Skip to main content

Introduction

  • Chapter
  • First Online:

Abstract

The discovery of non-adrenergic, non-cholinergic neurotransmission in the gut and bladder in the early 1960’s is described and the identification of ATP as a transmitter in these nerves in the early 1970’s. The concept of purinergic cotransmission was formulated in 1976 and it is now recognized that ATP is a cotransmitter in all nerves in the peripheral and central nervous systems. Two families of receptors to purines were recognized in 1978, P1 (adenosine) receptors and P2 receptors sensitive to ATP and ADP. Cloning of these receptors in the early 1990’s was a turning point in the acceptance of the purinergic signaling hypothesis and there are currently 4 subtypes of P1 receptors, 7 subtypes of P2X ion channel receptors, and 8 subtypes of P2Y G protein-coupled receptors. Both short-term purinergic signaling in neurotransmission, neuromodulation and neurosecretion and long-term (trophic) purinergic signalling of cell proliferation, differentiation, motility, death in development, and regeneration are recognized. There is now much known about the mechanisms underlying ATP release and extracellular breakdown by ecto-nucleotidases. The recent emphasis on purinergic neuropathology is discussed, including changes in purinergic cotransmission in development and ageing and in bladder diseases and hypertension. The involvement of neuron-glial cell interactions in various diseases of the CNS, including neuropathic pain, trauma, and ischemia, neurodegenerative diseases, neuropsychiatric disorders, and epilepsy is also considered

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abbracchio MP, Burnstock G (1998) Purinergic signalling: pathophysiological roles. Jpn J Pharmacol 78:113–145

    Article  PubMed  CAS  Google Scholar 

  • Bocquet N, Prado de Carvalho L, Cartaud J, Neyton J, Le Poupon C, Taly A, Grutter T, Changeux JP, Corringer PJ (2007) A prokaryotic proton-gated ion channel from the nicotinic acetylcholine receptor family. Nature 445:116–119

    Article  PubMed  CAS  Google Scholar 

  • Bodin P, Burnstock G (2001) Purinergic signalling: ATP release. Neurochem Res 26:959–969

    Article  PubMed  CAS  Google Scholar 

  • Bogdanov YD, Dale L, King BF, Whittock N, Burnstock G (1997) Early expression of a novel nucleotide receptor in the neural plate of Xenopus embryos. J Biol Chem 272:12583–12590

    Article  PubMed  CAS  Google Scholar 

  • Booth IR, Edwards MD, Miller S (2003) Bacterial ion channels. Biochemistry 42:10045–10053

    Article  PubMed  CAS  Google Scholar 

  • Booth IR, Edwards MD, Black S, Schumann U, Miller S (2007) Mechanosensitive channels in bacteria: signs of closure? Nat Rev Microbiol 5:431–440

    Article  PubMed  CAS  Google Scholar 

  • Bradbury EJ, Burnstock G, McMahon SB (1998) The expression of P2X3 purinoceptors in sensory neurons: effects of axotomy and glial-derived neurotrophic factor. Mol Cell Neurosci 12:256–268

    Article  PubMed  CAS  Google Scholar 

  • Burnstock G, Ulrich H (2011) Purinergic signalling in embryonic and stem cell development. Cell Mol Life Sci 68:1369–1394

    Article  PubMed  CAS  Google Scholar 

  • Burnstock G, Verkhratsky A (2009) Evolutionary origins of the purinergic signalling system. Acta Physiologica 195:415–447

    Article  PubMed  CAS  Google Scholar 

  • Burnstock G, Verkhratsky A (2010) Long-term (trophic) purinergic signalling: purinoceptors control cell proliferation, differentiation and death. Cell Death Dis 1:e9

    Article  PubMed  CAS  Google Scholar 

  • Burnstock G (1996) A unifying purinergic hypothesis for the initiation of pain. Lancet 347:1604–1605

    Article  PubMed  CAS  Google Scholar 

  • Burnstock G (1999) Release of vasoactive substances from endothelial cells by shear stress and purinergic mechanosensory transduction. J Anat 194:335–342

