Skip to main content

Imaging

  • Chapter
  • First Online:
  • 1183 Accesses

Abstract

Imaging is a key component in the evaluation of patients with urolithiasis, as it is essential for the diagnosis and for determining the appropriate treatment of renal and ureteral stone disease. The ideal imaging study would be rapidly performed, have high sensitivity and specificity, and expose the patient to minimal or no radiation. Non-contrast computed tomography (NCCT) remains the first-line imaging modality for the evaluation of patients with suspected urolithiasis. It allows for rapid and accurate diagnosis. The major limitation of NCCT is radiation exposure, though low-dose NCCT protocols help to minimize this risk. Ultrasound is also useful for the evaluation of patients with suspected urolithiasis and should be considered the imaging study of choice in pediatric patients and pregnant women with suspected stones. Ultrasound has the advantage of no radiation exposure, but at the cost of decreased sensitivity and specificity compared to NCCT. Plain film radiography of the abdomen/pelvis (KUB) is useful as an adjunct to ultrasound. The role of intravenous pyelography (IVP) has been largely supplanted by NCCT; however, IVP is still useful in evaluation for obstruction and anatomic abnormalities that may impact in treatment decisions. The main utility of magnetic resonance imaging (MRI) for patients with urolithiasis is in detecting secondary signs of obstruction, especially in those patients who must avoid radiation exposure.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Andreoiu M, MacMahon R (2009) Renal colic in pregnancy: lithiasis or physiological hydronephrosis? Urology 74:757–761

    Article  PubMed  Google Scholar 

  • Berrington de Gonzalez A, Mahesh M, Kim KP et al (2009) Projected cancer risks from computed tomographic scans performed in the United States in 2007. Arch Intern Med 169:2071–2077

    Article  PubMed  Google Scholar 

  • Brenner DJ, Hall EJ (2007) Computed tomography – an increasing source of radiation exposure. N Engl J Med 357:2277–2284

    Article  PubMed  CAS  Google Scholar 

  • Dalrymple NC, Verga M, Anderson KR et al (1998) The value of unenhanced helical computerized tomography in the management of acute flank pain. J Urol 159:735–740

    Article  PubMed  CAS  Google Scholar 

  • Dobbins JT 3rd, McAdams HP (2009) Chest tomosynthesis: technical principles and clinical update. Eur J Radiol 72:244–251

    Article  PubMed  Google Scholar 

  • Ege G, Akman H, Kuzucu K et al (2003) Acute ureterolithiasis: incidence of secondary signs on unenhanced helical CT and influence on patient management. Clin Radiol 58:990–994

    Article  PubMed  CAS  Google Scholar 

  • Federle MP, McAninch JW, Kaiser JA et al (1981) Computed tomography of urinary calculi. AJR Am J Roentgenol 136:255–258

    PubMed  CAS  Google Scholar 

  • Ferrandino MN, Bagrodia A, Pierre SA (2009) Radiation exposure in the acute and short-term management of urolithiasis at 2 academic centers. J Urol 181:668–672, discussion 673

    Article  PubMed  Google Scholar 

  • Ferrandino MN, Pierre SA, Simmons WN et al (2010) Dual-energy computed tomography with advanced postimage acquisition data processing: improved determination of urinary stone composition. J Endourol 24:347–354

    Article  PubMed  Google Scholar 

  • Fowler KA, Locken JA, Duchesne JH et al (2002) US for detecting renal calculi with nonenhanced CT as a reference standard. Radiology 222:109–113

    Article  PubMed  Google Scholar 

  • Gandolpho L, Sevillano M, Barbieri A (2001) Scintigraphy and Doppler ultrasonography for the evaluation of obstructive urinary calculi. Braz J Med Biol Res 34:745–751

    Article  PubMed  CAS  Google Scholar 

  • Goldwasser B, Cohan RH, Dunnick NR et al (1989) Role of linear tomography in evaluation of patients with nephrolithiasis. Urology 33:253–256

    Article  PubMed  CAS  Google Scholar 

  • Hakim CM, Chough DM, Ganott MA et al (2010) Digital breast tomosynthesis in the diagnostic environment: a subjective side-by-side review. AJR Am J Roentgenol 195:W172–W176

    Article  PubMed  Google Scholar 

  • Hamm M, Wawroschek F, Weckermann D et al (2001) Unenhanced helical computed tomography in the evaluation of acute flank pain. Eur Urol 39:460–465

    Article  PubMed  CAS  Google Scholar 

  • Hoppe H, Studer R, Kessler TM (2006) Alternate or additional findings to stone disease on unenhanced computerized tomography for acute flank pain can impact management. J Urol 175:1725–1730, discussion 1730

