Skip to main content

Fleas as Underestimated Vectors of Agents of Diseases

  • Chapter
  • First Online:

Part of the book series: Parasitology Research Monographs ((Parasitology Res. Monogr.,volume 3))

Abstract

Fleas occur worldwide and specimens of their 2,500 species suck blood daily several times at practically all warm-blooded hosts. Therefore, they may become vectors of practically all agents of diseases that are bound to the blood of this armada of varying blood donators. Since the spectacular and very controversial discovery in the year 1898 that the tropical rat flea is the vector of the plague bacterium, many other bacteria and rickettsial species were found in fleas. Due to the availability of antibiotics, the threat of flea bites had considerably decreased and the dangers of fleas were neglected even for many decades. However, since the resistance of bacteria against antibiotics increases constantly and since it was shown in transmission experiments that also viruses can easily be transmitted by fleas and their feces, the status of flea bites must be considered as being much more dangerous as before. This chapter summarizes a long list of agents of diseases that lurk in fleas, and thus it becomes clear that flea control has become an important task, especially in times of intense globalization.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Azad AF, Radulovic S, Higgins JA, Noden BH, Troyer JM (1997) Flea-borne rickettsioses: ecologic considerations. Emerg Infect Dis 3:319–327

    Article  PubMed  CAS  Google Scholar 

  • Bacot AW, Martin CJ (1914) Observations on the mechanism of the transmission of plague by fleas. J Hyg 13(Plague suppl):423–439

    CAS  Google Scholar 

  • Billeter SA, Levy MG, Chomel BB, Breitschwerdt EB (2008) Vector transmission of Bartonella species with emphasis on the potential for tick transmission. Med Vet Entomol 22:1–15

    Article  PubMed  CAS  Google Scholar 

  • Breitschwerdt ED, Levine JF, Radulovic S, Hanby SB, Kordick DL, La Perle KMD (2005) Bartonella henselae and Rickettsia seroreactivity in a sick cat population from North Carolina. Int J Appl Res Vet 3:287–302

    Google Scholar 

  • Breitschwerdt ED, Maggi RG, Duncan AW, Nicholson WL, Hegarty BC, Woods CW (2007) Bartonella species in blood from immunocompetent persons with animal and arthropod contact. Emerg Infect Dis 13:938–941

    Article  PubMed  Google Scholar 

  • Burroughs AL (1947) Sylvatic plague studies: the vector efficiency of nine species of fleas compared with Xenopsylla cheopis. J Hyg 43:371–396

    Article  Google Scholar 

  • Chomel BB, Kasten RW, Floyd-Hawkins K, Chi B, Yamamoto K, Roberts-Wilson J, Gurfiled AN, Abbott RC, Pedersen NC, Koehler JE (1996) Experimental transmission of Bartonella henselae by the cat flea. J Clin Microbiol 34:1952–1956

    PubMed  CAS  Google Scholar 

  • Crowl TA, Crist TO, Parmenter RR, Lugo AE (2008) The spread of invasive species and infectious disease as drivers of ecosystem change. Front Ecol 6:238–246

    Article  Google Scholar 

  • Daszak P, Cunningham AA, Hyatt AD (2001) Anthropogenic environmental change and the emergence of infectious disease in wildlife. Acta Trop 78:103–116

    Article  PubMed  CAS  Google Scholar 

  • Deem SL, Kilbourn AM, Wolfe ND, Cook RA, Karesh WB (2001) Conservation medicine. Ann N Y Acad Sci 916:370–377

    Article  Google Scholar 

  • Douglas JR, Wheeler CM (1943) Sylvatic plague studies. II. The fate of Pasteurella pestis in the flea. J Infect Dis 72:18–30

    Article  Google Scholar 

  • Egoscue HJ (1976) Flea exchange between deer mice and some associated small animals in western Utah. Great Basin Nat 36:475–480

    Google Scholar 

  • Eisen RJ, Gage KL (2012) Transmission of flea-borne zoonotic agents. Annu Rev Entomol 57:61–82