    Article  PubMed  CAS  Google Scholar 

  • Burnstock G (2002) Purinergic signalling and vascular cell proliferation and death. Arterioscler Thromb Vasc Biol 22:364–373

    Article  PubMed  Google Scholar 

  • Burnstock G (2006) Pathophysiology and therapeutic potential of purinergic signaling. Pharmacol Rev 58:58–86

    Article  PubMed  CAS  Google Scholar 

  • Burnstock G (2007) Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev 87:659–797

    Article  PubMed  CAS  Google Scholar 

  • Burnstock G (2008) Purinergic signalling and disorders of the central nervous system. Nat Rev Drug Discov 7:575–590

    Article  PubMed  CAS  Google Scholar 

  • Burnstock G (2009) Purinergic receptors and pain. Curr Pharm Des 15:1717–1735

    Article  PubMed  CAS  Google Scholar 

  • Burnstock G, Cocks T, Kasakov L, Wong HK (1978) Direct evidence for ATP release from non-adrenergic, non-cholinergic (“purinergic”) nerves in the guinea-pig taenia coli and bladder. Eur J Pharmacol 49:145–149

    Article  PubMed  CAS  Google Scholar 

  • Burnstock G (2001) Purinergic signalling in lower urinary tract. In: Abbracchio MP, Williams M (eds) Handbook of experimental pharmacology, vol 151/I. Purinergic and pyrimidinergic signalling I—molecular nervous and urinogenitary system function. Springer, Berlin, pp 423–515

    Google Scholar 

  • Case RM, Eisner D, Gurney A, Jones O, Muallem S, Verkhratsky A (2007) Evolution of calcium homeostasis: from birth of the first cell to an omnipresent signalling system. Cell Calcium 42:345–350

    Article  PubMed  CAS  Google Scholar 

  • Chen CC, Akopian AN, Sivilotti L, Colquhoun D, Burnstock G, Wood JN (1995) A P2X purinoceptor expressed by a subset of sensory neurons. Nature 377:428–431

    Article  PubMed  CAS  Google Scholar 

  • Chen GQ, Cui C, Mayer ML, Gouaux E (1999) Functional characterization of a potassium-selective prokaryotic glutamate receptor. Nature 402:817–821

    Article  PubMed  CAS  Google Scholar 

  • Cheung K–K, Chan WY, Burnstock G (2005) Expression of P2X receptors during rat brain development and their inhibitory role on motor axon outgrowth in neural tube explant cultures. Neuroscience 133:937–945

    Article  PubMed  CAS  Google Scholar 

  • Chiu JC, Brenner ED, DeSalle R, Nitabach MN, Holmes TC, Coruzzi GM (2002) Phylogenetic and expression analysis of the glutamate-receptor-like gene family in Arabidopsis thaliana. Mol Biol Evol 19:1066–1082

    Article  PubMed  CAS  Google Scholar 

  • Chiu J, DeSalle R, Lam HM, Meisel L, Coruzzi G (1999) Molecular evolution of glutamate receptors: a primitive signaling mechanism that existed before plants and animals diverged. Mol Biol Evol 16:826–838

    Article  PubMed  CAS  Google Scholar 

  • Cockayne DA, Hamilton SG, Zhu Q-M, Dunn PM, Zhong Y, Novakovic S, Malmberg AB, Cain G, Berson A, Kassotakis L, Hedley L, Lachnit WG, Burnstock G, McMahon SB, Ford APDW (2000) Urinary bladder hyporeflexia and reduced pain-related behaviour in P2X3-deficient mice. Nature 407:1011–1015

    Article  PubMed  CAS  Google Scholar 

  • Erlinge D, Burnstock G (2008) P2 receptors in cardiovascular physiology and disease. Purinergic Signal 4:1–20

    Article  PubMed  CAS  Google Scholar 

  • Fields D, Burnstock G (2006) Purinergic signalling in neuron-glial interactions. Nature Rev Neurosci 7:423–436