    Article  PubMed  Google Scholar 

  • Hopper KD, Yakes WF (1990) The posterior intercostal approach for percutaneous renal procedures: risk of puncturing the lung, spleen, and liver as determined by CT. AJR Am J Roentgenol 154:115–117

    PubMed  CAS  Google Scholar 

  • Hyams ES, Korley FK, Pham JC et al (2011) Trends in imaging use during the emergency department evaluation of flank pain. J Urol 186:2270–2274

    Article  PubMed  Google Scholar 

  • Jackman SV, Potter SR, Regan F et al (2000) Plain abdominal x-ray versus computerized tomography screening: sensitivity for stone localization after nonenhanced spiral computerized tomography. J Urol 164:308–310

    Article  PubMed  CAS  Google Scholar 

  • Jellison FC, Smith JC, Heldt JP et al (2009) Effect of low dose radiation computerized tomography protocols on distal ureteral calculus detection. J Urol 182:2762–2767

    Article  PubMed  Google Scholar 

  • Jin DH, Lamberton GR, Broome DR et al (2010) Effect of reduced radiation CT protocols on the detection of renal calculi. Radiology 255:100–107

    Article  PubMed  Google Scholar 

  • Johnston R, Lin A, Du J et al (2009) Comparison of kidney-ureter-bladder abdominal radiography and computed tomography scout films for identifying renal calculi. BJU Int 104:670–673

    Article  PubMed  Google Scholar 

  • Joseph P, Mandal AK, Singh SK et al (2002) Computerized tomography attenuation value of renal calculus: can it predict successful fragmentation of the calculus by shock wave lithotripsy? A preliminary study. J Urol 167:1968–1971

    Article  PubMed  Google Scholar 

  • Kalb B, Sharma P, Salman K et al (2010) Acute abdominal pain: is there a potential role for MRI in the setting of the emergency department in a patient with renal calculi? J Magn Reson Imaging 32:1012–1023

    Article  PubMed  Google Scholar 

  • Katz DS, Scheer M, Lumerman JH et al (2000) Alternative or additional diagnoses on unenhanced helical computed tomography for suspected renal colic: experience with 1000 consecutive examinations. Urology 56:53–57

    Article  PubMed  CAS  Google Scholar 

  • Kavakli HS, Koktener A, Yilmaz A (2011) Diagnostic value of renal resistive index for the assessment of renal colic. Singapore Med J 52:271–273

    PubMed  CAS  Google Scholar 

  • Kim BS, Hwang IK, Choi YW et al (2005) Low-dose and standard-dose unenhanced helical computed tomography for the assessment of acute renal colic: prospective comparative study. Acta Radiol 46:756–763

    Article  PubMed  Google Scholar 

  • Kluner C, Hein PA, Gralla O et al (2006) Does ultra-­low-dose CT with a radiation dose equivalent to that of KUB suffice to detect renal and ureteral calculi? J Comput Assist Tomogr 30:44–50

    Article  PubMed  Google Scholar 

  • Lamb AD, Wines MD, Mousa S et al (2008) Plain radiography still is required in the planning of treatment for urolithiasis. J Endourol 22:2201–2205

    Article  PubMed  CAS  Google Scholar 

  • Levine JA, Neitlich J, Verga M et al (1997) Ureteral calculi in patients with flank pain: correlation of plain radiography with unenhanced helical CT. Radiology 204:27–31

    PubMed  CAS  Google Scholar 

  • Manglaviti G, Tresoldi S, Guerrer CS et al (2011) In vivo evaluation of the chemical composition of urinary stones using dual-energy CT. AJR Am J Roentgenol 197:W76–W83

    Article  PubMed  Google Scholar 

  • Mermuys K, De Geeter F, Bacher K et al (2010) Digital tomosynthesis in the detection of urolithiasis: diagnostic performance and dosimetry compared with digital radiography with MDCT as the reference standard. AJR Am J Roentgenol 195:161–167

    Article  PubMed  Google Scholar 

  • Mettler FA Jr, Huda W, Yoshizumi TT et al (2008) Effective doses in radiology and diagnostic nuclear medicine: a catalog. Radiology 248:254–263

    Article  PubMed  Google Scholar 

  • Mitterberger M, Pinggera GM, Pallwein L et al (2007) Plain abdominal radiography with transabdominal native tissue harmonic imaging ultrasonography vs unenhanced computed tomography in renal colic. BJU Int 100:887–890

    Article  PubMed  Google Scholar 

  • Mitterberger M, Aigner F, Pallwein L et al (2009) Sonographic detection of renal and ureteral stones. Value of the twinkling sign. Int Braz J Urol 35:532–539, discussion 540–531

    Article  PubMed  Google Scholar 

  • Moesbergen TC, de Ryke RJ, Dunbar S et al (2011) Distal ureteral calculi: US follow-up. Radiology 260:575–580

