong WT, Gouaux E (2009) Crystal structure of the ATP-gated P2X4 ion channel in the closed state. Nature 460:592–598

    Article  PubMed  CAS  Google Scholar 

  • Kellenberger S, Schild L (2002) Epithelial sodium channel/degenerin family of ion channels: a variety of functions for a shared structure. Physiol Rev 82:735–767

    PubMed  CAS  Google Scholar 

  • Kellerman D, Evans R, Mathews D, Shaffer C (2002) Inhaled P2Y2 receptor agonists as a treatment for patients with Cystic Fibrosis lung disease. Adv Drug Deliv Rev 54:1463–1474

    Article  PubMed  CAS  Google Scholar 

  • Kennedy C, Qi AD, Herold CL, Harden TK, Nicholas RA (2000) ATP, an agonist at the rat P2Y4 receptor, is an antagonist at the human P2Y4 receptor. Mol Pharmacol 57:926–931

    PubMed  CAS  Google Scholar 

  • Kennedy C, Assis TS, Currie AJ, Rowan EG (2003) Crossing the pain barrier: P2 receptors as targets for novel analgesics. J Physiol 553:683–694

    Article  PubMed  CAS  Google Scholar 

  • Kettenmann H, Hanisch UK, Noda M, Verkhratsky A (2011) Physiology of microglia. Physiol Rev 91:461–553

    Article  PubMed  CAS  Google Scholar 

  • Khakh BS (2001) Molecular physiology of P2X receptors and ATP signalling at synapses. Nat Rev Neurosci 2:165–174

    Article  PubMed  CAS  Google Scholar 

  • Khakh BS, Surprenant A, Humphrey PP (1995) A study on P2X purinoceptors mediating the electrophysiological and contractile effects of purine nucleotides in rat vas deferens. Br J Pharmacol 115:177–185

    Article  PubMed  CAS  Google Scholar 

  • Khakh BS, Bao XR, Labarca C, Lester HA (1999a) Neuronal P2X transmitter-gated cation channels change their ion selectivity in seconds. Nat Neurosci 2:322–330

    Article  PubMed  CAS  Google Scholar 

  • Khakh BS, Proctor WR, Dunwiddie TV, Labarca C, Lester HA (1999b) Allosteric control of gating and kinetics at P2X4 receptor channels. J Neurosci 19:7289–7299

    PubMed  CAS  Google Scholar 

  • Khakh BS, Burnstock G, Kennedy C, King BF, North RA, Seguela P, Voigt M, Humphrey PP (2001a) International union of pharmacology. XXIV. Current status of the nomenclature and properties of P2X receptors and their subunits. Pharmacol Rev 53:107–118

    PubMed  CAS  Google Scholar 

  • Khakh BS, Smith WB, Chiu CS, Ju D, Davidson N, Lester HA (2001b) Activation-dependent changes in receptor distribution and dendritic morphology in hippocampal neurons expressing P2X2-green fluorescent protein receptors. Proc Natl Acad Sci U S A 98:5288–5293

    Article  PubMed  CAS  Google Scholar 

  • Khakh BS, Gittermann D, Cockayne DA, Jones A (2003) ATP modulation of excitatory synapses onto interneurons. J Neurosci 23:7426–7437

    PubMed  CAS  Google Scholar 

  • Khmyz V, Maximyuk O, Teslenko V, Verkhratsky A, Krishtal O (2008) P2X3 receptor gating near normal body temperature. Pflugers Arch 456:339–347

    Article  PubMed  CAS  Google Scholar 

  • Kim KC, Park HR, Shin CY, Akiyama T, Ko KH (1996) Nucleotide-induced mucin release from primary hamster tracheal surface epithelial cells involves the P2u purinoceptor. Eur Respir J 9:1579

    Article  PubMed  CAS  Google Scholar 

  • Kim M, Yoo OJ, Choe S (1997) Molecular assembly of the extracellular domain of P2X2, an ATP-gated ion channel. Biochem Biophys Res Commun 240:618–622

    Article  PubMed  CAS  Google Scholar 

  • Kim M, Spelta V, Sim J, North RA, Surprenant A (2001a) Differential assembly of rat purinergic P2X7 receptor in immune cells of the brain and periphery. J Biol Chem 276:23262–23267

    Article  PubMed  CAS  Google Scholar 

  • Kim YC, Brown SG, Harden TK, Boyer JL, Dubyak G, King BF, Burnstock G, Jacobson KA (2001b) Structure-activity relationships of pyridoxal phosphate derivatives as potent and selective antagonists of P2X1 receptors. J Med Chem 44:340–349

    Article  PubMed  CAS  Google Scholar 

  • Kim HS, Ravi RG, Marquez VE, Maddileti S, Wihlborg AK, Erlinge D, Malmsjo M, Boyer JL, Harden TK, Jacobson KA (2002) Methanocarba modification of uracil and adenine nucleotides: high potency of Northern ring conformation at P2Y1, P2Y2, P2Y4, and P2Y11 but not P2Y6 receptors. J Med Chem 45:208–218

    Article  PubMed  CAS  Google Scholar 

  • Kim HS, Ohno M, Xu B, Kim HO, Choi Y, Ji XD, Maddileti S, Marquez VE, Harden TK, Jacobson KA (2003a) 2-Substitution of adenine nucleotide analogues containing a bicyclo[3.1.0]hexane ring system locked in a northern conformation: enhanced potency as P2Y1 receptor antagonists. J Med Chem 46:4974–4987

    Article  PubMed  CAS  Google Scholar 

  • Kim SG, Soltysiak KA, Gao ZG, Chang TS, Chung E, Jacobson KA (2003b) Tumor necrosis factor α-induced apoptosis in astrocytes is prevented by the activation of P2Y6, but not P2Y4 nucleotide receptors. Biochem Pharmacol 65:923–931

    Article  PubMed  CAS  Google Scholar 

  • Kim CH, Kim SS, Choi JY, Shin JH, Kim JY, Namkung W, Lee JG, Lee MG, Yoon JH (2004) Membrane-specific expression of functional purinergic receptors in normal human nasal epithelial cells. Am J Physiol Lung Cell Mol Physiol 287:L835–L842

    Article  PubMed  CAS  Google Scholar 

  • Kim YC, Lee JS, Sak K, Marteau F, Mamedova L, Boeynaems JM, Jacobson KA (2005) Synthesis of pyridoxal phosphate derivatives with antagonist activity at the P2Y13 receptor. Biochem Pharmacol 70:266–274

    Article  PubMed  CAS  Google Scholar 

  • King BF (1998) Molecular biology of P2X purinoreceptors. In: Burnstock G, Dobson JG, Liang BT, Linden J (eds) Cardiovascular biology of purines. Kluwer Academic Publishers, Massachusetts, pp 159–186

    Chapter  Google Scholar 

  • King BF, Townsend-Nicholson A (2000) Recombinant P2Y receptors: the UCL experience. J Auton Nerv Syst 81:164–170

    Article  PubMed  CAS  Google Scholar 

  • King BF, Townsend-Nicholson A (2003) Nucleotide and nucleoside receptors, Tocris Cookson, Bristol

    Google Scholar 

  • King BF, Dacquet C, Ziganshin AU, Weetman DF, Burnstock G, Vanhoutte PM, Spedding M (1996a) Potentiation by 2,2′-pyridylisatogen tosylate of ATP-responses at a recombinant P2Y1 purinoceptor. Br J Pharmacol 117:1111–1118

    Article  PubMed  CAS  Google Scholar 

  • King BF, Ziganshina LE, Pintor J, Burnstock G (1996b) Full sensitivity of P2X2 purinoceptor to ATP revealed by changing extracellular pH. Br J Pharmacol 117:1371–1373

    Article  PubMed  CAS  Google Scholar 

  • King BF, Wildman SS, Ziganshina LE, Pintor J, Burnstock G (1997) Effects of extracellular pH on agonism and antagonism at a recombinant P2X2 receptor. Br J Pharmacol 121:1445–1453

    Article  PubMed  CAS  Google Scholar 

  • King BF, Liu M, Pintor J, Gualix J, Miras-Portugal MT, Burnstock G (1999) Diinosine pentaphosphate (IP5I) is a potent antagonist at recombinant rat P2X1 receptors. Br J Pharmacol 128:981–988

    Article  PubMed  CAS  Google Scholar 

  • King BF, Townsend-Nicholson A, Wildman SS, Thomas T, Spyer KM, Burnstock G (2000) Coexpression of rat P2X2 and P2X6 subunits in Xenopus oocytes. J Neurosci 20:4871–4877

    PubMed  CAS  Google Scholar 

  • Kirischuk S, Moller T, Voitenko N, Kettenmann H, Verkhratsky A (1995a) ATP-induced cytoplasmic calcium mobilization in Bergmann glial cells. J Neurosci 15:7861–7871

    PubMed  CAS  Google Scholar 

  • Kirischuk S, Scherer J, Kettenmann H, Verkhratsky A (1995b) Activation of P2-purinoreceptors triggered Ca2+ release from InsP3-sensitive internal stores in mammalian oligodendrocytes. J Physiol 483(Pt 1):41–57

    PubMed  CAS  Google Scholar 

  • Klaasse EC, Ijzerman AP, de Grip WJ, Beukers MW (2008) Internalization and desensitization of adenosine receptors. Purinergic Signal 4:21–37

    Article  PubMed  CAS  Google Scholar 

  • Klapperstuck M, Buttner C, Bohm T, Schmalzing G, Markwardt F (2000) Characteristics of P2X7 receptors from human B lymphocytes expressed in Xenopus oocytes. Biochim Biophys Acta 1467:444–456

    Article  PubMed  CAS  Google Scholar 

  • Klinger M, Freissmuth M, Nanoff C (2002) Adenosine receptors: G protein-mediated signalling and the role of accessory proteins. Cell Signal 14:99–108

    Article  PubMed  CAS  Google Scholar 

  • Knight GE, Burnstock G (2004) The effect of pregnancy and the oestrus cycle on purinergic and cholinergic responses of the rat urinary bladder. Neuropharmacology 46:1049–1056

    Article  PubMed  CAS  Google Scholar 

  • Ko H, Fricks I, Ivanov AA, Harden TK, Jacobson KA (2007) Structure-activity relationship of uridine 5’-diphosphoglucose analogues as agonists of the human P2Y14 receptor. J Med Chem 50:2030–2039

    Article  PubMed  CAS  Google Scholar 

  • Ko H, Carter RL, Cosyn L, Petrelli R, de Castro S, Besada P, Zhou Y, Cappellacci L, Franchetti P, Grifantini M, Van Calenbergh S, Harden TK, Jacobson KA (2008) Synthesis and potency of novel uracil nucleotides and derivatives as P2Y2 and P2Y6 receptor agonists. Bioorg Med Chem 16:6319–6332

    Article  PubMed  CAS  Google Scholar 

  • Ko H, Das A, Carter RL, Fricks IP, Zhou Y, Ivanov AA, Melman A, Joshi BV, Kovac P, Hajduch J, Kirk KL, Harden TK, Jacobson KA (2009) Molecular recognition in the P2Y14 receptor: Probing the structurally permissive terminal sugar moiety of uridine-5’-diphosphoglucose. Bioorg Med Chem 17:5298–5311

    Article  PubMed  CAS  Google Scholar 

  • Koizumi S, Fujishita K, Tsuda M, Shigemoto-Mogami Y, Inoue K (2003) Dynamic inhibition of excitatory synaptic transmission by astrocyte-derived ATP in hippocampal cultures. Proc Natl Acad Sci U S A 100:11023–11028

    Article  PubMed  CAS  Google Scholar 

  • Koles L, Gerevich Z, Oliveira JF, Zadori ZS, Wirkner K, Illes P (2008) Interaction of P2 purinergic receptors with cellular macromolecules. Naunyn Schmiedebergs Arch Pharmacol 377:1–33

    Article  PubMed  CAS  Google Scholar 

  • Konig S, Hasche A, Pallast S, Krieglstein J, Klumpp S (2008) Detection of ATP-binding to growth factors. J Am Soc Mass Spectrom 19:91–95

    Article  PubMed  CAS  Google Scholar 

  • Korcok J, Raimundo LN, Du X, Sims SM, Dixon SJ (2005) P2Y6 nucleotide receptors activate NF-κB and increase survival of osteoclasts. J Biol Chem 280:16909–16915

    Article  PubMed  CAS  Google Scholar 

  • Koshiba M, Apasov S, Sverdlov V, Chen P, Erb L, Turner JT, Weisman GA, Sitkovsky MV (1997) Transient up-regulation of P2Y2 nucleotide receptor mRNA expression is an immediate early gene response in activated thymocytes. Proc Natl Acad Sci U S A 94:831–836

    Article  PubMed  CAS  Google Scholar 

  • Koshimizu TA, Tsujimoto G (2006) Functional role of spliced cytoplasmic tails in P2X2-receptor-mediated cellular signaling. J Pharmacol Sci 101:261–266

    Article  PubMed  CAS  Google Scholar 

  • Koshimizu T, Tomic M, Koshimizu M, Stojilkovic SS (1998a) Identification of amino acid residues contributing to desensitization of the P2X2 receptor channel. J Biol Chem 273:12853–12857

    Article  PubMed  CAS  Google Scholar 

  • Koshimizu T, Tomic M, Van Goor F, Stojilkovic SS (1998b) Functional role of alternative splicing in pituitary P2X2 receptor-channel activation and desensitization. Mol Endocrinol 12:901–913

    Article  PubMed  CAS  Google Scholar 

  • Koshimizu T, Koshimizu M, Stojilkovic SS (1999) Contributions of the C-terminal domain to the control of P2X receptor desensitization. J Biol Chem 274:37651–37657

    Article  PubMed  CAS  Google Scholar 

  • Kotevic I, Kirschner KM, Porzig H, Baltensperger K (2005) Constitutive interaction of the P2Y2 receptor with the hematopoietic cell-specific G protein Gα16 and evidence for receptor oligomers. Cell Signal 17:869–880

    Article  PubMed  CAS  Google Scholar 

  • Kotnis S, Bingham B, Vasilyev DV, Miller SW, Bai Y, Yeola S, Chanda PK, Bowlby MR, Kaftan EJ, Samad TA, Whiteside GT (2010) Genetic and functional analysis of human P2X5 reveals a distinct pattern of exon 10 polymorphism with predominant expression of the nonfunctional receptor isoform. Mol Pharmacol 77:953–960

    Article  PubMed  CAS  Google Scholar 

  • Kottgen M, Loffler T, Jacobi C, Nitschke R, Pavenstadt H, Schreiber R, Frische S, Nielsen S, Leipziger J (2003) P2Y6 receptor mediates colonic NaCl secretion via differential activation of cAMP-mediated transport. J Clin Invest 111:371–379

    PubMed  CAS  Google Scholar 

  • Krause RM, Buisson B, Bertrand S, Corringer PJ, Galzi JL, Changeux JP, Bertrand D (1998) Ivermectin: a positive allosteric effector of the α7 neuronal nicotinic acetylcholine receptor. Mol Pharmacol 53:283–294

    PubMed  CAS  Google Scholar 

  • Krugel U, Kittner H, Franke H, Illes P (2001) Stimulation of P2 receptors in the ventral tegmental area enhances dopaminergic mechanisms in vivo. Neuropharmacology 40:1084–1093

    Article  PubMed  CAS  Google Scholar 

  • Krusek J, Zemkova H (1994) Effect of ivermectin on γ-aminobutyric acid-induced chloride currents in mouse hippocampal embryonic neurones. Eur J Pharmacol 259:121–128

    Article  PubMed  CAS  Google Scholar 

  • Kubo Y, Fujiwara Y, Keceli B, Nakajo K (2009) Dynamic aspects of functional regulation of the ATP receptor channel P2X2. J Physiol 587:5317–5324

    Article  PubMed  CAS  Google Scholar 

  • Kull B, Svenningsson P, Fredholm BB (2000) Adenosine A2A receptors are colocalized with and activate golf in rat striatum. Mol Pharmacol 58:771–777

    PubMed  CAS  Google Scholar 

  • Kumari R, Goh G, Ng LL, Boarder MR (2003) ATP and UTP responses of cultured rat aortic smooth muscle cells revisited: dominance of P2Y2 receptors. Br J Pharmacol 140:1169–1176

    Article  PubMed  CAS  Google Scholar 

  • Kunapuli SP, Daniel JL (1998) P2 receptor subtypes in the cardiovascular system. Biochem J 336(Pt 3):513–523

    PubMed  CAS  Google Scholar 

  • La M, Rand MJ (1993) Endothelin-1 enhances vasoconstrictor responses to exogenously administered and neurogenically released ATP in rabbit isolated perfused arteries. Eur J Pharmacol 249:133–139

    Article  PubMed  CAS  Google Scholar 

  • la Sala A, Sebastiani S, Ferrari D, Di Virgilio F, Idzko M, Norgauer J, Girolomoni G (2002) Dendritic cells exposed to extracellular adenosine triphosphate acquire the migratory properties of mature cells and show a reduced capacity to attract type 1 T lymphocytes. Blood 99:1715–1722

    Article  PubMed  Google Scholar 

  • Lalo U, Verkhratsky A, Pankratov Y (2007) Ivermectin potentiates ATP-induced ion currents in cortical neurones: evidence for functional expression of P2X4 receptors? Neurosci Lett 421:158–162

    Article  PubMed  CAS  Google Scholar 

  • Lalo U, Pankratov Y, Wichert SP, Rossner MJ, North RA, Kirchhoff F, Verkhratsky A (2008) P2X1 and P2X5 subunits form the functional P2X receptor in mouse cortical astrocytes. J Neurosci 28:5473–5480

    Article  PubMed  CAS  Google Scholar 

  • Lalo U, Roberts JA, Evans RJ (2011) Identification of human P2X1 receptor interacting proteins reveals a role of the cytoskeleton in receptor regulation. J Biol Chem 286(35):30591–30599

    Google Scholar 

  • Lambrecht G, Friebe T, Grimm U, Windscheif U, Bungardt E, Hildebrandt C, Baumert HG, Spatz-Kumbel G, Mutschler E (1992) PPADS, a novel functionally selective antagonist of P2 purinoceptor-mediated responses. Eur J Pharmacol 217:217–219

    Article  PubMed  CAS  Google Scholar 

  • Lambrecht G, Rettinger J, Baumert HG, Czeche S, Damer S, Ganso M, Hildebrandt C, Niebel B, Spatz-Kumbel G, Schmalzing G, Mutschler E (2000) The novel pyridoxal-5′-phosphate derivative PPNDS potently antagonizes activation of P2X1 receptors. Eur J Pharmacol 387:R19–R21

    Article  PubMed  CAS  Google Scholar 

  • Lambrecht G, Braun K, Damer M, Ganso M, Hildebrandt C, Ullmann H, Kassack MU, Nickel P (2002) Structure-activity relationships of suramin and pyridoxal-5’-phosphate derivatives as P2 receptor antagonists. Curr Pharm Des 8:2371–2399