    Article  CAS  Google Scholar 

  • Garthwaite J (2008) Concepts of neural nitric oxide-mediated transmission. Eur J Neurosci 27:2783–2802

    Article  PubMed  Google Scholar 

  • Höpker VH, Saffrey MJ, Burnstock G (1996) Neurite outgrowth of striatal neurons in vitro: involvement of purines in the growth promoting effect of myenteric plexus explants. Int J Dev Neurosci 14:439–451

    PubMed  Google Scholar 

  • Inoue K (2007) P2 receptors and chronic pain. Purinergic Signal 3:135–144

    Article  PubMed  CAS  Google Scholar 

  • Ponnamperuma C, Sagan C, Mariner R (1963) Synthesis of adenosine triphosphate under possible primitive Earth conditions. Nature 199:222–226

    Article  PubMed  CAS  Google Scholar 

  • Rong W, Burnstock G (2004) Activation of ureter nociceptors by exogenous and endogenous ATP in guinea pig. Neuropharmacology 47:1093–1101

    Article  PubMed  CAS  Google Scholar 

  • Ryten M, Hoebertz A, Burnstock G (2001) Sequential expression of three receptor subtypes for extracellular ATP in developing rat skeletal muscle. Dev Dyn 221:331–341

    Article  PubMed  CAS  Google Scholar 

  • Sreedharan S, Shaik JH, Olszewski PK, Levine AS, Schioth HB, Fredriksson R (2011) Glutamate, aspartate and nucleotide transporters in the SLC17 family form four main phylogenetic clusters: evolution and tissue expression. BMC Genomics 11:17

    Article  Google Scholar 

  • Tew EMM, Anderson PN, Burnstock G (1992) Implantation of the myenteric plexus into the corpus striatum of adult rats: survival of the neurones and glia and interactions with host brain. Restor Neurol Neurosci 4:311–321

    PubMed  CAS  Google Scholar 

  • Trams EG (1981) On the evolution of neurochemical transmission. Differentiation 19:125–133

    Article  PubMed  CAS  Google Scholar 

  • Vidal M, Hicks PE, Langer SZ (1986) Differential effects of α, β-methylene ATP on responses to nerve stimulation in SHR and WKY tail arteries. Naunyn Schmiedebergs Arch Pharmacol 332:384–390

    Article  PubMed  CAS  Google Scholar 

  • Vivian JP, Riedmaier P, Ge H, Le Nours J, Sansom FM, Wilce MC, Byres E, Dias M, Schmidberger JW, Cowan PJ, d’Apice AJ, Hartland EL, Rossjohn J, Beddoe T (2010) Crystal structure of a Legionella pneumophila ecto-triphosphate diphosphohydrolase, a structural and functional homolog of the eukaryotic NTPDases. Structure 18:228–238

    Article  PubMed  CAS  Google Scholar 

  • Vlaskovska M, Kasakov L, Rong W, Bodin P, Bardini M, Cockayne DA, Ford APDW, Burnstock G (2001) P2X3 knockout mice reveal a major sensory role for urothelially released ATP. J Neurosci 21:5670–5677

    PubMed  CAS  Google Scholar 

  • Waldrop MM (1989) Did life really start out in an RNA world? Science 246:1248–1249

    Article  PubMed  CAS  Google Scholar 

  • Wynn G, Burnstock G (2006) Adenosine 5′-triphosphate and it’s relationship with other mediators that activate pelvic afferent neurons in the rat colorectum. Purinergic Signal 2:517–526

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann H, Mishra SK, Shukla V, Langer D, Gampe K, Grimm I, Delic J, Braun N (2007) Ecto-nucleotidases, molecular properties and functional impact. An R Acad Nac Farm 73:537–566

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey Burnstock .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Burnstock, G., Verkhratsky, A. (2012). Introduction. In: Purinergic Signalling and the Nervous System. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28863-0_1

Download citation

Publish with us

Policies and ethics