    Article  PubMed  Google Scholar 

  • Mostafavi MR, Ernst RD, Saltzman B (1998) Accurate determination of chemical composition of urinary calculi by spiral computerized tomography. J Urol 159:673–675

    Article  PubMed  CAS  Google Scholar 

  • Mutgi A, Williams JW, Nettleman M (1991) Renal colic. Utility of the plain abdominal roentgenogram. Arch Intern Med 151:1589–1592

    Article  PubMed  CAS  Google Scholar 

  • Ng CS, Herts BR, Streem SB (2005) Percutaneous access to upper pole renal stones: role of prone 3-dimensional computerized tomography in inspiratory and expiratory phases. J Urol 173:124–126

    Article  PubMed  Google Scholar 

  • Niemann T, Kollmann T, Bongartz G (2008) Diagnostic performance of low-dose CT for the detection of urolithiasis: a meta-analysis. AJR Am J Roentgenol 191:396–401

    Article  PubMed  Google Scholar 

  • Pareek G, Hedican SP, Lee FT Jr et al (2005) Shock wave lithotripsy success determined by skin-to-stone distance on computed tomography. Urology 66:941–944

    Article  PubMed  Google Scholar 

  • Patel T, Kozakowski K, Hruby G et al (2009) Skin to stone distance is an independent predictor of stone-free status following shockwave lithotripsy. J Endourol 23:1383–1385

    Article  PubMed  Google Scholar 

  • Patlas M, Farkas A, Fisher D et al (2001) Ultrasound vs CT for the detection of ureteric stones in patients with renal colic. Br J Radiol 74:901–904

    PubMed  CAS  Google Scholar 

  • Pepe P, Motta L, Pennisi M et al (2005) Functional evaluation of the urinary tract by color-Doppler ultrasonography (CDU) in 100 patients with renal colic. Eur J Radiol 53:131–135

    Article  PubMed  Google Scholar 

  • Perks AE, Schuler TD, Lee J et al (2008) Stone attenuation and skin-to-stone distance on computed tomography predicts for stone fragmentation by shock wave lithotripsy. Urology 72:765–769

    Article  PubMed  Google Scholar 

  • Pfister SA, Deckart A, Laschke S et al (2003) Unenhanced helical computed tomography vs intravenous urography in patients with acute flank pain: accuracy and economic impact in a randomized prospective trial. Eur Radiol 13:2513–2520

    Article  PubMed  CAS  Google Scholar 

  • Pichler R, Skradski V, Aigner F (2011) In young adults with a low body mass index ultrasonography is sufficient as a diagnostic tool for ureteric stones. BJU Int 109:770–774

    Article  PubMed  Google Scholar 

  • Poletti PA, Platon A, Rutschmann OT et al (2007) Low-dose versus standard-dose CT protocol in patients with clinically suspected renal colic. AJR Am J Roentgenol 188:927–933

    Article  PubMed  Google Scholar 

  • Ray AA, Ghiculete D, Pace KT et al (2010) Limitations to ultrasound in the detection and measurement of urinary tract calculi. Urology 76:295–300

    Article  PubMed  Google Scholar 

  • Regan F, Kuszyk B, Bohlman ME et al (2005) Acute ureteric calculus obstruction: unenhanced spiral CT versus HASTE MR urography and abdominal radiograph. Br J Radiol 78:506–511

    Article  PubMed  CAS  Google Scholar 

  • Ripolles T, Agramunt M, Errando J et al (2004) Suspected ureteral colic: plain film and sonography vs unenhanced helical CT. A prospective study in 66 patients. Eur Radiol 14:129–136

    Article  PubMed  Google Scholar 

  • Sandhu C, Anson KM, Patel U (2003) Urinary tract stones – Part I: role of radiological imaging in diagnosis and treatment planning. Clin Radiol 58:415–421

    Article  PubMed  CAS  Google Scholar 

  • Segal AJ, Spataro RF, Linke CA et al (1978) Diagnosis of nonopaque calculi by computed tomography. Radiology 129:447–450

    PubMed  CAS  Google Scholar 

  • Shah K, Kurien A, Mishra S et al (2010) Predicting effectiveness of extracorporeal shockwave lithotripsy by stone attenuation value. J Endourol 24:1169–1173

    Article  PubMed  Google Scholar 

  • Sheafor DH, Hertzberg BS, Freed KS et al (2000) Nonenhanced helical CT and US in the emergency evaluation of patients with renal colic: prospective comparison. Radiology 217:792–797

    PubMed  CAS  Google Scholar 

  • Shokeir AA, Abdulmaaboud M (1999) Resistive index in renal colic: a prospective study. BJU Int 83:378–382