    Article  PubMed  CAS  Google Scholar 

  • Lazarowski ER, Watt WC, Stutts MJ, Boucher RC, Harden TK (1995) Pharmacological selectivity of the cloned human P2U-purinoceptor: potent activation by diadenosine tetraphosphate. Br J Pharmacol 116:1619–1627

    Article  PubMed  CAS  Google Scholar 

  • Lazarowski ER, Watt WC, Stutts MJ, Brown HA, Boucher RC, Harden TK (1996) Enzymatic synthesis of UTP γ S, a potent hydrolysis resistant agonist of P2U-purinoceptors. Br J Pharmacol 117:203–209

    Article  PubMed  CAS  Google Scholar 

  • Lazarowski ER, Homolya L, Boucher RC, Harden TK (1997a) Direct demonstration of mechanically induced release of cellular UTP and its implication for uridine nucleotide receptor activation. J Biol Chem 272:24348–24354

    Article  PubMed  CAS  Google Scholar 

  • Lazarowski ER, Paradiso AM, Watt WC, Harden TK, Boucher RC (1997b) UDP activates a mucosal-restricted receptor on human nasal epithelial cells that is distinct from the P2Y2 receptor. Proc Natl Acad Sci U S A 94:2599–2603

    Article  PubMed  CAS  Google Scholar 

  • Lazarowski ER, Rochelle LG, O’Neal WK, Ribeiro CM, Grubb BR, Zhang V, Harden TK, Boucher RC (2001) Cloning and functional characterization of two murine uridine nucleotide receptors reveal a potential target for correcting ion transport deficiency in cystic fibrosis gallbladder. J Pharmacol Exp Ther 297:43–49

    PubMed  CAS  Google Scholar 

  • Lazarowski ER, Shea DA, Boucher RC, Harden TK (2003) Release of cellular UDP-glucose as a potential extracellular signaling molecule. Mol Pharmacol 63:1190–1197

    Article  PubMed  CAS  Google Scholar 

  • Le KT, Paquet M, Nouel D, Babinski K, Seguela P (1997) Primary structure and expression of a naturally truncated human P2X ATP receptor subunit from brain and immune system. FEBS Lett 418:195–199

    Article  PubMed  CAS  Google Scholar 

  • Le KT, Babinski K, Seguela P (1998) Central P2X4 and P2X6 channel subunits coassemble into a novel heteromeric ATP receptor. J Neurosci 18:7152–7159

    PubMed  CAS  Google Scholar 

  • Le KT, Boue-Grabot E, Archambault V, Seguela P (1999) Functional and biochemical evidence for heteromeric ATP-gated channels composed of P2X1 and P2X5 subunits. J Biol Chem 274:15415–15419

    Article  PubMed  CAS  Google Scholar 

  • Lecca D, Abbracchio MP (2008) Deorphanisation of G protein-coupled receptors: A tool to provide new insights in nervous system pathophysiology and new targets for psycho-active drugs. Neurochem Int 52:339–351

    Article  PubMed  CAS  Google Scholar 

  • Lecca D, Ceruti S (2008) Uracil nucleotides: from metabolic intermediates to neuroprotection and neuroinflammation. Biochem Pharmacol 75:1869–1881

    Article  PubMed  CAS  Google Scholar 

  • Lecca D, Trincavelli ML, Gelosa P, Sironi L, Ciana P, Fumagalli M, Villa G, Verderio C, Grumelli C, Guerrini U, Tremoli E, Rosa P, Cuboni S, Martini C, Buffo A, Cimino M, Abbracchio MP (2008) The recently identified P2Y-like receptor GPR17 is a sensor of brain damage and a new target for brain repair. PLoS One 3:e3579

    Article  PubMed  CAS  Google Scholar 

  • Lechner SG, Dorostkar MM, Mayer M, Edelbauer H, Pankevych H, Boehm S (2004) Autoinhibition of transmitter release from PC12 cells and sympathetic neurons through a P2Y receptor-mediated inhibition of voltage-gated Ca2+ channels. Eur J Neurosci 20:2917–2928

    Article  PubMed  Google Scholar 

  • Lecut C, Frederix K, Johnson DM, Deroanne C, Thiry M, Faccinetto C, Maree R, Evans RJ, Volders PG, Bours V, Oury C (2009) P2X1 ion channels promote neutrophil chemotaxis through Rho kinase activation. J Immunol 183:2801–2809

    Article  PubMed  CAS  Google Scholar 

  • Lee DK, Nguyen T, Lynch KR, Cheng R, Vanti WB, Arkhitko O, Lewis T, Evans JF, George SR, O’Dowd BF (2001) Discovery and mapping of ten novel G protein-coupled receptor genes. Gene 275:83–91

    Article  PubMed  CAS  Google Scholar 

  • Lee BC, Cheng T, Adams GB, Attar EC, Miura N, Lee SB, Saito Y, Olszak I, Dombkowski D, Olson DP, Hancock J, Choi PS, Haber DA, Luster AD, Scadden DT (2003a) P2Y-like receptor, GPR105 (P2Y14), identifies and mediates chemotaxis of bone-marrow hematopoietic stem cells. Genes Dev 17:1592–1604

    Article  PubMed  CAS  Google Scholar 

  • Lee SY, Wolff SC, Nicholas RA, O’Grady SM (2003b) P2Y receptors modulate ion channel function through interactions involving the C-terminal domain. Mol Pharmacol 63:878–885

    Article  PubMed  CAS  Google Scholar 

  • Lees MP, Fuller SJ, McLeod R, Boulter NR, Miller CM, Zakrzewski AM, Mui EJ, Witola WH, Coyne JJ, Hargrave AC, Jamieson SE, Blackwell JM, Wiley JS, Smith NC (2010) P2X7 receptor-mediated killing of an intracellular parasite, Toxoplasma gondii, by human and murine macrophages. J Immunol 184:7040–7046

    Article  PubMed  CAS  Google Scholar 

  • Lenain N, Freund M, Leon C, Cazenave JP, Gachet C (2003) Inhibition of localized thrombosis in P2Y1-deficient mice and rodents treated with MRS2179, a P2Y1 receptor antagonist. J Thromb Haemost 1:1144–1149

    Article  PubMed  CAS  Google Scholar 

  • Leon C, Vial C, Cazenave JP, Gachet C (1996) Cloning and sequencing of a human cDNA encoding endothelial P2Y1 purinoceptor. Gene 171:295–297

    Article  PubMed  CAS  Google Scholar 

  • Leon C, Hechler B, Vial C, Leray C, Cazenave JP, Gachet C (1997) The P2Y1 receptor is an ADP receptor antagonized by ATP and expressed in platelets and megakaryoblastic cells. FEBS Lett 403:26–30

    Article  PubMed  CAS  Google Scholar 

  • Leon C, Hechler B, Freund M, Eckly A, Vial C, Ohlmann P, Dierich A, LeMeur M, Cazenave JP, Gachet C (1999) Defective platelet aggregation and increased resistance to thrombosis in purinergic P2Y1 receptor-null mice. J Clin Invest 104:1731–1737

    Article  PubMed  CAS  Google Scholar 

  • Leon C, Freund M, Ravanat C, Baurand A, Cazenave JP, Gachet C (2001) Key role of the P2Y1 receptor in tissue factor-induced thrombin-dependent acute thromboembolism: studies in P2Y1-knockout mice and mice treated with a P2Y1 antagonist. Circulation 103:718–723

    Article  PubMed  CAS  Google Scholar 

  • Leon C, Freund M, Latchoumanin O, Farret A, Petit P, Cazenave JP, Gachet C (2005) The P2Y1 receptor is involved in the maintenance of glucose homeostasis and in insulin secretion in mice. Purinergic Signal 1:145–151

    Article  PubMed  CAS  Google Scholar 

  • Lewis CJ, Evans RJ (2000) Comparison of P2X receptors in rat mesenteric, basilar and septal (coronary) arteries. J Auton Nerv Syst 81:69–74

    Article  PubMed  CAS  Google Scholar 

  • Lewis C, Neidhart S, Holy C, North RA, Buell G, Surprenant A (1995) Coexpression of P2X2 and P2X3 receptor subunits can account for ATP-gated currents in sensory neurons. Nature 377:432–435

    Article  PubMed  CAS  Google Scholar 

  • Li C, Peoples RW, Li Z, Weigh FF (1993) Zn2+ potentiates excitatory action of ATP on mammalian neurons. Proc Natl Acad Sci U S A 90:8264–8267

    Article  PubMed  CAS  Google Scholar 

  • Li C, Peoples RW, Weigh FF (1996a) Acid pH augments excitatory action of ATP on a dissociated mammalian sensory neuron. Neuroreport 7:2151–2154

    Article  PubMed  CAS  Google Scholar 

  • Li C, Peoples RW, Weigh FF (1996b) Proton potentiation of ATP-gated ion channel responses to ATP and Zn2+ in rat nodose ganglion neurons. J Neurophysiol 76:3048–3058

    PubMed  CAS  Google Scholar 

  • Li Q, Schachter JB, Harden TK, Nicholas RA (1997) The 6H1 orphan receptor, claimed to be the p2y5 receptor, does not mediate nucleotide-promoted second messenger responses. Biochem Biophys Res Commun 236:455–460

    Article  PubMed  CAS  Google Scholar 

  • Li Q, Olesky M, Palmer RK, Harden TK, Nicholas RA (1998) Evidence that the p2y3 receptor is the avian homologue of the mammalian P2Y6 receptor. Mol Pharmacol 54:541–546

    PubMed  CAS  Google Scholar 

  • Li GH, Lee EM, Blair D, Holding C, Poronnik P, Cook DI, Barden JA, Bennett MR (2000) The distribution of P2X receptor clusters on individual neurons in sympathetic ganglia and their redistribution on agonist activation. J Biol Chem 275:29107–29112

    Article  PubMed  CAS  Google Scholar 

  • Li JM, Fan LM, Shah A, Brooks G (2003) Targeting αvβ3 and α5β1 for gene delivery to proliferating VSMCs: synergistic effect of TGF-β1. Am J Physiol Heart Circ Physiol 285:H1123–1131

    PubMed  CAS  Google Scholar 

  • Libert F, Parmentier M, Lefort A, Dinsart C, Van Sande J, Maenhaut C, Simons MJ, Dumont JE, Vassart G (1989) Selective amplification and cloning of four new members of the G protein-coupled receptor family. Science 244:569–572

    Article  PubMed  CAS  Google Scholar 

  • Libert F, Schiffmann SN, Lefort A, Parmentier M, Gerard C, Dumont JE, Vanderhaeghen JJ, Vassart G (1991) The orphan receptor cDNA RDC7 encodes an A1 adenosine receptor. EMBO J 10:1677–1682

    PubMed  CAS  Google Scholar 

  • Libert F, Van Sande J, Lefort A, Czernilofsky A, Dumont JE, Vassart G, Ensinger HA, Mendla KD (1992) Cloning and functional characterization of a human A1 adenosine receptor. Biochem Biophys Res Commun. 187:919–926

    Article  PubMed  CAS  Google Scholar 

  • Linden J (2001) Molecular approach to adenosine receptors: receptor-mediated mechanisms of tissue protection. Annu Rev Pharmacol Toxicol. 41:775–787

    Article  PubMed  CAS  Google Scholar 

  • Linden J, Taylor HE, Robeva AS, Tucker AL, Stehle JH, Rivkees SA, Fink JS, Reppert SM (1993) Molecular cloning and functional expression of a sheep A3 adenosine receptor with widespread tissue distribution. Mol Pharmacol. 44:524–532

    PubMed  CAS  Google Scholar 

  • Linden J, Thai T, Figler H, Jin X, Robeva AS (1999) Characterization of human A2B adenosine receptors: radioligand binding, western blotting, and coupling to G(q) in human embryonic kidney 293 cells and HMC-1 mast cells. Mol Pharmacol. 56:705–713

    PubMed  CAS  Google Scholar 

  • Liu J, Liao Z, Camden J, Griffin KD, Garrad RC, Santiago-Perez LI, Gonzalez FA, Seye CI, Weisman GA, Erb L (2004) Src homology 3 binding sites in the P2Y2 nucleotide receptor interact with Src and regulate activities of Src, proline-rich tyrosine kinase 2, and growth factor receptors. J Biol Chem 279:8212–8218

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Surprenant A, Mao HJ, Roger S, Xia R, Bradley H, Jiang LH (2008) Identification of key residues coordinating functional inhibition of P2X7 receptors by zinc and copper. Mol Pharmacol 73:252–259

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Li JD, Lu J, Xing J, Li J (2011) Contribution of nerve growth factor to upregulation of P2X3 expression in DRG neurons of rats with femoral artery occlusion. Am J Physiol Heart Circ Physiol 301(3):H1070–H1079

    Article  PubMed  CAS  Google Scholar 

  • Loesch A, Burnstock G (1998) Electron-immunocytochemical localization of P2X1 receptors in the rat cerebellum. Cell Tissue Res 294:253–260

    Article  PubMed  CAS  Google Scholar 

  • Lorca RA, Varela-Nallar L, Inestrosa NC, Huidobro-Toro JP (2011) The cellular prion protein prevents copper-induced inhibition of P2X4 receptors. Int J Alzheimers Dis 2011:706576

    PubMed  Google Scholar 

  • Lucae S, Salyakina D, Barden N, Harvey M, Gagne B, Labbe M, Binder EB, Uhr M, Paez-Pereda M, Sillaber I, Ising M, Bruckl T, Lieb R, Holsboer F, Muller-Myhsok B (2006) P2RX7, a gene coding for a purinergic ligand-gated ion channel, is associated with major depressive disorder. Hum Mol Genet 15:2438–2445

    Article  PubMed  CAS  Google Scholar 

  • Lustig KD, Erb L, Landis DM, Hicks-Taylor CS, Zhang X, Sportiello MG, Weisman GA (1992) Mechanisms by which extracellular ATP and UTP stimulate the release of prostacyclin from bovine pulmonary artery endothelial cells. Biochim Biophys Acta 1134:61–72

    Article  PubMed  CAS  Google Scholar 

  • Lustig KD, Shiau AK, Brake AJ, Julius D (1993) Expression cloning of an ATP receptor from mouse neuroblastoma cells. Proc Natl Acad Sci U S A 90:5113–5117

    Article  PubMed  CAS  Google Scholar 

  • Luthardt J, Borvendeg SJ, Sperlagh B, Poelchen W, Wirkner K, Illes P (2003) P2Y1 receptor activation inhibits NMDA receptor-channels in layer V pyramidal neurons of the rat prefrontal and parietal cortex. Neurochem Int 42:161–172

    Article  PubMed  CAS  Google Scholar 

  • Luttrell LM, Della Rocca GJ, van Biesen T, Luttrell DK, Lefkowitz RJ (1997) Gβγ subunits mediate Src-dependent phosphorylation of the epidermal growth factor receptor. A scaffold for G protein-coupled receptor-mediated Ras activation. J Biol Chem 272:4637–4644

    Article  PubMed  CAS  Google Scholar 

  • Lynch KJ, Touma E, Niforatos W, Kage KL, Burgard EC, van Biesen T, Kowaluk EA, Jarvis MF (1999) Molecular and functional characterization of human P2X2 receptors. Mol Pharmacol 56:1171–1181

    PubMed  CAS  Google Scholar 

  • MacKenzie A, Wilson HL, Kiss-Toth E, Dower SK, North RA, Surprenant A (2001) Rapid secretion of interleukin-1β by microvesicle shedding. Immunity 15:825–835

    Article  PubMed  CAS  Google Scholar 

  • Maenhaut C, Van Sande J, Libert F, Abramowicz M, Parmentier M, Vanderhaegen JJ, Dumont JE, Vassart G, Schiffmann S (1990) RDC8 codes for an adenosine A2 receptor with physiological constitutive activity. Biochem Biophys Res Commun 173:1169–1178

    Article  PubMed  CAS  Google Scholar 

  • Mahaut-Smith MP, Ennion SJ, Rolf MG, Evans RJ (2000) ADP is not an agonist at P2X1 receptors: evidence for separate receptors stimulated by ATP and ADP on human platelets. Br J Pharmacol 131:108–114

    Article  PubMed  CAS  Google Scholar 

  • Mahaut-Smith MP, Jones S, Evans RJ (2011) The P2X1 receptor and platelet function. Purinergic Signal 7:341–356

    Article  PubMed  CAS  Google Scholar 

  • Malam-Souley R, Seye C, Gadeau AP, Loirand G, Pillois X, Campan M, Pacaud P, Desgranges C (1996) Nucleotide receptor P2u partially mediates ATP-induced cell cycle progression of aortic smooth muscle cells. J Cell Physiol 166:57–65

    Article  PubMed  CAS  Google Scholar 

  • Malmsjo M, Adner M, Harden TK, Pendergast W, Edvinsson L, Erlinge D (2000) The stable pyrimidines UDPβS and UTPγS discriminate between the P2 receptors that mediate vascular contraction and relaxation of the rat mesenteric artery. Br J Pharmacol 131:51–56

    Article  PubMed  CAS  Google Scholar 

  • Malmsjo M, Hou M, Pendergast W, Erlinge D, Edvinsson L (2003a) Potent P2Y6 receptor mediated contractions in human cerebral arteries. BMC Pharmacol 3:4

    Article  PubMed  Google Scholar 

  • Malmsjo M, Hou M, Pendergast W, Erlinge D, Edvinsson L (2003b) The stable pyrimidines UDPβS and UTPγS discriminate between contractile cerebrovascular P2 receptors. Eur J Pharmacol 458:305–311

    Article  PubMed  CAS  Google Scholar 

  • Mamedova LK, Joshi BV, Gao ZG, von Kugelgen I, Jacobson KA (2004) Diisothiocyanate derivatives as potent, insurmountable antagonists of P2Y6 nucleotide receptors. Biochem Pharmacol 67:1763–1770

    Article  PubMed  CAS  Google Scholar 

  • Mamedova L, Capra V, Accomazzo MR, Gao ZG, Ferrario S, Fumagalli M, Abbracchio MP, Rovati GE, Jacobson KA (2005) CysLT1 leukotriene receptor antagonists inhibit the effects of nucleotides acting at P2Y receptors. Biochem Pharmacol 71:115–125

    Article  PubMed  CAS  Google Scholar 

  • Mantegazza M, Yu FH, Powell AJ, Clare JJ, Catterall WA, Scheuer T (2005) Molecular determinants for modulation of persistent sodium current by G-protein βγ subunits. J Neurosci 25:3341–3349

    Article  PubMed  CAS  Google Scholar 

  • Marcus DC, Scofield MA (2001) Apical P2Y4 purinergic receptor controls K+ secretion by vestibular dark cell epithelium. Am J Physiol Cell Physiol 281:C282–289

    PubMed  CAS  Google Scholar 

  • Marina-Garcia N, Franchi L, Kim YG, Miller D, McDonald C, Boons GJ, Nunez G (2008) Pannexin-1-mediated intracellular delivery of muramyl dipeptide induces caspase-1 activation via cryopyrin/NLRP3 independently of Nod2. J Immunol 180:4050–4057

    PubMed  CAS  Google Scholar 

  • Mark MD, Ruppersberg JP, Herlitze S (2000) Regulation of GIRK channel deactivation by Gαq and Gαi/o pathways. Neuropharmacology 39:2360–2373

    Article  PubMed  CAS  Google Scholar 

  • Marques-da-Silva C, Chaves M, Castro N, Coutinho-Silva R, Guimaraes M (2011) Colchicine inhibits cationic dye uptake induced by ATP in P2X2 and P2X7 receptor-expressing cells: implications for its therapeutic action. Br J Pharmacol 163:912–926

    Article  PubMed  CAS  Google Scholar 

  • Marriott I, Inscho EW, Bost KL (1999) Extracellular uridine nucleotides initiate cytokine production by murine dendritic cells. Cell Immunol 195:147–156

    Article  PubMed  CAS  Google Scholar 

  • Marteau F, Le Poul E, Communi D, Labouret C, Savi P, Boeynaems JM, Gonzalez NS (2003) Pharmacological characterization of the human P2Y13 receptor. Mol Pharmacol 64:104–112

    Article  PubMed  CAS  Google Scholar 

  • Marteau F, Communi D, Boeynaems JM, Suarez Gonzalez N (2004) Involvement of multiple P2Y receptors and signaling pathways in the action of adenine nucleotides diphosphates on human monocyte-derived dendritic cells. J Leukoc Biol 76:796–803

    Article  PubMed  CAS  Google Scholar 

  • Marteau F, Gonzalez NS, Communi D, Goldman M, Boeynaems JM (2005) Thrombospondin-1 and indoleamine 2,3-dioxygenase are major targets of extracellular ATP in human dendritic cells. Blood 106:3860–3866

    Article  PubMed  CAS  Google Scholar 

  • Martin KA, Kertesy SB, Dubyak GR (1997) Down-regulation of P2U-purinergic nucleotide receptor messenger RNA expression during in vitro differentiation of human myeloid leukocytes by phorbol esters or inflammatory activators. Mol Pharmacol 51:97–108

    PubMed  CAS  Google Scholar 

  • Mathieu R, Baurand A, Schmitt M, Gachet C, Bourguignon JJ (2004) Synthesis and biological activity of 2-alkylated deoxyadenosine bisphosphate derivatives as P2Y1 receptor antagonists. Bioorg Med Chem 12:1769–1779

    Article  PubMed  CAS  Google Scholar 

  • Matos JE, Robaye B, Boeynaems JM, Beauwens R, Leipziger J (2005) K+ secretion activated by luminal P2Y2 and P2Y4 receptors in mouse colon. J Physiol 564:269–279

    Article  PubMed  CAS  Google Scholar 

  • Maurice N, Tkatch T, Meisler M, Sprunger LK, Surmeier DJ (2001) D1/D5 dopamine receptor activation differentially modulates rapidly inactivating and persistent sodium currents in prefrontal cortex pyramidal neurons. J Neurosci 21:2268–2277

    PubMed  CAS  Google Scholar 

  • McQuillin A, Bass NJ, Choudhury K, Puri V, Kosmin M, Lawrence J, Curtis D, Gurling HM (2009) Case-control studies show that a non-conservative amino-acid change from a glutamine to arginine in the P2RX7 purinergic receptor protein is associated with both bipolar- and unipolar-affective disorders. Mol Psychiatry 14:614–620

    Article  PubMed  CAS  Google Scholar 

  • Meghani P (2002) The design of P2Y2 antagonists for the treatment of inflammatory diseases. 224th ACS National meeting, Abstracts, Division of medicinal chemistry 12

    Google Scholar 

  • Megson AC, Dickenson JM, Townsend-Nicholson A, Hill SJ (1995) Synergy between the inositol phosphate responses to transfected human adenosine A1-receptors and constitutive P2-purinoceptors in CHO-K1 cells. Br J Pharmacol 115:1415–1424

    Article  PubMed  CAS  Google Scholar 

  • Mellor EA, Maekawa A, Austen KF, Boyce JA (2001) Cysteinyl leukotriene receptor 1 is also a pyrimidinergic receptor and is expressed by human mast cells. Proc Natl Acad Sci U S A 98:7964–7969

    Article  PubMed  CAS  Google Scholar 

  • Mellor EA, Austen KF, Boyce JA (2002) Cysteinyl leukotrienes and uridine diphosphate induce cytokine generation by human mast cells through an interleukin 4-regulated pathway that is inhibited by leukotriene receptor antagonists. J Exp Med 195:583–592

    Article  PubMed  CAS  Google Scholar 

  • Mellor EA, Frank N, Soler D, Hodge MR, Lora JM, Austen KF, Boyce JA (2003) Expression of the type 2 receptor for cysteinyl leukotrienes (CysLT2R) by human mast cells: Functional distinction from CysLT1R. Proc Natl Acad Sci U S A 100:11589–11593

    Article  PubMed  CAS  Google Scholar 

  • Meshki J, Tuluc F, Bredetean O, Ding Z, Kunapuli SP (2004) Molecular mechanism of nucleotide-induced primary granule release in human neutrophils: role for the P2Y2 receptor. Am J Physiol Cell Physiol 286:C264–C271

    Article  PubMed  CAS  Google Scholar 

  • Meyer MP, Clarke JD, Patel K, Townsend-Nicholson A, Burnstock G (1999) Selective expression of purinoceptor cP2Y1 suggests a role for nucleotide signalling in development of the chick embryo. Dev Dyn 214:152–158

    Article  PubMed  CAS  Google Scholar 

  • Meyer CH, Hotta K, Peterson WM, Toth CA, Jaffe GJ (2002) Effect of INS37217, a P2Y2 receptor agonist, on experimental retinal detachment and electroretinogram in adult rabbits. Invest Ophthalmol Vis Sci 43:3567–3574

    PubMed  Google Scholar 

  • Meyerhof W, Muller-Brechlin R, Richter D (1991) Molecular cloning of a novel putative G-protein coupled receptor expressed during rat spermiogenesis. FEBS Lett 284:155–160

    Article  PubMed  CAS  Google Scholar 

  • Michel AD, Chessell IP, Humphrey PP (1999) Ionic effects on human recombinant P2X7 receptor function. Naunyn Schmiedebergs Arch Pharmacol 359:102–109

    Article  PubMed  CAS  Google Scholar 

  • Michel AD, Kaur R, Chessell IP, Humphrey PP (2000) Antagonist effects on human P2X7 receptor-mediated cellular accumulation of YO-PRO-1. Br J Pharmacol 130:513–520

    Article  PubMed  CAS  Google Scholar 

  • Michel AD, Chambers LJ, Clay WC, Condreay JP, Walter DS, Chessell IP (2007) Direct labelling of the human P2X7 receptor and identification of positive and negative cooperativity of binding. Br J Pharmacol 151:103–114

    Article  PubMed  CAS  Google Scholar 

  • Michel AD, Chambers LJ, Walter DS (2008a) Negative and positive allosteric modulators of the P2X7 receptor. Br J Pharmacol 153:737–750

    Article  PubMed  CAS  Google Scholar 

  • Michel AD, Clay WC, Ng SW, Roman S, Thompson K, Condreay JP, Hall M, Holbrook J, Livermore D, Senger S (2008b) Identification of regions of the P2X7 receptor that contribute to human and rat species differences in antagonist effects. Br J Pharmacol 155:738–751

    Article  PubMed  CAS  Google Scholar 

  • Migita K, Haines WR, Voigt MM, Egan TM (2001) Polar residues of the second transmembrane domain influence cation permeability of the ATP-gated P2X2 receptor. J Biol Chem. 276:30934–30941

    Article  PubMed  CAS  Google Scholar 

  • Miller KJ, Michel AD, Chessell IP, Humphrey PP (1998) Cibacron blue allosterically modulates the rat P2X4 receptor. Neuropharmacology 37:1579–1586

    Article  PubMed  CAS  Google Scholar 

  • Miller CM, Boulter NR, Fuller SJ, Zakrzewski AM, Lees MP, Saunders BM, Wiley JS, Smith NC (2011a) The role of the P2X7 receptor in infectious diseases. PLoS Pathog 7:e1002212

    Article  PubMed  CAS  Google Scholar 

  • Miller CM, Zakrzewski AM, Ikin RJ, Boulter NR, Katrib M, Lees MP, Fuller SJ, Wiley JS, Smith NC (2011b) Dysregulation of the inflammatory response to the parasite, Toxoplasma gondii, in P2X7 receptor-deficient mice. Int J Parasitol 41:301–308

    Article  PubMed  CAS  Google Scholar 

  • Milligan G (2004) G protein-coupled receptor dimerization: function and ligand pharmacology. Mol Pharmacol 66:1–7

    Article  PubMed  CAS  Google Scholar 

  • Mio K, Kubo Y, Ogura T, Yamamoto T, Sato C (2005) Visualization of the trimeric P2X2 receptor with a crown-capped extracellular domain. Biochem Biophys Res Commun 337:998–1005

    Article  PubMed  CAS  Google Scholar 

  • Mio K, Ogura T, Yamamoto T, Hiroaki Y, Fujiyoshi Y, Kubo Y, Sato C (2009) Reconstruction of the P2X2 receptor reveals a vase-shaped structure with lateral tunnels above the membrane. Structure 17:266–275

    Article  PubMed  CAS  Google Scholar 

  • Miyagi Y, Kobayashi S, Ahmed A, Nishimura J, Fukui M, Kanaide H (1996) P2U purinergic activation leads to the cell cycle progression from the G1 to the S and M phases but not from the G0 to G1 phase in vascular smooth muscle cells in primary culture. Biochem Biophys Res Commun 222:652–658

    Article  PubMed  CAS  Google Scholar 

  • Moers A, Nieswandt B, Massberg S, Wettschureck N, Gruner S, Konrad I, Schulte V, Aktas B, Gratacap MP, Simon MI, Gawaz M, Offermanns S (2003) G13 is an essential mediator of platelet activation in hemostasis and thrombosis. Nat Med 9:1418–1422

    Article  PubMed  CAS  Google Scholar 

  • Mok MH, Knight GE, Andrews PL, Hoyle CH, Burnstock G (2000) The effects of cyclophosphamide on neurotransmission in the urinary bladder of Suncus murinus, the house musk shrew. J Auton Nerv Syst 80:130–136

    Article  PubMed  CAS  Google Scholar 

  • Monif M, Burnstock G, Williams DA (2010) Microglia: proliferation and activation driven by the P2X7 receptor. Int J Biochem Cell Biol 42:1753–1756

    Article  PubMed  CAS  Google Scholar 

  • Moore D, Chambers J, Waldvogel H, Faull R, Emson P (2000a) Regional and cellular distribution of the P2Y1 purinergic receptor in the human brain: striking neuronal localisation. J Comp Neurol 421:374–384

    Article  PubMed  CAS  Google Scholar 

  • Moore D, Iritani S, Chambers J, Emson P (2000b) Immunohistochemical localization of the P2Y1 purinergic receptor in Alzheimer’s disease. Neuroreport 11:3799–3803

    Article  PubMed  CAS  Google Scholar 

  • Moore DJ, Chambers JK, Wahlin JP, Tan KB, Moore GB, Jenkins O, Emson PC, Murdock PR (2001) Expression pattern of human P2Y receptor subtypes: a quantitative reverse transcription-polymerase chain reaction study. Biochim Biophys Acta 1521:107–119

    Article  PubMed  CAS  Google Scholar 

  • Moore DJ, Murdock PR, Watson JM, Faull RL, Waldvogel HJ, Szekeres PG, Wilson S, Freeman KB, Emson PC (2003) GPR105, a novel Gi/o-coupled UDP-glucose receptor expressed on brain glia and peripheral immune cells, is regulated by immunologic challenge: possible role in neuroimmune function. Brain Res Mol Brain Res 118:10–23

    Article  PubMed  CAS  Google Scholar 

  • Moran-Jimenez MJ, Matute C (2000) Immunohistochemical localization of the P2Y1 purinergic receptor in neurons and glial cells of the central nervous system. Brain Res Mol Brain Res 78:50–58

    Article  PubMed  CAS  Google Scholar 

  • Moreschi I, Bruzzone S, Nicholas RA, Fruscione F, Sturla L, Benvenuto F, Usai C, Meis S, Kassack MU, Zocchi E, De Flora A (2006) Extracellular NAD+ is an agonist of the human P2Y11 purinergic receptor in human granulocytes. J Biol Chem 281:31419–31429

    Article  PubMed  CAS  Google Scholar 

  • Moreschi I, Bruzzone S, Bodrato N, Usai C, Guida L, Nicholas RA, Kassack MU, Zocchi E, De Flora A (2008) NAADP+ is an agonist of the human P2Y11 purinergic receptor. Cell Calcium 43:344–355

    Article  PubMed  CAS  Google Scholar 

  • Moro S, Jacobson KA (2002) Molecular modeling as a tool to investigate molecular recognition in P2Y receptors. Curr Pharm Des 8:2401–2413

    Article  PubMed  CAS  Google Scholar 

  • Moro S, Guo D, Camaioni E, Boyer JL, Harden TK, Jacobson KA (1998) Human P2Y1 receptor: molecular modeling and site-directed mutagenesis as tools to identify agonist and antagonist recognition sites. J Med Chem 41:1456–1466

    Article  PubMed  CAS  Google Scholar 

  • Muller CE (2002) P2-pyrimidinergic receptors and their ligands. Curr Pharm Des. 8:2353–2369

    Article  PubMed  CAS  Google Scholar 

  • Mulryan K, Gitterman DP, Lewis CJ, Vial C, Leckie BJ, Cobb AL, Brown JE, Conley EC, Buell G, Pritchard CA, Evans RJ (2000) Reduced vas deferens contraction and male infertility in mice lacking P2X1 receptors. Nature 403:86–89

    Article  PubMed  CAS  Google Scholar 

  • Murgia M, Hanau S, Pizzo P, Rippa M, Di Virgilio F (1993) Oxidized ATP. An irreversible inhibitor of the macrophage purinergic P2Z receptor. J Biol Chem 268:8199–8203

    PubMed  CAS  Google Scholar 

  • Murthy KS, Makhlouf GM (1998) Coexpression of ligand-gated P2X and G protein-coupled P2Y receptors in smooth muscle. Preferential activation of P2Y receptors coupled to phospholipase C (PLC)-beta1 via Galphaq/11 and to PLC-beta3 via Gbetagammai3. J Biol Chem 273:4695–4704

    Article  PubMed  CAS  Google Scholar 

  • Muscella A, Elia MG, Greco S, Storelli C, Marsigliante S (2003) Activation of P2Y2 receptor induces c-FOS protein through a pathway involving mitogen-activated protein kinases and phosphoinositide 3-kinases in HeLa cells. J Cell Physiol 195:234–240

    Article  PubMed  CAS  Google Scholar 

  • Nagata K, Imai T, Yamashita T, Tsuda M, Tozaki-Saitoh H, Inoue K (2009) Antidepressants inhibit P2X4 receptor function: a possible involvement in neuropathic pain relief. Mol Pain 5:20

    Article  PubMed  CAS  Google Scholar 

  • Nahum V, Zundorf G, Levesque SA, Beaudoin AR, Reiser G, Fischer B (2002) Adenosine 5’-O-(1-boranotriphosphate) derivatives as novel P2Y1 receptor agonists. J Med Chem 45:5384–5396

    Article  PubMed  CAS  Google Scholar 

  • Nair A, Simonetti M, Fabbretti E, Nistri A (2010) The Cdk5 kinase downregulates ATP-gated ionotropic P2X3 receptor function via serine phosphorylation. Cell Mol Neurobiol 30:505–509

    Article  PubMed  CAS  Google Scholar 

  • Nakamura F, Strittmatter SM (1996) P2Y1 purinergic receptors in sensory neurons: contribution to touch-induced impulse generation. Proc Natl Acad Sci U S A 93:10465–10470

    Article  PubMed  CAS  Google Scholar 

  • Nakata H, Yoshioka K, Saitoh O (2003) Hetero-oligomerization between adenosine A1 and P2Y1 receptors in living cells: formation of ATP-sensitive adenosine receptors. Drug Dev Res 58:340–349

    Article  CAS  Google Scholar 

  • Nakata H, Yoshioka K, Kamiya T, Tsuga H, Oyanagi K (2005) Functions of heteromeric association between adenosine and P2Y receptors. J Mol Neurosci 26:233–238

    Article  PubMed  CAS  Google Scholar 

  • Nakata H, Suzuki T, Namba K, Oyanagi K (2010) Dimerization of G protein-coupled purinergic receptors: increasing the diversity of purinergic receptor signal responses and receptor functions. J Recept Signal Transduct Res 30:337–346

    Article  PubMed  CAS  Google Scholar 

  • Nakazawa K, Hess P (1993) Block by calcium of ATP-activated channels in pheochromocytoma cells. J Gen Physiol 101:377–392

    Article  PubMed  CAS  Google Scholar 

  • Nakazawa K, Matsuki N (1987) Adenosine triphosphate-activated inward current in isolated smooth muscle cells from rat vas deferens. Pflugers Arch 409:644–646

    Article  PubMed  CAS  Google Scholar 

  • Nakazawa K, Yamakoshi Y, Tsuchiya T, Ohno Y (2005) Purification and aqueous phase atomic force microscopic observation of recombinant P2X2 receptor. Eur J Pharmacol 518:107–110

    Article  PubMed  CAS  Google Scholar 

  • Nandanan E, Jang SY, Moro S, Kim HO, Siddiqui MA, Russ P, Marquez VE, Busson R, Herdewijn P, Harden TK, Boyer JL, Jacobson KA (2000) Synthesis, biological activity, and molecular modeling of ribose-modified deoxyadenosine bisphosphate analogues as P2Y1 receptor ligands. J Med Chem 43:829–842

    Article  PubMed  CAS  Google Scholar 

  • Nascimento FP, Figueredo SM, Marcon R, Martins DF, Macedo SJ Jr, Lima DA, Almeida RC, Ostroski RM, Rodrigues AL, Santos AR (2010) Inosine reduces pain-related behavior in mice: involvement of adenosine A1 and A2A receptor subtypes and protein kinase C pathways. J Pharmacol Exp Ther 334:590–598

    Article  PubMed  CAS  Google Scholar 

  • Navarro G, Carriba P, Gandia J, Ciruela F, Casado V, Cortes A, Mallol J, Canela EI, Lluis C, Franco R (2008) Detection of heteromers formed by cannabinoid CB1, dopamine D2, and adenosine A2A G-protein-coupled receptors by combining bimolecular fluorescence complementation and bioluminescence energy transfer. Sci World J 8:1088–1097

    Article  CAS  Google Scholar 

  • Navarro G, Aymerich MS, Marcellino D, Cortes A, Casado V, Mallol J, Canela EI, Agnati L, Woods AS, Fuxe K, Lluis C, Lanciego JL, Ferre S, Franco R (2009) Interactions between calmodulin, adenosine A2A, and dopamine D2 receptors. J Biol Chem 284:28058–28068

    Article  PubMed  CAS  Google Scholar 

  • Navarro B, Miki K, Clapham DE (2011) ATP-activated P2X2 current in mouse spermatozoa. Proc Natl Acad Sci U S A 108:14342–14347

    Article  PubMed  CAS  Google Scholar 

  • Neary JT, Whittemore SR, Zhu Q, Norenberg MD (1994) Synergistic activation of DNA synthesis in astrocytes by fibroblast growth factors and extracellular ATP. J Neurochem 63:490–494

    Article  PubMed  CAS  Google Scholar 

  • Neary JT, Rathbone MP, Cattabeni F, Abbracchio MP, Burnstock G (1996) Trophic actions of extracellular nucleotides and nucleosides on glial and neuronal cells. Trends Neurosci 19:13–18

    Article  PubMed  CAS  Google Scholar 

  • Neary JT, Kang Y, Bu Y, Yu E, Akong K, Peters CM (1999) Mitogenic signaling by ATP/P2Y purinergic receptors in astrocytes: involvement of a calcium-independent protein kinase C, extracellular signal-regulated protein kinase pathway distinct from the phosphatidylinositol-specific phospholipase C/calcium pathway. J Neurosci 19:4211–4220

    PubMed  CAS  Google Scholar 

  • Neary JT, Kang Y, Willoughby KA, Ellis EF (2003) Activation of extracellular signal-regulated kinase by stretch-induced injury in astrocytes involves extracellular ATP and P2 purinergic receptors. J Neurosci 23:2348–2356

    PubMed  CAS  Google Scholar 

  • Neelands TR, Burgard EC, Uchic ME, McDonald HA, Niforatos W, Faltynek CR, Lynch KJ, Jarvis MF (2003) 2′, 3′-O-(2,4,6, trinitrophenyl)-ATP and A-317491 are competitive antagonists at a slowly desensitizing chimeric human P2X3 receptor. Br J Pharmacol 140:202–210

    Article  PubMed  CAS  Google Scholar 

  • Negulyaev YA, Markwardt F (2000) Block by extracellular Mg2+ of single human purinergic P2X4 receptor channels expressed in human embryonic kidney cells. Neurosci Lett 279:165–168

    Article  PubMed  CAS  Google Scholar 

  • Nelson DW, Gregg RJ, Kort ME, Perez-Medrano A, Voight EA, Wang Y, Grayson G, Namovic MT, Donnelly-Roberts DL, Niforatos W, Honore P, Jarvis MF, Faltynek CR, Carroll WA (2006) Structure-activity relationship studies on a series of novel, substituted 1-benzyl-5-phenyltetrazole P2X7 antagonists. J Med Chem 49:3659–3666

    Article  PubMed  CAS  Google Scholar 

  • Nguyen T, Erb L, Weisman GA, Marchese A, Heng HH, Garrad RC, George SR, Turner JT, O’Dowd BF (1995) Cloning, expression, and chromosomal localization of the human uridine nucleotide receptor gene. J Biol Chem 270:30845–30848

    Article  PubMed  CAS  Google Scholar 

  • Nicholas RA, Watt WC, Lazarowski ER, Li Q, Harden K (1996) Uridine nucleotide selectivity of three phospholipase C-activating P2 receptors: identification of a UDP-selective, a UTP-selective, and an ATP- and UTP-specific receptor. Mol Pharmacol 50:224–229

    PubMed  CAS  Google Scholar 

  • Nicke A (2008) Homotrimeric complexes are the dominant assembly state of native P2X7 subunits. Biochem Biophys Res Commun 377:803–808

    Article  PubMed  CAS  Google Scholar 

  • Nicke A, Baumert HG, Rettinger J, Eichele A, Lambrecht G, Mutschler E, Schmalzing G (1998) P2X1 and P2X3 receptors form stable trimers: a novel structural motif of ligand-gated ion channels. EMBO J 17:3016–3028

    Article  PubMed  CAS  Google Scholar 

  • Nicke A, Kerschensteiner D, Soto F (2005) Biochemical and functional evidence for heteromeric assembly of P2X1 and P2X4 subunits. J Neurochem 92:925–933

    Article  PubMed  CAS  Google Scholar 

  • Niemi K, Teirila L, Lappalainen J, Rajamaki K, Baumann MH, Oorni K, Wolff H, Kovanen PT, Matikainen S, Eklund KK (2011) Serum amyloid A activates the NLRP3 inflammasome via P2X7 receptor and a cathepsin B-sensitive pathway. J Immunol 186:6119–6128

    Article  PubMed  CAS  Google Scholar 

  • Niitsu Y, Jakubowski JA, Sugidachi A, Asai F (2005) Pharmacology of CS-747 (prasugrel, LY640315), a novel, potent antiplatelet agent with in vivo P2Y12 receptor antagonist activity. Semin Thromb Hemost 31:184–194

    Article  PubMed  CAS  Google Scholar 

  • Noguchi K, Ishii S, Shimizu T (2003) Identification of p2y9/GPR23 as a novel G protein-coupled receptor for lysophosphatidic acid, structurally distant from the Edg family. J Biol Chem 278:25600–25606

    Article  PubMed  CAS  Google Scholar 

  • Norambuena A, Palma F, Poblete MI, Donoso MV, Pardo E, Gonzalez A, Huidobro-Toro JP (2010) UTP controls cell surface distribution and vasomotor activity of the human P2Y2 receptor through an epidermal growth factor receptor-transregulated mechanism. J Biol Chem 285:2940–2950

    Article  PubMed  CAS  Google Scholar 

  • Norenberg W, Hempel C, Urban N, Sobottka H, Illes P, Schaefer M (2011) Clemastine potentiates the human P2X7 receptor by sensitizing it to lower ATP concentrations. J Biol Chem 286:11067–11081

    Article  PubMed  CAS  Google Scholar 

  • North RA (1996) Families of ion channels with two hydrophobic segments. Curr Opin Cell Biol 8:474–483

    Article  PubMed  CAS  Google Scholar 

  • North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82:1013–1067

    PubMed  CAS  Google Scholar 

  • Nurden P, Savi P, Heilmann E, Bihour C, Herbert JM, Maffrand JP, Nurden A (1995) An inherited bleeding disorder linked to a defective interaction between ADP and its receptor on platelets. Its influence on glycoprotein IIb-IIIa complex function. J Clin Invest 95:1612–1622

    Article  PubMed  CAS  Google Scholar 

  • O’Connor SE, Wood BE, Leff P (1990) Characterization of P2x-receptors in rabbit isolated ear artery. Br J Pharmacol 101:640–644

    Article  PubMed  Google Scholar 

  • Ohlendorff SD, Tofteng CL, Jensen JE, Petersen S, Civitelli R, Fenger M, Abrahamsen B, Hermann AP, Eiken P, Jorgensen NR (2007) Single nucleotide polymorphisms in the P2X7 gene are associated to fracture risk and to effect of estrogen treatment. Pharmacogenet Genomics 17:555–567

    Article  PubMed  CAS  Google Scholar 

  • Ohlmann P, Laugwitz KL, Nurnberg B, Spicher K, Schultz G, Cazenave JP, Gachet C (1995) The human platelet ADP receptor activates Gi2 proteins. Biochem J 312(Pt 3):775–779

    PubMed  CAS  Google Scholar 

  • Ohno M, Costanzi S, Kim HS, Kempeneers V, Vastmans K, Herdewijn P, Maddileti S, Gao ZG, Harden TK, Jacobson KA (2004) Nucleotide analogues containing 2-oxa-bicyclo[2.2.1]heptane and l-alpha-threofuranosyl ring systems: interactions with P2Y receptors. Bioorg Med Chem 12:5619–5630

    Article  PubMed  CAS  Google Scholar 

  • Ostrom RS, Gregorian C, Insel PA (2000) Cellular release of and response to ATP as key determinants of the set-point of signal transduction pathways. J Biol Chem 275:11735–11739

    Article  PubMed  CAS  Google Scholar 

  • Ostrovskaya O, Asatryan L, Wyatt L, Popova M, Li K, Peoples RW, Alkana RL, Davies DL (2011) Ethanol is a fast channel inhibitor of P2X4 receptors. J Pharmacol Exp Ther 337:171–179

    Article  PubMed  CAS  Google Scholar 

  • Otero M, Garrad RC, Velazquez B, Hernandez-Perez MG, Camden JM, Erb L, Clarke LL, Turner JT, Weisman GA, Gonzalez FA (2000) Mechanisms of agonist-dependent and -independent desensitization of a recombinant P2Y2 nucleotide receptor. Mol Cell Biochem 205:115–123

    Article  PubMed  CAS  Google Scholar 

  • Oyanguren-Desez O, Rodriguez-Antiguedad A, Villoslada P, Domercq M, Alberdi E, Matute C (2011) Gain-of-function of P2X7 receptor gene variants in multiple sclerosis. Cell Calcium 50:468–472

    Article  PubMed  CAS  Google Scholar 

  • Palea S, Artibani W, Ostardo E, Trist DG, Pietra C (1993) Evidence for purinergic neurotransmission in human urinary bladder affected by interstitial cystitis. J Urol 150:2007–2012

    PubMed  CAS  Google Scholar 

  • Palmer TM, Stiles GL (1995) Adenosine receptors. Neuropharmacology. 34:683–694

    Article  PubMed  CAS  Google Scholar 

  • Palmer TM, Stiles GL (1997) Identification of an A2a adenosine receptor domain specifically responsible for mediating short-term desensitization. Biochemistry. 36:832–838

    Article  PubMed  CAS  Google Scholar 

  • Palmer TM, Stiles GL (1999) Stimulation of A2A adenosine receptor phosphorylation by protein kinase C activation: evidence for regulation by multiple protein kinase C isoforms. Biochemistry 38:14833–14842

    Article  PubMed  CAS  Google Scholar 

  • Palmer TM, Stiles GL (2000) Identification of threonine residues controlling the agonist-dependent phosphorylation and desensitization of the rat A3 adenosine receptor. Mol Pharmacol 57:539–545

    PubMed  CAS  Google Scholar 

  • Palmer TM, Benovic JL, Stiles GL (1995) Agonist-dependent phosphorylation and desensitization of the rat A3 adenosine receptor. Evidence for a G-protein-coupled receptor kinase-mediated mechanism. J Biol Chem 270:29607–29613

    Article  PubMed  CAS  Google Scholar 

  • Palmer RK, Boyer JL, Schachter JB, Nicholas RA, Harden TK (1998) Agonist action of adenosine triphosphates at the human P2Y1 receptor. Mol Pharmacol 54:1118–1123

    PubMed  CAS  Google Scholar 

  • Pankratov Y, Lalo U, Krishtal O, Verkhratsky A (2003) P2X receptor-mediated excitatory synaptic currents in somatosensory cortex. Mol Cell Neurosci 24:842–849

    Article  PubMed  CAS  Google Scholar 

  • Panupinthu N, Zhao L, Possmayer F, Ke HZ, Sims SM, Dixon SJ (2007) P2X7 nucleotide receptors mediate blebbing in osteoblasts through a pathway involving lysophosphatidic acid. J Biol Chem 282:3403–3412

    Article  PubMed  CAS  Google Scholar 

  • Parker MS, Onyenekwu NN, Bobbin RP (2003) Localization of the P2Y4 receptor in the guinea pig organ of Corti. J Am Acad Audiol 14:286–295

    PubMed  Google Scholar 

  • Parr CE, Sullivan DM, Paradiso AM, Lazarowski ER, Burch LH, Olsen JC, Erb L, Weisman GA, Boucher RC, Turner JT (1994) Cloning and expression of a human P2U nucleotide receptor, a target for cystic fibrosis pharmacotherapy. Proc Natl Acad Sci U S A 91:3275–3279

    Article  PubMed  CAS  Google Scholar 

  • Parravicini C, Ranghino G, Abbracchio MP, Fantucci P (2008) GPR17: molecular modeling and dynamics studies of the 3-D structure and purinergic ligand binding features in comparison with P2Y receptors. BMC Bioinformatics 9:263

    Article  PubMed  CAS  Google Scholar 

  • Paruchuri S, Tashimo H, Feng C, Maekawa A, Xing W, Jiang Y, Kanaoka Y, Conley P, Boyce JA (2009) Leukotriene E4-induced pulmonary inflammation is mediated by the P2Y12 receptor. J Exp Med 206:2543–2555

    Article  PubMed  CAS  Google Scholar 

  • Pearson PJ, Evora PR, Schaff HV (1992a) Bioassay of EDRF from internal mammary arteries: implications for early and late bypass graft patency. Ann Thorac Surg 54:1078–1084

    Article  PubMed  CAS  Google Scholar 

  • Pearson PJ, Lin PJ, Schaff HV (1992b) Global myocardial ischemia and reperfusion impair endothelium-dependent relaxations to aggregating platelets in the canine coronary artery. A possible cause of vasospasm after cardiopulmonary bypass. J Thorac Cardiovasc Surg 103:1147–1154

    PubMed  CAS  Google Scholar 

  • Pelegrin P (2011) Many ways to dilate the P2X7 receptor pore. Br J Pharmacol 163:908–911

    Article  PubMed  CAS  Google Scholar 

  • Pelegrin P, Surprenant A (2006) Pannexin-1 mediates large pore formation and interleukin-1beta release by the ATP-gated P2X7 receptor. EMBO J 25:5071–5082

    Article  PubMed  CAS  Google Scholar 

  • Pelegrin P, Surprenant A (2009) The P2X7 receptor-pannexin connection to dye uptake and IL-1β release. Purinergic Signal 5:129–137

    Article  PubMed  CAS  Google Scholar 

  • Pelegrin P, Barroso-Gutierrez C, Surprenant A (2008) P2X7 receptor differentially couples to distinct release pathways for IL-1β in mouse macrophage. J Immunol 180:7147–7157

    PubMed  CAS  Google Scholar 

  • Pellegatti P, Peters JA, Di Virgilio F (2011) P2X receptors. IUPHAR database (IUPHAR-DB). http://www.iuphar-db.org/DATABASE/FamilyIntroductionForward?familyId=77

  • Pendergast W, Yerxa BR, Douglass JG 3rd, Shaver SR, Dougherty RW, Redick CC, Sims IF, Rideout JL (2001) Synthesis and P2Y receptor activity of a series of uridine dinucleoside 5′-polyphosphates. Bioorg Med Chem Lett 11:157–160

    Article  PubMed  CAS  Google Scholar 

  • Perregaux D, Gabel CA (1994) Interleukin-1 β maturation and release in response to ATP and nigericin. Evidence that potassium depletion mediated by these agents is a necessary and common feature of their activity. J Biol Chem 269:15195–15203

    PubMed  CAS  Google Scholar 

  • Perregaux DG, Gabel CA (1998) Post-translational processing of murine IL-1: evidence that ATP-induced release of IL-1 α and IL-1 β occurs via a similar mechanism. J Immunol 160:2469–2477

    PubMed  CAS  Google Scholar 

  • Peterfreund RA, MacCollin M, Gusella J, Fink JS (1996) Characterization and expression of the human A2a adenosine receptor gene. J Neurochem 66:362–368

    Article  PubMed  CAS  Google Scholar 

  • Peters G, Robbie G (2004) Single-dose pharmacokinetics and pharmacodynamics of AZD6140-an oral reversible ADP receptor antagonist. Haematologica 989(Suppl. 7):14

    Google Scholar 

  • Petrou S, Ugur M, Drummond RM, Singer JJ, Walsh JV Jr (1997) P2X7 purinoceptor expression in Xenopus oocytes is not sufficient to produce a pore-forming P2Z-like phenotype. FEBS Lett 411:339–345

    Article  PubMed  CAS  Google Scholar 

  • Pidgeon GP, Tang K, Cai YL, Piasentin E, Honn KV (2003) Overexpression of platelet-type 12-lipoxygenase promotes tumor cell survival by enhancing αvβ3 and αvβ5 integrin expression. Cancer Res 63:4258–4267

    PubMed  CAS  Google Scholar 

  • Piirainen H, Ashok Y, Nanekar RT, Jaakola VP (2011) Structural features of adenosine receptors: from crystal to function. Biochim Biophys Acta 1808:1233–1244

    Article  PubMed  CAS  Google Scholar 

  • Pillois X, Chaulet H, Belloc I, Dupuch F, Desgranges C, Gadeau AP (2002) Nucleotide receptors involved in UTP-induced rat arterial smooth muscle cell migration. Circ Res 90:678–681

    Article  PubMed  CAS  Google Scholar 

  • Pintor J, King BF, Miras-Portugal MT, Burnstock G (1996) Selectivity and activity of adenine dinucleotides at recombinant P2X2 and P2Y1 purinoceptors. Br J Pharmacol 119:1006–1012

    Article  PubMed  CAS  Google Scholar 

  • Pizzo P, Zanovello P, Bronte V, Di Virgilio F (1991) Extracellular ATP causes lysis of mouse thymocytes and activates a plasma membrane ion channel. Biochem J 274(Pt 1):139–144

    PubMed  CAS  Google Scholar 

  • Pratt EB, Brink TS, Bergson P, Voigt MM, Cook SP (2005) Use-dependent inhibition of P2X3 receptors by nanomolar agonist. J Neurosci 25:7359–7365

    Article  PubMed  CAS  Google Scholar 

  • Priel A, Silberberg SD (2004) Mechanism of ivermectin facilitation of human P2X4 receptor channels. J Gen Physiol 123:281–293

    Article  PubMed  CAS  Google Scholar 

  • Qi AD, Kennedy C, Harden TK, Nicholas RA (2001a) Differential coupling of the human P2Y11 receptor to phospholipase C and adenylyl cyclase. Br J Pharmacol 132:318–326

    Article  PubMed  CAS  Google Scholar 

  • Qi AD, Zambon AC, Insel PA, Nicholas RA (2001b) An arginine/glutamine difference at the juxtaposition of transmembrane domain 6 and the third extracellular loop contributes to the markedly different nucleotide selectivities of human and canine P2Y11 receptors. Mol Pharmacol 60:1375–1382

    PubMed  CAS  Google Scholar 

  • Qi AD, Harden TK, Nicholas RA (2004) GPR80/99, proposed to be the P2Y15 receptor activated by adenosine and AMP, is not a P2Y receptor. Purinergic Signal 1:67–74

    Article  PubMed  CAS  Google Scholar 

  • Qi AD, Wolff SC, Nicholas RA (2005) The apical targeting signal of the P2Y2 receptor is located in its first extracellular loop. J Biol Chem 280:29169–29175

    Article  PubMed  CAS  Google Scholar 

  • Qu Y, Dubyak GR (2009) P2X7 receptors regulate multiple types of membrane trafficking responses and non-classical secretion pathways. Purinergic Signal 5:163–173

    Article  PubMed  CAS  Google Scholar 

  • Raboisson P, Baurand A, Cazenave JP, Gachet C, Retat M, Spiess B, Bourguignon JJ (2002a) Novel antagonists acting at the P2Y1 purinergic receptor: synthesis and conformational analysis using potentiometric and nuclear magnetic resonance titration techniques. J Med Chem 45:962–972

    Article  PubMed  CAS  Google Scholar 

  • Raboisson P, Baurand A, Cazenave JP, Gachet C, Schultz D, Spiess B, Bourguignon JJ (2002b) A general approach toward the synthesis of C-nucleoside pyrazolo[1,5-a]-1,3,5-triazines and their 3′,5′-bisphosphate C-nucleotide analogues as the first reported in vivo stable P2Y1-receptor antagonists. J Org Chem 67:8063–8071

    Article  PubMed  CAS  Google Scholar 

  • Radford KM, Virginio C, Surprenant A, North RA, Kawashima E (1997) Baculovirus expression provides direct evidence for heteromeric assembly of P2X2 and P2X3 receptors. J Neurosci 17:6529–6533

    PubMed  CAS  Google Scholar 

  • Rae MG, Rowan EG, Kennedy C (1998) Pharmacological properties of P2X3-receptors present in neurones of the rat dorsal root ganglia. Br J Pharmacol 124:176–180

    Article  PubMed  CAS  Google Scholar 

  • Ralevic V, Burnstock G (1998) Receptors for purines and pyrimidines. Pharmacol Rev 50:413–492

    PubMed  CAS  Google Scholar 

  • Rao S, Garrett-Sinha LA, Yoon J, Simon MC (1999) The Ets factors PU.1 and Spi-B regulate the transcription in vivo of P2Y10, a lymphoid restricted heptahelical receptor. J Biol Chem 274:34245–34252

    Article  PubMed  CAS  Google Scholar 

  • Rassendren F, Buell GN, Virginio C, Collo G, North RA, Surprenant A (1997) The permeabilizing ATP receptor, P2X7. Cloning and expression of a human cDNA. J Biol Chem 272:5482–5486

    Article  PubMed  CAS  Google Scholar 

  • Ravi RG, Kim HS, Servos J, Zimmermann H, Lee K, Maddileti S, Boyer JL, Harden TK, Jacobson KA (2002) Adenine nucleotide analogues locked in a Northern methanocarba conformation: enhanced stability and potency as P2Y1 receptor agonists. J Med Chem 45:2090–2100

    Article  PubMed  CAS  Google Scholar 

  • Reiner S, Ziegler N, Leon C, Lorenz K, von Hayn K, Gachet C, Lohse MJ, Hoffmann C (2009) β-Arrestin-2 interaction and internalization of the human P2Y1 receptor are dependent on C-terminal phosphorylation sites. Mol Pharmacol 76:1162–1171

    Article  PubMed  CAS  Google Scholar 

  • Ren H, Stiles GL (1995) Separate promoters in the human A1 adenosine receptor gene direct the synthesis of distinct messenger RNAs that regulate receptor abundance. Mol Pharmacol 48:975–980

    PubMed  CAS  Google Scholar 

  • Rettinger J, Schmalzing G (2003) Activation and desensitization of the recombinant P2X1 receptor at nanomolar ATP concentrations. J Gen Physiol. 121:451–461

    Article  PubMed  CAS  Google Scholar 

  • Rettinger J, Schmalzing G (2004) Desensitization masks nanomolar potency of ATP for the P2X1 receptor. J Biol Chem. 279:6426–6433

    Article  PubMed  CAS  Google Scholar 

  • Rettinger J, Schmalzing G, Damer S, Muller G, Nickel P, Lambrecht G (2000) The suramin analogue NF279 is a novel and potent antagonist selective for the P2X1 receptor. Neuropharmacology 39:2044–2053

    Article  PubMed  CAS  Google Scholar 

  • Rice WR, Burton FM, Fiedeldey DT (1995) Cloning and expression of the alveolar type II cell P2u-purinergic receptor. Am J Respir Cell Mol Biol 12:27–32

    PubMed  CAS  Google Scholar 

  • Riedel T, Lozinsky I, Schmalzing G, Markwardt F (2007) Kinetics of P2X7 receptor-operated single channels currents. Biophys J 92:2377–2391

    Article  PubMed  CAS  Google Scholar 

  • Robaye B, Boeynaems JM, Communi D (1997) Slow desensitization of the human P2Y6 receptor. Eur J Pharmacol 329:231–236

    PubMed  CAS  Google Scholar 

  • Robaye B, Ghanem E, Wilkin F, Fokan D, Van Driessche W, Schurmans S, Boeynaems JM, Beauwens R (2003) Loss of nucleotide regulation of epithelial chloride transport in the jejunum of P2Y4-null mice. Mol Pharmacol 63:777–783

    Article  PubMed  CAS  Google Scholar 

  • Robertson SJ, Rae MG, Rowan EG, Kennedy C (1996) Characterization of a P2X-purinoceptor in cultured neurones of the rat dorsal root ganglia. Br J Pharmacol 118:951–956

    Article  PubMed  CAS  Google Scholar 

  • Rodrigues RJ, Almeida T, Richardson PJ, Oliveira CR, Cunha RA (2005) Dual presynaptic control by ATP of glutamate release via facilitatory P2X1, P2X2/3, and P2X3 and inhibitory P2Y1, P2Y2, and/or P2Y4 receptors in the rat hippocampus. J Neurosci 25:6286–6295

    Article  PubMed  CAS  Google Scholar 

  • Roger S, Pelegrin P, Surprenant A (2008) Facilitation of P2X7 receptor currents and membrane blebbing via constitutive and dynamic calmodulin binding. J Neurosci 28:6393–6401

    Article  PubMed  CAS  Google Scholar 

  • Roger S, Gillet L, Baroja-Mazo A, Surprenant A, Pelegrin P (2010) C-terminal calmodulin-binding motif differentially controls human and rat P2X7 receptor current facilitation. J Biol Chem 285:17514–17524

    Article  PubMed  CAS  Google Scholar 

  • Roman S, Cusdin FS, Fonfria E, Goodwin JA, Reeves J, Lappin SC, Chambers L, Walter DS, Clay WC, Michel AD (2009) Cloning and pharmacological characterization of the dog P2X7 receptor. Br J Pharmacol 158:1513–1526

    Article  PubMed  CAS  Google Scholar 

  • Rozengurt E, Heppel LA (1975) A specific effect of external ATP on the permeability of transformed 3T3 cells. Biochem Biophys Res Commun 67:1581–1588

    Article  PubMed  CAS  Google Scholar 

  • Ruan HZ, Burnstock G (2003) Localisation of P2Y1 and P2Y4 receptors in dorsal root, nodose and trigeminal ganglia of the rat. Histochem Cell Biol. 120:415–426

    Article  PubMed  CAS  Google Scholar 

  • Rubini P, Engelhardt J, Wirkner K, Illes P (2008) Modulation by D1 and D2 dopamine receptors of ATP-induced release of intracellular Ca2+ in cultured rat striatal neurons. Neurochem Int 52:113–118

    Article  PubMed  CAS  Google Scholar 

  • Ruppelt A, Ma W, Borchardt K, Silberberg SD, Soto F (2001) Genomic structure, developmental distribution and functional properties of the chicken P2X5 receptor. J Neurochem 77:1256–1265

    Article  PubMed  CAS  Google Scholar 

  • Russo C, Arcidiacono G, Polosa R (2006) Adenosine receptors: promising targets for the development of novel therapeutics and diagnostics for asthma. Fundam Clin Pharmacol 20:9–19

    Article  PubMed  CAS  Google Scholar 

  • Sage CL, Marcus DC (2002) Immunolocalization of P2Y4 and P2Y2 purinergic receptors in strial marginal cells and vestibular dark cells. J Membr Biol 185:103–115

    Article  PubMed  CAS  Google Scholar 

  • Sajjadi FG, Firestein GS (1993) cDNA cloning and sequence analysis of the human A3 adenosine receptor. Biochim Biophys Acta 1179:105–107

    Article  PubMed  CAS  Google Scholar 

  • Sak K, Uri A, Enkvist E, Raidaru G, Subbi J, Kelve M, Jarv J (2000) Adenosine-derived non-phosphate antagonists for P2Y1 purinoceptors. Biochem Biophys Res Commun 272:327–331

    Article  PubMed  CAS  Google Scholar 

  • Salvatore CA, Jacobson MA, Taylor HE, Linden J, Johnson RG (1993) Molecular cloning and characterization of the human A3 adenosine receptor. Proc Natl Acad Sci U S A 90:10365–10369

    Article  PubMed  CAS  Google Scholar 

  • Sanes JR, Lichtman JW (1999) Development of the vertebrate neuromuscular junction. Annu Rev Neurosci 22:389–442

    Article  PubMed  CAS  Google Scholar 

  • Santiago-Perez LI, Flores RV, Santos-Berrios C, Chorna NE, Krugh B, Garrad RC, Erb L, Weisman GA, Gonzalez FA (2001) P2Y2 nucleotide receptor signaling in human monocytic cells: activation, desensitization and coupling to mitogen-activated protein kinases. J Cell Physiol 187:196–208

    Article  PubMed  CAS  Google Scholar 

  • Sasaki Y, Hoshi M, Akazawa C, Nakamura Y, Tsuzuki H, Inoue K, Kohsaka S (2003) Selective expression of Gi/o-coupled ATP receptor P2Y12 in microglia in rat brain. Glia 44:242–250

    Article  PubMed  Google Scholar 

  • Sauer R, El-Tayeb A, Kaulich M, Muller CE (2009) Synthesis of uracil nucleotide analogs with a modified, acyclic ribose moiety as P2Y2 receptor antagonists. Bioorg Med Chem 17:5071–5079

    Article  PubMed  CAS  Google Scholar 

  • Savi P, Herbert JM (2005) Clopidogrel and ticlopidine: P2Y12 adenosine diphosphate-receptor antagonists for the prevention of atherothrombosis. Semin Thromb Hemost 31:174–183

    Article  PubMed  CAS  Google Scholar 

  • Savi P, Pereillo JM, Uzabiaga MF, Combalbert J, Picard C, Maffrand JP, Pascal M, Herbert JM (2000) Identification and biological activity of the active metabolite of clopidogrel. Thromb Haemost 84:891–896

    PubMed  CAS  Google Scholar 

  • Savi P, Labouret C, Delesque N, Guette F, Lupker J, Herbert JM (2001) P2y12, a new platelet ADP receptor, target of clopidogrel. Biochem Biophys Res Commun 283:379–383

    Article  PubMed  CAS  Google Scholar 

  • Scarborough RM, Laibelman AM, Clizbe LA, Fretto LJ, Conley PB, Reynolds EE, Sedlock DM, Jantzen H (2001) Novel tricyclic benzothiazolo[2,3-c]thiadiazine antagonists of the platelet ADP receptor (P2Y12). Bioorg Med Chem Lett 11:1805–1808

    Article  PubMed  CAS  Google Scholar 

  • Schachter JB, Li Q, Boyer JL, Nicholas RA, Harden TK (1996) Second messenger cascade specificity and pharmacological selectivity of the human P2Y1-purinoceptor. Br J Pharmacol 118:167–173

    Article  PubMed  CAS  Google Scholar 

  • Schachter J, Motta AP, de Souza Zamorano A, da Silva-Souza HA, Guimaraes MZ, Persechini PM (2008) ATP-induced P2X7-associated uptake of large molecules involves distinct mechanisms for cations and anions in macrophages. J Cell Sci 121:3261–3270

    Article  PubMed  CAS  Google Scholar 

  • Schaeffer L, de Kerchove d’Exaerde A, Changeux JP (2001) Targeting transcription to the neuromuscular synapse. Neuron. 31:15–22

    Google Scholar 

  • Schafer R, Sedehizade F, Welte T, Reiser G (2003) ATP- and UTP-activated P2Y receptors differently regulate proliferation of human lung epithelial tumor cells. Am J Physiol Lung Cell Mol Physiol 285:L376–L385

    PubMed  Google Scholar 

  • Schicker K, Hussl S, Chandaka GK, Kosenburger K, Yang JW, Waldhoer M, Sitte HH, Boehm S (2009) A membrane network of receptors and enzymes for adenine nucleotides and nucleosides. Biochim Biophys Acta 1793:325–334

    Article  PubMed  CAS  Google Scholar 

  • Schilling WP, Sinkins WG, Estacion M (1999a) Maitotoxin activates a nonselective cation channel and a P2Z/P2X7-like cytolytic pore in human skin fibroblasts. Am J Physiol 277:C755–C765

    PubMed  CAS  Google Scholar 

  • Schilling WP, Wasylyna T, Dubyak GR, Humphreys BD, Sinkins WG (1999b) Maitotoxin and P2Z/P2X7 purinergic receptor stimulation activate a common cytolytic pore. Am J Physiol 277:C766–C776

    PubMed  CAS  Google Scholar 

  • Schnurr M, Toy T, Stoitzner P, Cameron P, Shin A, Beecroft T, Davis ID, Cebon J, Maraskovsky E (2003) ATP gradients inhibit the migratory capacity of specific human dendritic cell types: implications for P2Y11 receptor signaling. Blood 102:613–620

    Article  PubMed  CAS  Google Scholar 

  • Schoneberg T, Schulz A, Grosse R, Schade R, Henklein P, Schultz G, Gudermann T (1999) A novel subgroup of class I G-protein-coupled receptors. Biochim Biophys Acta 1446:57–70

    Article  PubMed  CAS  Google Scholar 

  • Schoneberg T, Hermsdorf T, Engemaier E, Engel K, Liebscher I, Thor D, Zierau K, Rompler H, Schulz A (2007) Structural and functional evolution of the P2Y12-like receptor group. Purinergic Signal 3:255–268

    Article  PubMed  Google Scholar 

  • Schrader AM, Camden JM, Weisman GA (2005) P2Y2 nucleotide receptor up-regulation in submandibular gland cells from the NOD.B10 mouse model of Sjogren’s syndrome. Arch Oral Biol 50:533–540

    Article  PubMed  CAS  Google Scholar 

  • Schulz A, Schoneberg T (2003) The structural evolution of a P2Y-like G-protein-coupled receptor. J Biol Chem 278:35531–35541

    Article  PubMed  CAS  Google Scholar 

  • Sebastiao AM, Ribeiro JA (2009) Adenosine receptors and the central nervous system. Handb Exp Pharmacol 193:471–534

    Google Scholar 

  • Seguela P, Haghighi A, Soghomonian JJ, Cooper E (1996) A novel neuronal P2x ATP receptor ion channel with widespread distribution in the brain. J Neurosci 16:448–455

    PubMed  CAS  Google Scholar 

  • Selbie LA, Hill SJ (1998) G protein-coupled-receptor cross-talk: the fine-tuning of multiple receptor-signalling pathways. Trends Pharmacol Sci 19:87–93

    Article  PubMed  CAS  Google Scholar 

  • Selbie LA, King NV, Dickenson JM, Hill SJ (1997) Role of G-protein beta gamma subunits in the augmentation of P2Y2 (P2U)receptor-stimulated responses by neuropeptide Y Y1 Gi/o-coupled receptors. Biochem J 328(Pt 1):153–158

    PubMed  CAS  Google Scholar 

  • Sellers LA, Simon J, Lundahl TS, Cousens DJ, Humphrey PP, Barnard EA (2001) Adenosine nucleotides acting at the human P2Y1 receptor stimulate mitogen-activated protein kinases and induce apoptosis. J Biol Chem 276:16379–16390

    Article  PubMed  CAS  Google Scholar 

  • Selyanko AA, Hadley JK, Brown DA (2001) Properties of single M-type KCNQ2/KCNQ3 potassium channels expressed in mammalian cells. J Physiol 534:15–24

    Article  PubMed  CAS  Google Scholar 

  • Sesma JI, Esther CR Jr, Kreda SM, Jones L, O’Neal W, Nishihara S, Nicholas RA, Lazarowski ER (2009) Endoplasmic reticulum/golgi nucleotide sugar transporters contribute to the cellular release of UDP-sugar signaling molecules. J Biol Chem 284:12572–12583

    Article  PubMed  CAS  Google Scholar 

  • Seye CI, Gadeau AP, Daret D, Dupuch F, Alzieu P, Capron L, Desgranges C (1997) Overexpression of P2Y2 purinoceptor in intimal lesions of the rat aorta. Arterioscler Thromb Vasc Biol 17:3602–3610

    Article  PubMed  CAS  Google Scholar 

  • Seye CI, Kong Q, Erb L, Garrad RC, Krugh B, Wang M, Turner JT, Sturek M, Gonzalez FA, Weisman GA (2002) Functional P2Y2 nucleotide receptors mediate uridine 5’-triphosphate-induced intimal hyperplasia in collared rabbit carotid arteries. Circulation 106:2720–2726

    Article  PubMed  CAS  Google Scholar 

  • Seye CI, Yu N, Jain R, Kong Q, Minor T, Newton J, Erb L, Gonzalez FA, Weisman GA (2003) The P2Y2 nucleotide receptor mediates UTP-induced vascular cell adhesion molecule-1 expression in coronary artery endothelial cells. J Biol Chem 278:24960–24965

    Article  PubMed  CAS  Google Scholar 

  • Seye CI, Yu N, Gonzalez FA, Erb L, Weisman GA (2004) The P2Y2 nucleotide receptor mediates vascular cell adhesion molecule-1 expression through interaction with VEGF receptor-2 (KDR/Flk-1). J Biol Chem 279:35679–35686

    Article  PubMed  CAS  Google Scholar 

  • Sharon E, Zundorf G, Levesque SA, Beaudoin AR, Reiser G, Fischer B (2004) Fluorescent epsilon-ATP analogues for probing physicochemical properties of proteins. Synthesis, biochemical evaluation, and sensitivity to properties of the medium. Bioorg Med Chem 12:6119–6135

    Article  PubMed  CAS  Google Scholar 

  • Sharp CJ, Reeve AJ, Collins SD, Martindale JC, Summerfield SG, Sargent BS, Bate ST, Chessell IP (2006) Investigation into the role of P2X3/P2X2/3 receptors in neuropathic pain following chronic constriction injury in the rat: an electrophysiological study. Br J Pharmacol 148:845–852

    Article  PubMed  CAS  Google Scholar 

  • Shaver SR, Rideout JL, Pendergast W, Douglass JG, Brown EG, Boyer JL, Patel RI, Redick CC, Jones AC, Picher M, Yerxa BR (2005) Structure-activity relationships of dinucleotides: Potent and selective agonists of P2Y receptors. Purinergic Signal 1:183–191

    Article  PubMed  CAS  Google Scholar 

  • Shemon AN, Sluyter R, Fernando SL, Clarke AL, Dao-Ung LP, Skarratt KK, Saunders BM, Tan KS, Gu BJ, Fuller SJ, Britton WJ, Petrou S, Wiley JS (2006) A Thr357 to Ser polymorphism in homozygous and compound heterozygous subjects causes absent or reduced P2X7 function and impairs ATP-induced mycobacterial killing by macrophages. J Biol Chem 281:2079–2086

    Article  PubMed  CAS  Google Scholar 

  • Shen J, Seye CI, Wang M, Weisman GA, Wilden PA, Sturek M (2004) Cloning, up-regulation, and mitogenic role of porcine P2Y2 receptor in coronary artery smooth muscle cells. Mol Pharmacol 66:1265–1274

    Article  PubMed  CAS  Google Scholar 

  • Shen JB, Pappano AJ, Liang BT (2006) Extracellular ATP-stimulated current in wild-type and P2X4 receptor transgenic mouse ventricular myocytes: implications for a cardiac physiologic role of P2X4 receptors. FASEB J 20:277–284

    Article  PubMed  CAS  Google Scholar 

  • Shinozaki Y, Sumitomo K, Tsuda M, Koizumi S, Inoue K, Torimitsu K (2009) Direct observation of ATP-induced conformational changes in single P2X4 receptors. PLoS Biol 7:e103

    Article  CAS  Google Scholar 

  • Shrestha SS, Parmar M, Kennedy C, Bushell TJ (2010) Two-pore potassium ion channels are inhibited by both Gq/11- and Gi-coupled P2Y receptors. Mol Cell Neurosci 43:363–369

    Article  PubMed  CAS  Google Scholar 

  • Silinsky EM, Redman RS (1996) Synchronous release of ATP and neurotransmitter within milliseconds of a motor nerve impulse in the frog. J Physiol 492(Pt 3):815–822

    PubMed  CAS  Google Scholar 

  • Silverman WR, de Rivero Vaccari JP, Locovei S, Qiu F, Carlsson SK, Scemes E, Keane RW, Dahl G (2009) The pannexin 1 channel activates the inflammasome in neurons and astrocytes. J Biol Chem 284:18143–18151

    Article  PubMed  CAS  Google Scholar 

  • Sim JA, North RA (2010) Amitriptyline does not block the action of ATP at human P2X4 receptor. Br J Pharmacol 160:88–92

    Article  PubMed  CAS  Google Scholar 

  • Sim JA, Park CK, Oh SB, Evans RJ, North RA (2007) P2X1 and P2X4 receptor currents in mouse macrophages. Br J Pharmacol 152:1283–1290

    Article  PubMed  CAS  Google Scholar 

  • Sim JA, Broomhead HE, North RA (2008) Ectodomain lysines and suramin block of P2X1 receptors. J Biol Chem 283:29841–29846

    Article  PubMed  CAS  Google Scholar 

  • Simon J, Barnard EA (2003) The P2Y nucleotide receptors in the human genome. Acta Biol Hung 54:191–201

    Article  PubMed  CAS  Google Scholar 

  • Simon J, Kidd EJ, Smith FM, Chessell IP, Murrell-Lagnado R, Humphrey PP, Barnard EA (1997) Localization and functional expression of splice variants of the P2X2 receptor. Mol Pharmacol 52:237–248

    PubMed  CAS  Google Scholar 

  • Simon J, Vigne P, Eklund KM, Michel AD, Carruthers AM, Humphrey PP, Frelin C, Barnard EA (2001) Activity of adenosine diphosphates and triphosphates on a P2YT -type receptor in brain capillary endothelial cells. Br J Pharmacol 132:173–182

    Article  PubMed  CAS  Google Scholar 

  • Simon J, Filippov AK, Goransson S, Wong YH, Frelin C, Michel AD, Brown DA, Barnard EA (2002) Characterization and channel coupling of the P2Y12 nucleotide receptor of brain capillary endothelial cells. J Biol Chem 277:31390–31400

    Article  PubMed  CAS  Google Scholar 

  • Simonetti M, Giniatullin R, Fabbretti E (2008) Mechanisms mediating the enhanced gene transcription of P2X3 receptor by calcitonin gene-related peptide in trigeminal sensory neurons. J Biol Chem 283:18743–18752

    Article  PubMed  CAS  Google Scholar 

  • Sitkovsky MV, Lukashev D, Apasov S, Kojima H, Koshiba M, Caldwell C, Ohta A, Thiel M (2004) Physiological control of immune response and inflammatory tissue damage by hypoxia-inducible factors and adenosine A2A receptors. Annu Rev Immunol 22:657–682

    Article  PubMed  CAS  Google Scholar 

  • Skaper SD, Debetto P, Giusti P (2010) The P2X7 purinergic receptor: from physiology to neurological disorders. FASEB J 24:337–345

    Article  PubMed  CAS  Google Scholar 

  • Skelton L, Cooper M, Murphy M, Platt A (2003) Human immature monocyte-derived dendritic cells express the G protein-coupled receptor GPR105 (KIAA0001, P2Y14) and increase intracellular calcium in response to its agonist, uridine diphosphoglucose. J Immunol 171:1941–1949

    PubMed  CAS  Google Scholar 

  • Slater M, Murphy CR, Barden JA (2002) Purinergic receptor expression in the apical plasma membrane of rat uterine epithelial cells during implantation. Cell Calcium 31:201–207

    Article  PubMed  CAS  Google Scholar 

  • Sluyter R, Stokes L (2011) Significance of P2X7 receptor variants to human health and disease. Recent Pat DNA Gene Seq 5:41–54

    Article  PubMed  CAS  Google Scholar 

  • Smith FM, Humphrey PP, Murrell-Lagnado RD (1999) Identification of amino acids within the P2X2 receptor C-terminus that regulate desensitization. J Physiol 520(Pt 1):91–99

    Article  PubMed  CAS  Google Scholar 

  • Sokolova E, Skorinkin A, Moiseev I, Agrachev A, Nistri A, Giniatullin R (2006) Experimental and modeling studies of desensitization of P2X3 receptors. Mol Pharmacol 70:373–382

    PubMed  CAS  Google Scholar 

  • Soltoff SP (1998) Related adhesion focal tyrosine kinase and the epidermal growth factor receptor mediate the stimulation of mitogen-activated protein kinase by the G-protein-coupled P2Y2 receptor. Phorbol ester or [Ca2+]i elevation can substitute for receptor activation. J Biol Chem 273:23110–23117

    Article  PubMed  CAS  Google Scholar 

  • Soltoff SP, Avraham H, Avraham S, Cantley LC (1998) Activation of P2Y2 receptors by UTP and ATP stimulates mitogen-activated kinase activity through a pathway that involves related adhesion focal tyrosine kinase and protein kinase C. J Biol Chem 273:2653–2660

    Article  PubMed  CAS  Google Scholar 

  • Somers GR, Hammet FM, Trute L, Southey MC, Venter DJ (1998) Expression of the P2Y6 purinergic receptor in human T cells infiltrating inflammatory bowel disease. Lab Invest 78:1375–1383

    PubMed  CAS  Google Scholar 

  • Somers GR, Bradbury R, Trute L, Conigrave A, Venter DJ (1999) Expression of the human P2Y6 nucleotide receptor in normal placenta and gestational trophoblastic disease. Lab Invest 79:131–139

    PubMed  CAS  Google Scholar 

  • Soto F, Garcia-Guzman M, Gomez-Hernandez JM, Hollmann M, Karschin C, Stuhmer W (1996a) P2X4: an ATP-activated ionotropic receptor cloned from rat brain. Proc Natl Acad Sci U S A 93:3684–3688

    Article  PubMed  CAS  Google Scholar 

  • Soto F, Garcia-Guzman M, Karschin C, Stuhmer W (1996b) Cloning and tissue distribution of a novel P2X receptor from rat brain. Biochem Biophys Res Commun 223:456–460

    Article  PubMed  CAS  Google Scholar 

  • Soto F, Lambrecht G, Nickel P, Stuhmer W, Busch AE (1999) Antagonistic properties of the suramin analogue NF023 at heterologously expressed P2X receptors. Neuropharmacology 38:141–149

    Article  PubMed  CAS  Google Scholar 

  • Soto F, Krause U, Borchardt K, Ruppelt A (2003) Cloning, tissue distribution and functional characterization of the chicken P2X1 receptor. FEBS Lett 533:54–58

    Article  PubMed  CAS  Google Scholar 

  • Soulet C, Sauzeau V, Plantavid M, Herbert JM, Pacaud P, Payrastre B, Savi P (2004) Gi-dependent and -independent mechanisms downstream of the P2Y12 ADP-receptor. J Thromb Haemost 2:135–146

    Article  PubMed  CAS  Google Scholar 

  • Spelta V, Jiang LH, Surprenant A, North RA (2002) Kinetics of antagonist actions at rat P2X2/3 heteromeric receptors. Br J Pharmacol 135:1524–1530

    Article  PubMed  CAS  Google Scholar 

  • Springthorpe B (2003) From ATP to AZD6140: design of an orally active P2Y12 (P2T) receptor antagonist for the treatment of thrombosis. Abstracts of Papers, 225th ACS National Meeting, New Orleans, March 23–27, Abstract MEDI 16

    Google Scholar 

  • Stam NJ, Klomp J, Van de Heuvel N, Olijve W (1996) Molecular cloning and characterization of a novel orphan receptor (P2P) expressed in human pancreas that shows high structural homology to the P2U purinoceptor. FEBS Lett 384:260–264

    Article  PubMed  CAS  Google Scholar 

  • Stanchev D, Flehmig G, Gerevich Z, Norenberg W, Dihazi H, Furst S, Eschrich K, Illes P, Wirkner K (2006) Decrease of current responses at human recombinant P2X3 receptors after substitution by Asp of Ser/Thr residues in protein kinase C phosphorylation sites of their ecto-domains. Neurosci Lett 393:78–83

    Article  PubMed  CAS  Google Scholar 

  • Stehle JH, Rivkees SA, Lee JJ, Weaver DR, Deeds JD, Reppert SM (1992) Molecular cloning and expression of the cDNA for a novel A2-adenosine receptor subtype. Mol Endocrinol 6:384–393

    Article  PubMed  CAS  Google Scholar 

  • Stokes L, Jiang LH, Alcaraz L, Bent J, Bowers K, Fagura M, Furber M, Mortimore M, Lawson M, Theaker J, Laurent C, Braddock M, Surprenant A (2006) Characterization of a selective and potent antagonist of human P2X7 receptors, AZ11645373. Br J Pharmacol 149:880–887

    Article  PubMed  CAS  Google Scholar 

  • Stokes L, Fuller SJ, Sluyter R, Skarratt KK, Gu BJ, Wiley JS (2010) Two haplotypes of the P2X7 receptor containing the Ala-348 to Thr polymorphism exhibit a gain-of-function effect and enhanced interleukin-1β secretion. FASEB J 24:2916–2927

    Article  PubMed  CAS  Google Scholar 

  • Stoop R, Surprenant A, North RA (1997) Different sensitivities to pH of ATP-induced currents at four cloned P2X receptors. J Neurophysiol 78:1837–1840

    PubMed  CAS  Google Scholar 

  • Strohmeier GR, Reppert SM, Lencer WI, Madara JL (1995) The A2b adenosine receptor mediates cAMP responses to adenosine receptor agonists in human intestinal epithelia. J Biol Chem 270:2387–2394

    Article  PubMed  CAS  Google Scholar 

  • Suarez-Huerta N, Pouillon V, Boeynaems J, Robaye B (2001) Molecular cloning and characterization of the mouse P2Y4 nucleotide receptor. Eur J Pharmacol 416:197–202

    Article  PubMed  CAS  Google Scholar 

  • Sugidachi A, Asai F, Yoneda K, Iwamura R, Ogawa T, Otsuguro K, Koike H (2001) Antiplatelet action of R-99224, an active metabolite of a novel thienopyridine-type Gi-linked P2T antagonist, CS-747. Br J Pharmacol 132:47–54

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama T, Oku H, Shibata M, Fukuhara M, Yoshida H, Ikeda T (2010) Involvement of P2X7 receptors in the hypoxia-induced death of rat retinal neurons. Invest Ophthalmol Vis Sci 51:3236–3243

    Article  PubMed  Google Scholar 

  • Suh BC, Kim TD, Lee IS, Kim KT (2000) Differential regulation of P2Y11 receptor-mediated signalling to phospholipase C and adenylyl cyclase by protein kinase C in HL-60 promyelocytes. Br J Pharmacol 131:489–497

    Article  PubMed  CAS  Google Scholar 

  • Surprenant A, North RA (2009) Signaling at purinergic P2X receptors. Annu Rev Physiol 71:333–359

    Article  PubMed  CAS  Google Scholar 

  • Surprenant A, Buell G, North RA (1995) P2X receptors bring new structure to ligand-gated ion channels. Trends Neurosci 18:224–229

    Article  PubMed  CAS  Google Scholar 

  • Surprenant A, Rassendren F, Kawashima E, North RA, Buell G (1996) The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7). Science 272:735–738

    Article  PubMed  CAS  Google Scholar 

  • Surprenant A, Schneider DA, Wilson HL, Galligan JJ, North RA (2000) Functional properties of heteromeric P2X1/5 receptors expressed in HEK cells and excitatory junction potentials in guinea-pig submucosal arterioles. J Auton Nerv Syst 81:249–263

    Article  PubMed  CAS  Google Scholar 

  • Suzuki H (1985) Electrical responses of smooth muscle cells of the rabbit ear artery to adenosine triphosphate. J Physiol 359:401–415

    PubMed  CAS  Google Scholar 

  • Suzuki T, Namba K, Tsuga H, Nakata H (2006) Regulation of pharmacology by hetero-oligomerization between A1 adenosine receptor and P2Y2 receptor. Biochem Biophys Res Commun 351:559–565

    Article  PubMed  CAS  Google Scholar 

  • Suzuki T, Namba K, Yamagishi R, Kaneko H, Haga T, Nakata H (2009) A highly conserved tryptophan residue in the fourth transmembrane domain of the A adenosine receptor is essential for ligand binding but not receptor homodimerization. J Neurochem 110:1352–1362

    Article  PubMed  CAS  Google Scholar 

  • Syed H, Kennedy C (2012) Pharmacology of P2X Receptors. WIRES MTS 1:16–30

    CAS  Google Scholar 

  • Tabata K, Baba K, Shiraishi A, Ito M, Fujita N (2007) The orphan GPCR GPR87 was deorphanized and shown to be a lysophosphatidic acid receptor. Biochem Biophys Res Commun 363:861–866

    Article  PubMed  CAS  Google Scholar 

  • Takasaki J, Kamohara M, Saito T, Matsumoto M, Matsumoto S, Ohishi T, Soga T, Matsushime H, Furuichi K (2001) Molecular cloning of the platelet P2T(AC) ADP receptor: pharmacological comparison with another ADP receptor, the P2Y1 receptor. Mol Pharmacol 60:432–439

    PubMed  CAS  Google Scholar 

  • Tan Y, Sun L, Zhang Q (2011) Noradrenaline enhances ATP P2X3 receptor expression in dorsal root ganglion neurons of rats. Neuroscience 176:32–38

    Article  PubMed  CAS  Google Scholar 

  • Taniguchi M, Nagai K, Arao N, Kawasaki T, Saito T, Moritani Y, Takasaki J, Hayashi K, Fujita S, Suzuki K, Tsukamoto S (2003) YM-254890, a novel platelet aggregation inhibitor produced by Chromobacterium sp. QS3666. J Antibiot (Tokyo) 56:358–363

    Article  CAS  Google Scholar 

  • Tarditi A, Camurri A, Varani K, Borea PA, Woodman B, Bates G, Cattaneo E, Abbracchio MP (2006) Early and transient alteration of adenosine A2A receptor signaling in a mouse model of Huntington disease. Neurobiol Dis 23:44–53

    Article  PubMed  CAS  Google Scholar 

  • Teixeira M, Butlen D, Ferrary E, Sterkers O, Escoubet B (2000) Identification of uridine 5′-triphosphate receptor mRNA in rat cochlear tissues. Acta Otolaryngol 120:156–159

    Article  PubMed  CAS  Google Scholar 

  • Terrillon S, Bouvier M (2004) Roles of G-protein-coupled receptor dimerization. EMBO Rep 5:30–34

    Article  PubMed  CAS  Google Scholar 

  • Tittle RK, Hume RI (2008) Opposite effects of zinc on human and rat P2X2 receptors. J Neurosci 28:11131–11140

    Article  PubMed  CAS  Google Scholar 

  • Tokuyama Y, Hara M, Jones EM, Fan Z, Bell GI (1995) Cloning of rat and mouse P2Y purinoceptors. Biochem Biophys Res Commun 211:211–218

    Article  PubMed  CAS  Google Scholar 

  • Tominaga M, Wada M, Masu M (2001) Potentiation of capsaicin receptor activity by metabotropic ATP receptors as a possible mechanism for ATP-evoked pain and hyperalgesia. Proc Natl Acad Sci U S A 98:6951–6956

    Article  PubMed  CAS  Google Scholar 

  • Tonazzini I, Trincavelli ML, Storm-Mathisen J, Martini C, Bergersen LH (2007) Co-localization and functional cross-talk between A1 and P2Y1 purine receptors in rat hippocampus. Eur J Neurosci 26:890–902

    Article  PubMed  CAS  Google Scholar 

  • Tonazzini I, Trincavelli ML, Montali M, Martini C (2008) Regulation of A1 adenosine receptor functioning induced by P2Y1 purinergic receptor activation in human astroglial cells. J Neurosci Res 86:2857–2866

    Article  PubMed  CAS  Google Scholar 

  • Torres GE, Egan TM, Voigt MM (1998a) Topological analysis of the ATP-gated ionotropic [correction of ionotrophic] P2X2 receptor subunit. FEBS Lett 425:19–23

    Article  PubMed  CAS  Google Scholar 

  • Torres GE, Haines WR, Egan TM, Voigt MM (1998b) Co-expression of P2X1 and P2X5 receptor subunits reveals a novel ATP-gated ion channel. Mol Pharmacol 54:989–993

    PubMed  CAS  Google Scholar 

  • Torres GE, Egan TM, Voigt MM (1999) Hetero-oligomeric assembly of P2X receptor subunits. Specificities exist with regard to possible partners. J Biol Chem 274:6653–6659

    Article  PubMed  CAS  Google Scholar 

  • Torvinen M, Gines S, Hillion J, Latini S, Canals M, Ciruela F, Bordoni F, Staines W, Pedata F, Agnati LF, Lluis C, Franco R, Ferre S, Fuxe K (2002) Interactions among adenosine deaminase, adenosine A1 receptors and dopamine D1 receptors in stably cotransfected fibroblast cells and neurons. Neuroscience 113:709–719

    Article  PubMed  CAS  Google Scholar 

  • Torvinen M, Marcellino D, Canals M, Agnati LF, Lluis C, Franco R, Fuxe K (2005) Adenosine A2A receptor and dopamine D3 receptor interactions: evidence of functional A2A/D3 heteromeric complexes. Mol Pharmacol 67:400–407

    Article  PubMed  CAS  Google Scholar 

  • Tosh DK, Yoo LS, Chinn M, Hong K, Kilbey SM, 2nd, Barrett MO, Fricks IP, Harden TK, Gao ZG, Jacobson KA (2010) Polyamidoamine (PAMAM) dendrimer conjugates of “clickable” agonists of the A3 adenosine receptor and coactivation of the P2Y14 receptor by a tethered nucleotide. Bioconjug Chem 21:372–384

    Google Scholar 

  • Townsend-Nicholson A, Shine J (1992) Molecular cloning and characterisation of a human brain A1 adenosine receptor cDNA. Brain Res Mol Brain Res 16:365–370

    Article  PubMed  CAS  Google Scholar 

  • Townsend-Nicholson A, King BF, Wildman SS, Burnstock G (1999) Molecular cloning, functional characterization and possible cooperativity between the murine P2X4 and P2X4a receptors. Brain Res Mol Brain Res 64:246–254

    Article  PubMed  CAS  Google Scholar 

  • Trezise DJ, Michel AD, Grahames CB, Khakh BS, Surprenant A, Humphrey PP (1995) The selective P2X purinoceptor agonist, β, γ-methylene-L-adenosine 5′-triphosphate, discriminates between smooth muscle and neuronal P2X purinoceptors. Naunyn Schmiedebergs Arch Pharmacol 351:603–609

    Article  PubMed  CAS  Google Scholar 

  • Trincavelli ML, Daniele S, Martini C (2010) Adenosine receptors: what we know and what we are learning. Curr Top Med Chem 10:860–877

    Article  PubMed  CAS  Google Scholar 

  • Tsim KW, Choi RC, Siow NL, Cheng AW, Ling KK, Jiang JX, Tung EK, Lee HH, Xie QH, Simon J, Barnard EA (2003) ATP induces post-synaptic gene expressions in vertebrate skeletal neuromuscular junctions. J Neurocytol 32:603–617

    Article  PubMed  CAS  Google Scholar 

  • Tsukimoto M, Maehata M, Harada H, Ikari A, Takagi K, Degawa M (2006) P2X7 receptor-dependent cell death is modulated during murine T cell maturation and mediated by dual signaling pathways. J Immunol 177:2842–2850

    PubMed  CAS  Google Scholar 

  • Tu MT, Luo SF, Wang CC, Chien CS, Chiu CT, Lin CC, Yang CM (2000) P2Y2 receptor-mediated proliferation of C(6) glioma cells via activation of Ras/Raf/MEK/MAPK pathway. Br J Pharmacol 129:1481–1489

    Article  PubMed  CAS  Google Scholar 

  • Tucker AL, Jia LG, Holeton D, Taylor AJ, Linden J (2000) Dominance of Gs in doubly Gs/Gi-coupled chimaeric A1/A2A adenosine receptors in HEK-293 cells. Biochem J 352(Pt 1):203–210

    Article  PubMed  CAS  Google Scholar 

  • Tulapurkar ME, Zundorf G, Reiser G (2006) Internalization and desensitization of a green fluorescent protein-tagged P2Y nucleotide receptor are differently controlled by inhibition of calmodulin-dependent protein kinase II. J Neurochem 96:624–634

    Article  PubMed  CAS  Google Scholar 

  • Tung EK, Choi RC, Siow NL, Jiang JX, Ling KK, Simon J, Barnard EA, Tsim KW (2004) P2Y2 receptor activation regulates the expression of acetylcholinesterase and acetylcholine receptor genes at vertebrate neuromuscular junctions. Mol Pharmacol 66:794–806

    Article  PubMed  CAS  Google Scholar 

  • Turner JT, Weisman GA, Camden JM (1997) Upregulation of P2Y2 nucleotide receptors in rat salivary gland cells during short-term culture. Am J Physiol 273:C1100–C1107

    PubMed  CAS  Google Scholar 

  • Turner JT, Park M, Camden JM, Weisman GA (1998) Salivary gland nucleotide receptors. Changes in expression and activity related to development and tissue damage. Ann N Y Acad Sci 842:70–75

    Article  PubMed  CAS  Google Scholar 

  • Turner CM, Vonend O, Chan C, Burnstock G, Unwin RJ (2003) The pattern of distribution of selected ATP-sensitive P2 receptor subtypes in normal rat kidney: an immunohistological study. Cells Tissues Organs 175:105–117

    Article  PubMed  CAS  Google Scholar 

  • Ugarte GD, Opazo T, Leisewitz F, van Zundert B, Montecino M (2012) Runx1 and C/EBPβ transcription factors directly up-regulate P2X3 gene transcription. J Cell Physiol 227:1645–1652

    Google Scholar 

  • Ullmann H, Meis S, Hongwiset D, Marzian C, Wiese M, Nickel P, Communi D, Boeynaems JM, Wolf C, Hausmann R, Schmalzing G, Kassack MU (2005) Synthesis and structure-activity relationships of suramin-derived P2Y11 receptor antagonists with nanomolar potency. J Med Chem 48:7040–7048

    Article  PubMed  CAS  Google Scholar 

  • Ulmann L, Hirbec H, Rassendren F (2010) P2X4 receptors mediate PGE2 release by tissue-resident macrophages and initiate inflammatory pain. EMBO J 29:2290–2300

    Article  PubMed  CAS  Google Scholar 

  • Unterberger U, Moskvina E, Scholze T, Freissmuth M, Boehm S (2002) Inhibition of adenylyl cyclase by neuronal P2Y receptors. Br J Pharmacol 135:673–684

    Article  PubMed  CAS  Google Scholar 

  • Urbanek E, Nickel P, Schlicker E (1990) Antagonistic properties of four suramin-related compounds at vascular purine P2X receptors in the pithed rat. Eur J Pharmacol 175:207–210

    Article  PubMed  CAS  Google Scholar 

  • Vacca F, D’Ambrosi N, Nestola V, Amadio S, Giustizieri M, Cucchiaroni ML, Tozzi A, Velluz MC, Mercuri NB, Volonte C (2011) N-Glycans mutations rule oligomeric assembly and functional expression of P2X3 receptor for extracellular ATP. Glycobiology 21:634–643

    Article  PubMed  CAS  Google Scholar 

  • Valera S, Hussy N, Evans RJ, Adami N, North RA, Surprenant A, Buell G (1994) A new class of ligand-gated ion channel defined by P2x receptor for extracellular ATP. Nature 371:516–519

    Article  PubMed  CAS  Google Scholar 

  • van Der Weyden L, Adams DJ, Morris BJ (2000a) Capacity for purinergic control of renin promoter via P2Y11 receptor and cAMP pathways. Hypertension 36:1093–1098

    Article  Google Scholar 

  • van der Weyden L, Rakyan V, Luttrell BM, Morris MB, Conigrave AD (2000b) Extracellular ATP couples to cAMP generation and granulocytic differentiation in human NB4 promyelocytic leukaemia cells. Immunol Cell Biol 78:467–473

    Article  PubMed  Google Scholar 

  • van Giezen JJ, Humphries RG (2005) Preclinical and clinical studies with selective reversible direct P2Y12 antagonists. Semin Thromb Hemost 31:195–204

    Article  PubMed  Google Scholar 

  • Van Kolen K, Slegers H (2004) P2Y12 receptor stimulation inhibits β-adrenergic receptor-induced differentiation by reversing the cyclic AMP-dependent inhibition of protein kinase B. J Neurochem 89:442–453

    Article  PubMed  CAS  Google Scholar 

  • Van Kolen K, Slegers H (2006) Integration of P2Y receptor-activated signal transduction pathways in G protein-dependent signalling networks. Purinergic Signal 2:451–469

    Article  PubMed  CAS  Google Scholar 

  • Vassilatis DK, Hohmann JG, Zeng H, Li F, Ranchalis JE, Mortrud MT, Brown A, Rodriguez SS, Weller JR, Wright AC, Bergmann JE, Gaitanaris GA (2003) The G protein-coupled receptor repertoires of human and mouse. Proc Natl Acad Sci U S A 100:4903–4908

    Article  PubMed  CAS  Google Scholar 

  • Vassort G (2001) Adenosine 5’-triphosphate: a P2-purinergic agonist in the myocardium. Physiol Rev. 81:767–806

    PubMed  CAS  Google Scholar 

  • Velazquez B, Garrad RC, Weisman GA, Gonzalez FA (2000) Differential agonist-induced desensitization of P2Y2 nucleotide receptors by ATP and UTP. Mol Cell Biochem 206:75–89

    Article  PubMed  CAS  Google Scholar 

  • Verkhratsky A, Krishtal OA, Burnstock G (2009) Purinoceptors on neuroglia. Mol Neurobiol 39:190–208

    Article  PubMed  CAS  Google Scholar 

  • Vial C, Evans RJ (2002) P2X1 receptor-deficient mice establish the native P2X receptor and a P2Y6-like receptor in arteries. Mol Pharmacol 62:1438–1445

    Article  PubMed  CAS  Google Scholar 

  • Vial C, Evans RJ (2005) Disruption of lipid rafts inhibits P2X1 receptor-mediated currents and arterial vasoconstriction. J Biol Chem 280:30705–30711

    Article  PubMed  CAS  Google Scholar 

  • Vial C, Rolf MG, Mahaut-Smith MP, Evans RJ (2002) A study of P2X1 receptor function in murine megakaryocytes and human platelets reveals synergy with P2Y receptors. Br J Pharmacol 135:363–372

    Article  PubMed  CAS  Google Scholar 

  • Vial C, Tobin AB, Evans RJ (2004) G-protein-coupled receptor regulation of P2X1 receptors does not involve direct channel phosphorylation. Biochem J 382:101–110

    Article  PubMed  CAS  Google Scholar 

  • Vial C, Rigby R, Evans RJ (2006) Contribution of P2X1 receptor intracellular basic residues to channel properties. Biochem Biophys Res Commun 350:244–248

    Article  PubMed  CAS  Google Scholar 

  • Vidi PA, Chemel BR, Hu CD, Watts VJ (2008a) Ligand-dependent oligomerization of dopamine D2 and adenosine A2A receptors in living neuronal cells. Mol Pharmacol 74:544–551

    Article  PubMed  CAS  Google Scholar 

  • Vidi PA, Chen J, Irudayaraj JM, Watts VJ (2008b) Adenosine A2A receptors assemble into higher-order oligomers at the plasma membrane. FEBS Lett 582:3985–3990

    Article  PubMed  CAS  Google Scholar 

  • Virginio C, Church D, North RA, Surprenant A (1997) Effects of divalent cations, protons and calmidazolium at the rat P2X7 receptor. Neuropharmacology 36:1285–1294

    Article  PubMed  CAS  Google Scholar 

  • Virginio C, North RA, Surprenant A (1998a) Calcium permeability and block at homomeric and heteromeric P2X2 and P2X3 receptors, and P2X receptors in rat nodose neurones. J Physiol 510(Pt 1):27–35

    Article  PubMed  CAS  Google Scholar 

  • Virginio C, Robertson G, Surprenant A, North RA (1998b) Trinitrophenyl-substituted nucleotides are potent antagonists selective for P2X1, P2X3, and heteromeric P2X2/3 receptors. Mol Pharmacol 53:969–973

    PubMed  CAS  Google Scholar 

  • Virginio C, MacKenzie A, North RA, Surprenant A (1999a) Kinetics of cell lysis, dye uptake and permeability changes in cells expressing the rat P2X7 receptor. J Physiol 519(Pt 2):335–346

    Article  PubMed  CAS  Google Scholar 

  • Virginio C, MacKenzie A, Rassendren FA, North RA, Surprenant A (1999b) Pore dilation of neuronal P2X receptor channels. Nat Neurosci 2:315–321

    Article  PubMed  CAS  Google Scholar 

  • Volonte C, D’Ambrosi N, Amadio S (2008) Protein cooperation: from neurons to networks. Prog Neurobiol 86:61–71

    Article  PubMed  CAS  Google Scholar 

  • Volpini R, Mishra RC, Kachare DD, Dal Ben D, Lambertucci C, Antonini I, Vittori S, Marucci G, Sokolova E, Nistri A, Cristalli G (2009) Adenine-based acyclic nucleotides as novel P2X3 receptor ligands. J Med Chem. 52:4596–4603

    Google Scholar 

  • von Kugelgen I, Krumme B, Schaible U, Schollmeyer PJ, Rump LC (1995) Vasoconstrictor responses to the P2x-purinoceptor agonist beta, gamma-methylene-L-ATP in human cutaneous and renal blood vessels. Br J Pharmacol 116:1932–1936

    Article  Google Scholar 

  • Vulchanova L, Arvidsson U, Riedl M, Wang J, Buell G, Surprenant A, North RA, Elde R (1996) Differential distribution of two ATP-gated channels (P2X receptors) determined by immunocytochemistry. Proc Natl Acad Sci U S A 93:8063–8067

    Article  PubMed  CAS  Google Scholar 

  • Waldo GL, Harden TK (2004) Agonist binding and Gq-stimulating activities of the purified human P2Y1 receptor. Mol Pharmacol 65:426–436

    Article  PubMed  CAS  Google Scholar 

  • Waldo GL, Corbitt J, Boyer JL, Ravi G, Kim HS, Ji XD, Lacy J, Jacobson KA, Harden TK (2002) Quantitation of the P2Y1 receptor with a high affinity radiolabeled antagonist. Mol Pharmacol 62:1249–1257

    Article  PubMed  CAS  Google Scholar 

  • Walker JE, Saraste M, Runswick MJ, Gay NJ (1982) Distantly related sequences in the α- and β-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1:945–951

    PubMed  CAS  Google Scholar 

  • Wang CZ, Namba N, Gonoi T, Inagaki N, Seino S (1996) Cloning and pharmacological characterization of a fourth P2X receptor subtype widely expressed in brain and peripheral tissues including various endocrine tissues. Biochem Biophys Res Commun 220:196–202

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Karlsson L, Moses S, Hultgardh-Nilsson A, Andersson M, Borna C, Gudbjartsson T, Jern S, Erlinge D (2002) P2 receptor expression profiles in human vascular smooth muscle and endothelial cells. J Cardiovasc Pharmacol 40:841–853

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Jacobsen SE, Bengtsson A, Erlinge D (2004) P2 receptor mRNA expression profiles in human lymphocytes, monocytes and CD34 + stem and progenitor cells. BMC Immunol 5:16

    Article  PubMed  CAS  Google Scholar 

  • Wang C, Gu Y, Li GW, Huang LY (2007a) A critical role of the cAMP sensor Epac in switching protein kinase signalling in prostaglandin E2-induced potentiation of P2X3 receptor currents in inflamed rats. J Physiol 584:191–203

    Article  PubMed  CAS  Google Scholar 

  • Wang C, Li GW, Huang LY (2007b) Prostaglandin E2 potentiation of P2X3 receptor mediated currents in dorsal root ganglion neurons. Mol Pain 3:22

    Article  PubMed  CAS  Google Scholar 

  • Wareham K, Vial C, Wykes RC, Bradding P, Seward EP (2009) Functional evidence for the expression of P2X1, P2X4 and P2X7 receptors in human lung mast cells. Br J Pharmacol 157:1215–1224

    Article  PubMed  CAS  Google Scholar 

  • Warny M, Aboudola S, Robson SC, Sevigny J, Communi D, Soltoff SP, Kelly CP (2001) P2Y6 nucleotide receptor mediates monocyte interleukin-8 production in response to UDP or lipopolysaccharide. J Biol Chem 276:26051–26056

    Article  PubMed  CAS  Google Scholar 

  • Webb TE, Simon J, Krishek BJ, Bateson AN, Smart TG, King BF, Burnstock G, Barnard EA (1993) Cloning and functional expression of a brain G-protein-coupled ATP receptor. FEBS Lett 324:219–225

    Article  PubMed  CAS  Google Scholar 

  • Webb TE, Henderson D, King BF, Wang S, Simon J, Bateson AN, Burnstock G, Barnard EA (1996a) A novel G protein-coupled P2 purinoceptor (P2Y3) activated preferentially by nucleoside diphosphates. Mol Pharmacol 50:258–265

    PubMed  CAS  Google Scholar 

  • Webb TE, Kaplan MG, Barnard EA (1996b) Identification of 6H1 as a P2Y purinoceptor: P2Y5. Biochem Biophys Res Commun 219:105–110

    Article  PubMed  CAS  Google Scholar 

  • Webb TE, Henderson DJ, Roberts JA, Barnard EA (1998a) Molecular cloning and characterization of the rat P2Y4 receptor. J Neurochem 71:1348–1357

    Article  PubMed  CAS  Google Scholar 

  • Webb TE, Simon J, Barnard EA (1998b) Regional distribution of [35S]2’-deoxy 5’-O-(1-thio) ATP binding sites and the P2Y1 messenger RNA within the chick brain. Neuroscience 84:825–837

    Article  PubMed  CAS  Google Scholar 

  • Weick M, Cherkas PS, Hartig W, Pannicke T, Uckermann O, Bringmann A, Tal M, Reichenbach A, Hanani M (2003) P2 receptors in satellite glial cells in trigeminal ganglia of mice. Neuroscience 120:969–977

    Article  PubMed  CAS  Google Scholar 

  • Weinhold K, Krause-Buchholz U, Rodel G, Kasper M, Barth K (2010) Interaction and interrelation of P2X7 and P2X4 receptor complexes in mouse lung epithelial cells. Cell Mol Life Sci 67:2631–2642

    Article  PubMed  CAS  Google Scholar 

  • Weisman GA, Garrad RC, Erb LJ, Otero M, Gonzalez FA, Clarke LL (1998) Structure and function of P2Y2 nucleotide receptors in cystic fibrosis (CF) epithelium. Adv Exp Med Biol 431:417–424

    Article  PubMed  CAS  Google Scholar 

  • Weisman GA, Garrad RC, Erb LJ, Santos-Berrios C, Gonzalez FA (1999) P2Y receptors in the nervous system: molecular studies of a P2Y2 receptor subtype from NG108-15 neuroblastoma x glioma hybrid cells. Prog Brain Res 120:33–43

    Article  PubMed  CAS  Google Scholar 

  • Welch BD, Carlson NG, Shi H, Myatt L, Kishore BK (2003) P2Y2 receptor-stimulated release of prostaglandin E2 by rat inner medullary collecting duct preparations. Am J Physiol Renal Physiol 285:F711–F721

    PubMed  CAS  Google Scholar 

  • Wen H, Evans RJ (2009) Regions of the amino terminus of the P2X receptor required for modification by phorbol ester and mGluR1alpha receptors. J Neurochem 108:331–340

    Article  PubMed  CAS  Google Scholar 

  • Wen H, Evans RJ (2010) Contribution of the intracellular C terminal domain to regulation of human P2X1 receptors for ATP by phorbol ester and Gq coupled mGlu receptors. Eur J Pharmacol 654:155–159

    Article  PubMed  CAS  Google Scholar 

  • Werner P, Seward EP, Buell GN, North RA (1996) Domains of P2X receptors involved in desensitization. Proc Natl Acad Sci U S A 93:15485–15490

    Article  PubMed  CAS  Google Scholar 

  • Werry TD, Christie MI, Dainty IA, Wilkinson GF, Willars GB (2002) Ca2+ signalling by recombinant human CXCR2 chemokine receptors is potentiated by P2Y nucleotide receptors in HEK cells. Br J Pharmacol 135:1199–1208

    Article  PubMed  CAS  Google Scholar 

  • Werry TD, Wilkinson GF, Willars GB (2003) Cross talk between P2Y2 nucleotide receptors and CXC chemokine receptor 2 resulting in enhanced Ca2+ signaling involves enhancement of phospholipase C activity and is enabled by incremental Ca2+ release in human embryonic kidney cells. J Pharmacol Exp Ther 307:661–669

    Article  PubMed  CAS  Google Scholar 

  • Weyler S, Baqi Y, Hillmann P, Kaulich M, Hunder AM, Muller IA, Muller CE (2008) Combinatorial synthesis of anilinoanthraquinone derivatives and evaluation as non-nucleotide-derived P2Y2 receptor antagonists. Bioorg Med Chem Lett 18:223–227

    Article  PubMed  CAS  Google Scholar 

  • White PJ, Kumari R, Porter KE, London NJ, Ng LL, Boarder MR (2000) Antiproliferative effect of UTP on human arterial and venous smooth muscle cells. Am J Physiol Heart Circ Physiol 279:H2735–H2742

    PubMed  CAS  Google Scholar 

  • White PJ, Webb TE, Boarder MR (2003) Characterization of a Ca2+ response to both UTP and ATP at human P2Y11 receptors: evidence for agonist-specific signaling. Mol Pharmacol 63:1356–1363

    Article  PubMed  CAS  Google Scholar 

  • White JF, Grodnitzky J, Louis JM, Trinh LB, Shiloach J, Gutierrez J, Northup JK, Grisshammer R (2007) Dimerization of the class A G protein-coupled neurotensin receptor NTS1 alters G protein interaction. Proc Natl Acad Sci U S A 104:12199–12204

    Article  PubMed  CAS  Google Scholar 

  • Whorton MR, Bokoch MP, Rasmussen SG, Huang B, Zare RN, Kobilka B, Sunahara RK (2007) A monomeric G protein-coupled receptor isolated in a high-density lipoprotein particle efficiently activates its G protein. Proc Natl Acad Sci U S A 104:7682–7687

    Article  PubMed  CAS  Google Scholar 

  • Wihlborg AK, Wang L, Braun OO, Eyjolfsson A, Gustafsson R, Gudbjartsson T, Erlinge D (2004) ADP receptor P2Y12 is expressed in vascular smooth muscle cells and stimulates contraction in human blood vessels. Arterioscler Thromb Vasc Biol 24:1810–1815

    Article  PubMed  CAS  Google Scholar 

  • Wilden PA, Agazie YM, Kaufman R, Halenda SP (1998) ATP-stimulated smooth muscle cell proliferation requires independent ERK and PI3 K signaling pathways. Am J Physiol 275:H1209–H1215

    PubMed  CAS  Google Scholar 

  • Wildman SS, King BF, Burnstock G (1998) Zn2+ modulation of ATP-responses at recombinant P2X2 receptors and its dependence on extracellular pH. Br J Pharmacol 123:1214–1220

    Article  PubMed  CAS  Google Scholar 

  • Wildman SS, Brown SG, King BF, Burnstock G (1999a) Selectivity of diadenosine polyphosphates for rat P2X receptor subunits. Eur J Pharmacol 367:119–123

    Article  PubMed  CAS  Google Scholar 

  • Wildman SS, King BF, Burnstock G (1999b) Modulation of ATP-responses at recombinant rP2X4 receptors by extracellular pH and zinc. Br J Pharmacol 126:762–768

    Article  PubMed  CAS  Google Scholar 

  • Wildman SS, Brown SG, Rahman M, Noel CA, Churchill L, Burnstock G, Unwin RJ, King BF (2002) Sensitization by extracellular Ca2+ of rat P2X5 receptor and its pharmacological properties compared with rat P2X1. Mol Pharmacol 62:957–966

    Article  PubMed  CAS  Google Scholar 

  • Wildman SS, Unwin RJ, King BF (2003) Extended pharmacological profiles of rat P2Y2 and rat P2Y4 receptors and their sensitivity to extracellular H+ and Zn2+ ions. Br J Pharmacol 140:1177–1186

    Article  PubMed  CAS  Google Scholar 

  • Wiley JS, Dao-Ung LP, Li C, Shemon AN, Gu BJ, Smart ML, Fuller SJ, Barden JA, Petrou S, Sluyter R (2003) An Ile-568 to Asn polymorphism prevents normal trafficking and function of the human P2X7 receptor. J Biol Chem 278:17108–17113

    Article  PubMed  CAS  Google Scholar 

  • Wilkin F, Duhant X, Bruyns C, Suarez-Huerta N, Boeynaems JM, Robaye B (2001) The P2Y11 receptor mediates the ATP-induced maturation of human monocyte-derived dendritic cells. J Immunol 166:7172–7177

    PubMed  CAS  Google Scholar 

  • Wilkin F, Stordeur P, Goldman M, Boeynaems JM, Robaye B (2002) Extracellular adenine nucleotides modulate cytokine production by human monocyte-derived dendritic cells: dual effect on IL-12 and stimulation of IL-10. Eur J Immunol 32:2409–2417

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson WJ, Kemp PJ (2011) The carbon monoxide donor, CORM-2, is an antagonist of ATP-gated, human P2X4 receptors. Purinergic Signal 7:57–64

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson GF, Purkiss JR, Boarder MR (1994) Differential heterologous and homologous desensitization of two receptors for ATP (P2y purinoceptors and nucleotide receptors) coexisting on endothelial cells. Mol Pharmacol 45:731–736

    PubMed  CAS  Google Scholar 

  • Wilkinson WJ, Jiang LH, Surprenant A, North RA (2006) Role of ectodomain lysines in the subunits of the heteromeric P2X2/3 receptor. Mol Pharmacol 70:1159–1163

    Article  PubMed  CAS  Google Scholar 

  • Wilson HL, Wilson SA, Surprenant A, North RA (2002) Epithelial membrane proteins induce membrane blebbing and interact with the P2X7 receptor C terminus. J Biol Chem 277:34017–34023

    Article  PubMed  CAS  Google Scholar 

  • Wirkner K, Koles L, Thummler S, Luthardt J, Poelchen W, Franke H, Furst S, Illes P (2002) Interaction between P2Y and NMDA receptors in layer V pyramidal neurons of the rat prefrontal cortex. Neuropharmacology 42:476–488

    Article  PubMed  CAS  Google Scholar 

  • Wirkner K, Schweigel J, Gerevich Z, Franke H, Allgaier C, Barsoumian EL, Draheim H, Illes P (2004) Adenine nucleotides inhibit recombinant N-type calcium channels via G protein-coupled mechanisms in HEK 293 cells; involvement of the P2Y13 receptor-type. Br J Pharmacol 141:141–151

    Article  PubMed  CAS  Google Scholar 

  • Wirkner K, Stanchev D, Koles L, Klebingat M, Dihazi H, Flehmig G, Vial C, Evans RJ, Furst S, Mager PP, Eschrich K, Illes P (2005) Regulation of human recombinant P2X3 receptors by ecto-protein kinase C. J Neurosci 25:7734–7742

    Article  PubMed  CAS  Google Scholar 

  • Wittenberger T, Schaller HC, Hellebrand S (2001) An expressed sequence tag (EST) data mining strategy succeeding in the discovery of new G-protein coupled receptors. J Mol Biol 307:799–813

    Article  PubMed  CAS  Google Scholar 

  • Wolf C, Rosefort C, Fallah G, Kassack MU, Hamacher A, Bodnar M, Wang H, Illes P, Kless A, Bahrenberg G, Schmalzing G, Hausmann R (2011) Molecular determinants of potent P2X2 antagonism identified by functional analysis, mutagenesis, and homology docking. Mol Pharmacol 79:649–661

    Article  PubMed  CAS  Google Scholar 

  • Xin C, Ren S, Pfeilschifter J, Huwiler A (2004) Heterologous desensitization of the sphingosine-1-phosphate receptors by purinoceptor activation in renal mesangial cells. Br J Pharmacol 143:581–589

    Article  PubMed  CAS  Google Scholar 

  • Xing M, Post S, Ostrom RS, Samardzija M, Insel PA (1999) Inhibition of phospholipase A2-mediated arachidonic acid release by cyclic AMP defines a negative feedback loop for P2Y receptor activation in Madin-Darby canine kidney D1 cells. J Biol Chem 274:10035–10038

    Article  PubMed  CAS  Google Scholar 

  • Xiong K, Peoples RW, Montgomery JP, Chiang Y, Stewart RR, Weight FF, Li C (1999) Differential modulation by copper and zinc of P2X2 and P2X4 receptor function. J Neurophysiol 81:2088–2094

    PubMed  CAS  Google Scholar 

  • Xiong K, Hu XQ, Stewart RR, Weight FF, Li C (2005) The mechanism by which ethanol inhibits rat P2X4 receptors is altered by mutation of histidine 241. Br J Pharmacol 145:576–586

    Article  PubMed  CAS  Google Scholar 

  • Xu B, Stephens A, Kirschenheuter G, Greslin AF, Cheng X, Sennelo J, Cattaneo M, Zighetti ML, Chen A, Kim SA, Kim HS, Bischofberger N, Cook G, Jacobson KA (2002a) Acyclic analogues of adenosine bisphosphates as P2Y receptor antagonists: phosphate substitution leads to multiple pathways of inhibition of platelet aggregation. J Med Chem 45:5694–5709

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Weng YI, Simonyi A, Krugh BW, Liao Z, Weisman GA, Sun GY (2002b) Role of PKC and MAPK in cytosolic PLA2 phosphorylation and arachadonic acid release in primary murine astrocytes. J Neurochem 83:259–270

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Chalimoniuk M, Shu Y, Simonyi A, Sun AY, Gonzalez FA, Weisman GA, Wood WG, Sun GY (2003) Prostaglandin E2 production in astrocytes: regulation by cytokines, extracellular ATP, and oxidative agents. Prostaglandins Leukot Essent Fatty Acids 69:437–448

    Article  PubMed  CAS  Google Scholar 

  • Xu C, Xu W, Xu H, Xiong W, Gao Y, Li G, Liu S, Xie J, Tu G, Peng H, Qiu S, Liang S (2012) Role of puerarin in the signalling of neuropathic pain mediated by P2X3 receptor of dorsal root ganglion neurons. Brain Res Bull 87:37−43

    Google Scholar 

  • Yaar R, Jones MR, Chen JF, Ravid K (2005) Animal models for the study of adenosine receptor function. J Cell Physiol 202:9–20

    Article  PubMed  CAS  Google Scholar 

  • Yan Z, Li S, Liang Z, Tomic M, Stojilkovic SS (2008) The P2X7 receptor channel pore dilates under physiological ion conditions. J Gen Physiol 132:563–573

    Article  PubMed  CAS  Google Scholar 

  • Yan Z, Khadra A, Li S, Tomic M, Sherman A, Stojilkovic SS (2011) Experimental characterization and mathematical modeling of P2X7 receptor channel gating. J Neurosci 30:14213–14224

    Article  CAS  Google Scholar 

  • Yasuda H, Lindorfer MA, Woodfork KA, Fletcher JE, Garrison JC (1996) Role of the prenyl group on the G protein γ subunit in coupling trimeric G proteins to A1 adenosine receptors. J Biol Chem 271:18588–18595

    Article  PubMed  CAS  Google Scholar 

  • Yasuda H, Lindorfer MA, Myung CS, Garrison JC (1998) Phosphorylation of the G protein γ12 subunit regulates effector specificity. J Biol Chem 273:21958–21965

    Article  PubMed  CAS  Google Scholar 

  • Yerxa BR, Sabater JR, Davis CW, Stutts MJ, Lang-Furr M, Picher M, Jones AC, Cowlen M, Dougherty R, Boyer J, Abraham WM, Boucher RC (2002) Pharmacology of INS37217 [P(1)-(uridine 5′)-P(4)- (2′-deoxycytidine 5′)tetraphosphate, tetrasodium salt], a next-generation P2Y2 receptor agonist for the treatment of cystic fibrosis. J Pharmacol Exp Ther 302:871–880

    Article  PubMed  CAS  Google Scholar 

  • Yokomizo T, Izumi T, Chang K, Takuwa Y, Shimizu T (1997) A G-protein-coupled receptor for leukotriene B4 that mediates chemotaxis. Nature 387:620–624

    Article  PubMed  CAS  Google Scholar 

  • Yoshioka K, Saitoh O, Nakata H (2001) Heteromeric association creates a P2Y-like adenosine receptor. Proc Natl Acad Sci U S A 98:7617–7622

    Article  PubMed  CAS  Google Scholar 

  • Yoshioka K, Hosoda R, Kuroda Y, Nakata H (2002a) Hetero-oligomerization of adenosine A1 receptors with P2Y1 receptors in rat brains. FEBS Lett 531:299–303

    Article  PubMed  CAS  Google Scholar 

  • Yoshioka K, Saitoh O, Nakata H (2002b) Agonist-promoted heteromeric oligomerization between adenosine A1 and P2Y1 receptors in living cells. FEBS Lett 523:147–151

    Article  PubMed  CAS  Google Scholar 

  • Young MT (2010) P2X receptors: dawn of the post-structure era. Trends Biochem Sci 35:83–90

    Article  PubMed  CAS  Google Scholar 

  • Young MT, Pelegrin P, Surprenant A (2007) Amino acid residues in the P2X7 receptor that mediate differential sensitivity to ATP and BzATP. Mol Pharmacol 71:92–100

    Article  PubMed  CAS  Google Scholar 

  • Young MT, Fisher JA, Fountain SJ, Ford RC, North RA, Khakh BS (2008) Molecular shape, architecture, and size of P2X4 receptors determined using fluorescence resonance energy transfer and electron microscopy. J Biol Chem 283:26241–26251

    Article  PubMed  CAS  Google Scholar 

  • Zaika O, Tolstykh GP, Jaffe DB, Shapiro MS (2007) Inositol triphosphate-mediated Ca2+ signals direct purinergic P2Y receptor regulation of neuronal ion channels. J Neurosci 27:8914–8926

    Article  PubMed  CAS  Google Scholar 

  • Zambon AC, Hughes RJ, Meszaros JG, Wu JJ, Torres B, Brunton LL, Insel PA (2000) P2Y2 receptor of MDCK cells: cloning, expression, and cell-specific signaling. Am J Physiol Renal Physiol 279:F1045–F1052

    PubMed  CAS  Google Scholar 

  • Zambon AC, Brunton LL, Barrett KE, Hughes RJ, Torres B, Insel PA (2001) Cloning, expression, signaling mechanisms, and membrane targeting of P2Y11 receptors in Madin Darby canine kidney cells. Mol Pharmacol 60:26–35

    PubMed  CAS  Google Scholar 

  • Zemkova H, Balik A, Jindrichova M, Vavra V (2008) Molecular structure of purinergic P2X receptors and their expression in the hypothalamus and pituitary. Physiol Res 57(Suppl 3):S23–S38

    PubMed  CAS  Google Scholar 

  • Zemkova H, Kucka M, Li S, Gonzalez-Iglesias AE, Tomic M, Stojilkovic SS (2010) Characterization of purinergic P2X4 receptor channels expressed in anterior pituitary cells. Am J Physiol Endocrinol Metab 298:E644–E651

    Article  PubMed  CAS  Google Scholar 

  • Zhan C, Yang J, Dong XC, Wang YL (2007) Molecular modeling of purinergic receptor P2Y12 and interaction with its antagonists. J Mol Graph Model 26:20–31

    Article  PubMed  CAS  Google Scholar 

  • Zhang FL, Luo L, Gustafson E, Lachowicz J, Smith M, Qiao X, Liu YH, Chen G, Pramanik B, Laz TM, Palmer K, Bayne M, Monsma FJ Jr (2001) ADP is the cognate ligand for the orphan G protein-coupled receptor SP1999. J Biol Chem 276:8608–8615

    Article  PubMed  CAS  Google Scholar 

  • Zhang FL, Luo L, Gustafson E, Palmer K, Qiao X, Fan X, Yang S, Laz TM, Bayne M, Monsma F Jr (2002a) P2Y13: identification and characterization of a novel Gαi-coupled ADP receptor from human and mouse. J Pharmacol Exp Ther 301:705–713

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Li Z, Viklund EK, Stromblad S (2002b) P21-activated kinase 4 interacts with integrin αvβ 5 and regulates αvβ 5-mediated cell migration. J Cell Biol 158:1287–1297

    Article  PubMed  CAS  Google Scholar 

  • Zhang JM, Wang HK, Ye CQ, Ge W, Chen Y, Jiang ZL, Wu CP, Poo MM, Duan S (2003) ATP released by astrocytes mediates glutamatergic activity-dependent heterosynaptic suppression. Neuron 40:971–982

    Article  PubMed  CAS  Google Scholar 

  • Zhou QY, Li C, Olah ME, Johnson RA, Stiles GL, Civelli O (1992) Molecular cloning and characterization of an adenosine receptor: the A3 adenosine receptor. Proc Natl Acad Sci U S A 89:7432–7436

    Article  PubMed  CAS  Google Scholar 

  • Zhou Z, Monsma LR, Hume RI (1998) Identification of a site that modifies desensitization of P2X2 receptors. Biochem Biophys Res Commun 252:541–545

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann H (1994) Signalling via ATP in the nervous system. Trends Neurosci 17:420–426

    Article  PubMed  CAS  Google Scholar 

  • Zylberg J, Ecke D, Fischer B, Reiser G (2007) Structure and ligand-binding site characteristics of the human P2Y11 nucleotide receptor deduced from computational modelling and mutational analysis. Biochem J 405:277–286

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey Burnstock .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Burnstock, G., Verkhratsky, A. (2012). Receptors for Purines and Pyrimidines. In: Purinergic Signalling and the Nervous System. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28863-0_5

Download citation

Publish with us

Policies and ethics