    Article  PubMed  CAS  Google Scholar 

  • Eisen RJ, Bearden SW, Wilder AP, Montenieri JA, Antolin MF, Gage KL (2006) Early-phase transmission of Yersinia pestis by unblocked fleas as a mechanism explaining rapidly spreading plague epizootics. Proc Natl Acad Sci USA 103:15380–15385

    Article  PubMed  CAS  Google Scholar 

  • Eisen RJ, Reynolds PJ, Ettestad P, Brown T, Enscore RE et al (2007a) Residence-linked human plague in New Mexico: a habitat-suitability model. Am J Trop Med Hyg 77:121–125

    PubMed  Google Scholar 

  • Eisen RJ, Wilder AP, Bearden SW, Montenieri JA, Gage KL (2007b) Early-phase transmission of Yersinia pestis by unblocked Xenopsylla cheopis (Siphonaptera: Pulicidae) is as efficient as transmission by blocked fleas. J Med Entomol 44:678–682

    Article  PubMed  Google Scholar 

  • Eisen RJ, Holmes JL, Schotthoefer AM, Vetter SM, Montenieri JA, Gage KL (2008) Demonstration of early-phase transmission of Yersinia pestis by the mouse flea, Aetheca wagneri, and implications for the role of deer mice as enzootic reservoirs. J Med Entomol 45:1160–1164

    Article  PubMed  Google Scholar 

  • Eisen RJ, Eisen L, Gage KL (2009a) Studies of vector competency and efficiency of North American fleas for Yersinia pestis: state of the field and future research needs. J Med Entomol 46:737–744

    Article  PubMed  Google Scholar 

  • Eisen RJ, Eisen L, Gage KL (2009b) Adaptive strategies of Yersinia pestis to persist during inter-epizootic and epizootic periods. Vet Res 40:1

    Article  PubMed  Google Scholar 

  • Eskey CR, Haas VH (1940) Plague in the western part of the United States. Public Health Bull 254:1–83

    Google Scholar 

  • Foil LD, Meek CL, Adams WV, Issel CJ (1983) Mechanical transmission of equine infectious anemia virus by deer flies (Chrysops flavidus) and stable flies (Stomoxys calcitrans). Am J Vet Res 44:155–156

    PubMed  CAS  Google Scholar 

  • Friggens MM, Beier P (2010) Anthropogenic disturbance and the risk of flea-borne disease transmission. Oecologica 164:809–820

    Article  Google Scholar 

  • Gage KL, Kosoy MY (2005) Natural history of plague: perspectives from more than a century of research. Annu Rev Entomol 50:505–528

    Article  PubMed  CAS  Google Scholar 

  • Githeko AK, Lindsay SW, Confalonieri UE, Patz JA (2000) Climate change and vector-borne diseases: a regional analysis. Bull WHO 78:1136–1147

    PubMed  CAS  Google Scholar 

  • Grüntzig J, Mehlhorn H (2005) Expeditionen ins Reich der Seuchen. Spektrum Akad Verlag, Heidelberg

    Google Scholar 

  • Grüntzig J, Mehlhorn H (2010a) Expeditions into the Empire of Plagues. Düsseldorf University Press, Düsseldorf

    Google Scholar 

  • Grüntzig J, Mehlhorn H (2010b) Robert Koch: Seuchenjäger und Nobelpreisträger. Spektrum Akad, Heidelberg

    Google Scholar 

  • Harvel D, Mitchell CE, Ward JR, Altizer S, Dobson AP, Ostfeld RS, Samuel MD (2002) Climate warming and disease risk for terrestrial and marine biota. Science 296:2158–2162

    Article  Google Scholar 

  • Hinnebusch BJ (2005) The evolution of flea-borne transmission of Yersinia pestis. Curr Issues Mol Biol 7:197–212

    PubMed  CAS  Google Scholar 

  • Hopkins GHE, Rothschild M (1971) An illustrated catalogue of the Rothschild collection of fleas in the British Museum (Natural History). Cambridge University Press, London

    Google Scholar 

  • Jarrett WF (1975) Cat leukemia and its viruses. Adv Vet Sci Comp Med 19:165–193

    PubMed  CAS  Google Scholar 

  • Jarrett WF, Crawford EM, Marsin WB (1964) A virus-like particle associated with leukemia (lymphosarcoma). Nature 202:567–569

    Article  PubMed  CAS  Google Scholar 

  • Kitasato S (1894) The bacillus of bubonic plague. Lancet 2:428–430

    Article  Google Scholar 

  • Koontz FW, Daszak P (2005) Sprawl and disease. In: Johnson EA, Klemens MW (eds) Nature in fragments: the legacy of sprawl. Columbia University Press, New York, pp 144–156

    Google Scholar 

  • Kramer F, Mencke N (2001) Flea biology and control. Springer, Heidelberg

    Book  Google Scholar 

  • Lafferty KD (2009) The ecology of climate change and infectious diseases. Ecology 90:888–900

    Article  PubMed  Google Scholar 

  • Lewis RE (1993) Fleas (Siphonaptera). In: Lane RP, Crosskey RW (eds) Medical insects and arachnids. Chapman and Hall, London

    Google Scholar 

  • Löscher T, Burchard GD (2010) Tropenmedizin in Klinik und Praxis, 4th edn. Thieme, Stuttgart

    Google Scholar 

  • Mehlhorn H (ed) (2008) Encyclopedia of Parasitology, 3rd edn. Springer, New York

    Google Scholar 

  • Mehlhorn H (2012) Die Parasiten des Menschen und die von ihnen hervorgerufenen Erkrankungen. Spektrum Akad, Heidelberg

    Google Scholar 

  • Mehlhorn H, Eichenlaub D, Löscher T, Peters W (1995) Diagnose und Therapie der Parasitosen des Menschen, 2nd edn. Fischer, Stuttgart

    Google Scholar 

  • Mehlhorn B, Mehlhorn H, Walldorf V (2012) Schach den Blutsaugern und Schädlingen. Düsseldorf University Press, Düsseldorf

    Google Scholar 

  • Mencke N, Vobis M, Mehlhorn H, D’Haese J, Rehagen M, Mangold-Gehring S, Truyen U (2009) Transmission of feline calcivirus via the cat flea (Ctenocephalides felis). Parasitol Res 105:185–189

    Article  PubMed  CAS  Google Scholar 

  • Neumeister B, Geiss HK, Braun RW, Kimmig R (eds) (2009) Mikrobiologische Diagnostik, 2nd edn. Thieme, Stuttgart

    Google Scholar 

  • Ogata M (1897) Über die Pestepidemie in Formosa. Zentralbl Bakteriol 21:769–777

    Google Scholar 

  • Patz JA, Graczyk TK, Geller N, Vittor AY (2000) Effects of environmental change on emerging parasitic diseases. Intern J Parasitol 30:1395–1405

    Article  CAS  Google Scholar 

  • Peus F (1972) Zur Kenntnis der Flöhe in Deutschland. IV. Faunistik und Ökologie der Säugetierflöhe. Zool Jahrbuch 99:408–504

    Google Scholar 

  • Rehacek J, Fischer RG, Luecke DH (1973) Friend leukemia virus (FLV) activity in certain arthropods. II. Quantitation, infectivity, determinations. Neoplasma 20:147–158

    PubMed  CAS  Google Scholar 

  • Reif KE, Macaluso KR (2009) Ecology of Rickettsia felis: a review. J Med Entomol 46:723–736

    Article  PubMed  Google Scholar 

  • Richter J, Fournier PE, Petridou J, Häussinger D, Raoult D (2002) Rickettsia felis infection acquired in Europe and documented by polymerase chain reaction. Emerg Infect Dis 8:207–208

    Article  PubMed  Google Scholar 

  • Rolain JM, Franc M, Davoust B, Raoult D (2003) Molecular detection of Bartonella quintana, B. koehlerae, B. henselae, B. clarridgeiae, Rickettsia felis and Wolbachia pipientis in cat fleas in France. Emerg Infect Dis 9:338–342

    Article  PubMed  CAS  Google Scholar 

  • Romi R (2010) Arthropod borne diseases in Italy: from neglected matter to an emerging health problem. Ann Ist Super Sanita 46:436–443

    PubMed  Google Scholar 

  • Schmidt A (ed) (1998) Bartonella and Afipia species emphasizing Bartonella henselae. Karger, Basel

    Google Scholar 

  • Shepherd RC, Edmonds JW (1977) Myxomatosis: the transmission of a highly virulent strain of myxoma virus by the European rabbit flea Spilopsyllus cuniculi (Dale) in the Mallee region of Victoria. J Hyg 79:405–409

    Article  CAS  Google Scholar 

  • Simond PL (1905) La question du vehicule de la peste. Rev Medico-Chirurg Bréslienne Am Lat 5:18–23

    Google Scholar 

  • Simond M, Godley ML, Mouriquand PDE (1998) Paul-Louis Simond and his discovery of plague transmission by rat fleas: a centenary. J R Soc Med 91:101–104

    PubMed  CAS  Google Scholar 

  • Smetana A (1965) On the transmission of tick-borne encephalitis virus by fleas. Acta Virol 9:375–378

    PubMed  CAS  Google Scholar 

  • Tikhonova GN, Tikhonov IA, Pogomolov PL (2006) Impact of a small city on the structure of small mammal fauna in forests of the northeastern Moscow region. Russ J Ecol 37:278–289

    Article  Google Scholar 

  • Truyen U, Geissler K, Hirschberger J (1999) Tissue distribution of virus replication in cats experimentally infected with distinct felince calcivirus isolates. Berl Münchner Tierärztl Wschr 112:355–358

    CAS  Google Scholar 

  • Vobis M, D’Haese J, Mehlhorn H, Mencke N (2003) Evidence of horizontal transmission of feline leukemia virus by the cat flea (Ctenocephalides felis). Parasitol Res 91:467–470

    Article  PubMed  CAS  Google Scholar 

  • Vobis M, D’Haese J, Mehlhorn H, Mencke N (2005a) Experimental quantification of the feline leukemia virus in the cat flea (Ctenocephalides felis) and its feces. Parasitol Res 97:S102–S106

    Article  PubMed  Google Scholar 

  • Vobis M, D’Haese J, Mehlhorn H, Heukelbach J, Mencke N, Feldmeier H (2005b) Molecular biological investigations of Brazilian Tunga sp. Isolates from man, dogs, cats, pigs and rats. Parasitol Res 96:107–112

    Article  PubMed  CAS  Google Scholar 

  • Wheeler CM, Douglas JR (1945a) Transmission studies of sylvatic plague. Proc Soc Exp Biol Med 47:65–66

    Google Scholar 

  • Wheeler CM, Douglas JR (1945b) Sylvatic plague studies. V. The determination of vector efficiency. J Infect Dis 77:1–12

    Article  Google Scholar 

  • Wilcox BA, Colwell RR (2005) Emerging and reemerging infectious diseases: biocomplexity as an interdisciplinary paradigm. EcoHealth 2:244–257

    Article  Google Scholar 

  • Wilcox BA, Gubler DJ (2005) Disease ecology and the global emergence of zoonotic pathogens. Environ Health Prev Med 10:263–272

    Article  PubMed  CAS  Google Scholar 

  • Wilder AP, Eisen RJ, Bearden SW, Montenieri JA, Tripp DT et al (2008) Transmission efficiency of two flea species (Oropsylla tuberculata cynomuris and Oropsylla hirsuta) involved in plague epizootics among prairie dogs. EcoHealth 5:205–212

    Article  PubMed  Google Scholar 

  • Yersin A (1894) La peste bubonique à Hong Kong. Ann Inst Pasteur 8:662–667

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinz Mehlhorn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mehlhorn, H. (2012). Fleas as Underestimated Vectors of Agents of Diseases. In: Mehlhorn, H. (eds) Arthropods as Vectors of Emerging Diseases. Parasitology Research Monographs, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28842-5_13

Download citation

Publish with us

Policies and ethics