    Article  PubMed  CAS  Google Scholar 

  • Shokeir AA, Abdulmaaboud M (2001) Prospective ­comparison of nonenhanced helical computerized tomography and Doppler ultrasonography for the diagnosis of renal colic. J Urol 165:1082–1084

    Article  PubMed  CAS  Google Scholar 

  • Smith RC, Rosenfield AT, Choe KA et al (1995) Acute flank pain: comparison of non-contrast-enhanced CT and intravenous urography. Radiology 194:789–794

    PubMed  CAS  Google Scholar 

  • Smith RC, Verga M, McCarthy S et al (1996) Diagnosis of acute flank pain: value of unenhanced helical CT. AJR Am J Roentgenol 166:97–101

    PubMed  CAS  Google Scholar 

  • Sudah M, Vanninen R, Partanen K et al (2001) MR urography in evaluation of acute flank pain: T2-weighted sequences and gadolinium-enhanced three-­dimensional FLASH compared with urography. Fast low-angle shot. AJR Am J Roentgenol 176:105–112

    PubMed  CAS  Google Scholar 

  • Sudah M, Vanninen RL, Partanen K et al (2002) Patients with acute flank pain: comparison of MR urography with unenhanced helical CT. Radiology 223:98–105

    Article  PubMed  Google Scholar 

  • Sundaram CP, Saltzman B (1999) Urolithiasis associated with protease inhibitors. J Endourol 13:309–312

    Article  PubMed  CAS  Google Scholar 

  • Tessler AN, Ghazi MR (1979) Case profile: computerized tomographic assistance in diagnosis of radiolucent calculi. Urology 13:672–673

    Article  PubMed  CAS  Google Scholar 

  • Ulusan S, Koc Z, Tokmak N (2007) Accuracy of sonography for detecting renal stone: comparison with CT. J Clin Ultrasound 35:256–261

    Article  PubMed  Google Scholar 

  • Unal D, Yeni E, Karaoglanoglu M et al (2003) Can conventional examinations contribute to the diagnostic power of unenhanced helical computed tomography in urolithiasis? Urol Int 70:31–35

    Article  PubMed  Google Scholar 

  • Vieweg J, Teh C, Freed K et al (1998) Unenhanced helical computerized tomography for the evaluation of patients with acute flank pain. J Urol 160:679–684

    Article  PubMed  CAS  Google Scholar 

  • Viprakasit DP, Sawyer MD, Herrell SD et al (2012) Limitations of ultrasonography in the evaluation of urolithiasis: a correlation with computed tomography J Endourol. Mar;26(3):209–13. Epub 2011 Oct 19

    Google Scholar 

  • Wang AJ, Nguyen G, Toncheva G et al (2011) Radiation exposure from non-contrast CT, digital tomosynthesis, and standard KUB and tomograms. J Endourol 25:A304–A305

    Google Scholar 

  • Wells IT, Raju VM, Rowberry BK et al (2011) Digital tomosynthesis – a new lease of life for the intravenous urogram? Br J Radiol 84:464–468

    Article  PubMed  CAS  Google Scholar 

  • Westphalen AC, Hsia RY, Maselli JH et al (2011) Radiological imaging of patients with suspected urinary tract stones: national trends, diagnoses, and predictors. Acad Emerg Med 18:699–707

    Article  PubMed  Google Scholar 

  • White WM, Zite NB, Gash J et al (2007) Low-dose computed tomography for the evaluation of flank pain in the pregnant population. J Endourol 21:1255–1260

    Article  PubMed  Google Scholar 

  • Wiesenthal JD, Ghiculete D, RJ DAH (2010) Evaluating the importance of mean stone density and skin-to-stone distance in predicting successful shock wave lithotripsy of renal and ureteric calculi. Urol Res 38:307–313

    Article  PubMed  Google Scholar 

  • Yilmaz S, Sindel T, Arslan G et al (1998) Renal colic: comparison of spiral CT, US and IVU in the detection of ureteral calculi. Eur Radiol 8:212–217

    Article  PubMed  CAS  Google Scholar 

  • Zilberman DE, Ferrandino MN, Preminger GM et al (2010) In vivo determination of urinary stone composition using dual energy computerized tomography with advanced post-acquisition processing. J Urol 184:2354–2359

    Article  PubMed  CAS  Google Scholar 

  • Zilberman DE, Tsivian M, Lipkin ME et al (2011) Low dose computerized tomography for detection of urolithiasis – its effectiveness in the setting of the urology clinic. J Urol 185:910–914

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael E. Lipkin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lipkin, M.E., Preminger, G.M. (2013). Imaging. In: Knoll, T., Pearle, M. (eds) Clinical Management of Urolithiasis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28732-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28732-9_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28731-2

  • Online ISBN: 978-3-642-28732-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics