Skip to main content

Genomics of Hepatocellular Carcinoma

  • Chapter
Book cover Primary Liver Cancer
  • 1302 Accesses

Abstract

Hepatocarcinogenesis is a multistep process developing from a normal liver through chronic hepatitis and cirrhosis to HCC. The pathogenesis of HCC is poorly understood at present. There is insufficient understanding to propose a robust general model of hepatic carcinogenesis, partly because the pathogenic host and environmental factors show significant regional variation, making such generalization difficult. However, with advances in molecular technology, there is a growing understanding of the molecular mechanisms in the development of HCC. In hepatocarcinogenesis, there is a strong link to increases in allelic losses, chromosomal changes, gene mutations, epigenetic alterations and alterations in molecular cellular pathways. In this chapter, special focus is placed on the multistep process of hepatocarcinogenesis, genetics, epigenetics and regulation of major signaling pathways involved in hepatocarcinogenesis. A detailed understanding of the molecular pathogenesis involved in the progression of HCC can improve our prevention and diagnostic tools for HCC and may help identify novel molecular targets for new therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Roncalli M. Hepatocellular nodules in cirrhosis: focus on diagnostic criteria on liver biopsy. A Western experience. Liver Transpl, 2004, 10: S9–S15.

    Google Scholar 

  2. Ferrell L D, Crawford J M, Dhillon A P, et al. Proposal for standardized criteria for the diagnosis of benign, borderline, and malignant hepatocellular lesions arising in chronic advanced liver disease. Am J Surg Pathol, 1993, 17: 1113–1123.

    PubMed  CAS  Google Scholar 

  3. Kobayashi M, Ikeda K, Hosaka T, et al. Dysplastic nodules frequently develop into hepatocellular carcinoma in patients with chronic viral hepatitis and cirrhosis. Cancer, 2006, 106: 636–647.

    PubMed  Google Scholar 

  4. Mion F, Grozel L, Boillot O, et al. Adult cirrhotic liver explants: precancerous lesions and undetected small hepatocellular carcinomas. Gastroenterology, 1996, 111: 1587–1592.

    PubMed  CAS  Google Scholar 

  5. Lee J M, Wong C M, Ng I O. Hepatitis B virus-associated multistep hepatocarcinogenesis: a stepwise increase in allelic alterations. Cancer Res, 2008, 68: 5988–5996.

    PubMed  CAS  Google Scholar 

  6. Thursz M R, Kwiatkowski D, Allsopp C E, et al. Association between an MHC class II allele and clearance of hepatitis B virus in the Gambia. N Engl J Med, 1995, 332: 1065–1069.

    PubMed  CAS  Google Scholar 

  7. Hohler T, Gerken G, Notghi A, et al. HLA-DRB1*1301 and *1302 protect against chronic hepatitis B. J Hepatol, 1997, 26: 503–507.

    PubMed  CAS  Google Scholar 

  8. Ahn S H, Han K H, Park J Y, et al. Association between hepatitis B virus infection and HLA-DR type in Korea. Hepatology, 2000, 31: 1371–1373.

    PubMed  CAS  Google Scholar 

  9. Bellamy R, Ruwende C, Corrah T, et al. Tuberculosis and chronic hepatitis B virus infection in Africans and variation in the vitamin D receptor gene. J Infect Dis, 1999, 179: 721–724.

    PubMed  CAS  Google Scholar 

  10. Deng G, Zhou G, Zhai Y, et al. Association of estrogen receptor alpha polymorphisms with susceptibility to chronic hepatitis B virus infection. Hepatology, 2004, 40: 318–326.

    PubMed  CAS  Google Scholar 

  11. King J K, Yeh S H, Lin M W, et al. Genetic polymorphisms in interferon pathway and response to interferon treatment in hepatitis B patients: A pilot study. Hepatology, 2002, 36: 1416–1424.

    PubMed  CAS  Google Scholar 

  12. Yu M W, Chang H C, Liaw Y F, et al. Familial risk of hepatocellular carcinoma among chronic hepatitis B carriers and their relatives. J Natl Cancer Inst, 2000, 92: 1159–1164.

    PubMed  CAS  Google Scholar 

  13. Yu M W, Chang H C, Chen P J, et al. Increased risk for hepatitis B-related liver cirrhosis in relatives of patients with hepatocellular carcinoma in northern Taiwan. Int J Epidemiol, 2002, 31: 1008–1015.

    PubMed  Google Scholar 

  14. Kummee P, Tangkijvanich P, Poovorawan Y, et al. Association of HLA-DRB1*13 and TNF-alpha gene polymorphisms with clearance of chronic hepatitis B infection and risk of hepatocellular carcinoma in Thai population. J Viral Hepat, 2007, 14: 841–848.

    PubMed  CAS  Google Scholar 

  15. Gu X, Qi P, Zhou F, et al. +49G>A polymorphism in the cytotoxic T-lymphocyte antigen-4 gene increases susceptibility to hepatitis B-related hepatocellular carcinoma in a male Chinese population. Hum Immunol, 2010, 71: 83–87.

    PubMed  CAS  Google Scholar 

  16. Patil M A, Gutgemann I, Zhang J, et al. Array-based comparative genomic hybridization reveals recurrent chromosomal aberrations and Jab1 as a potential target for 8q gain in hepatocellular carcinoma. Carcinogenesis, 2005, 26: 2050–2057.

    PubMed  CAS  Google Scholar 

  17. Yoon Y J, Chang H Y, Ahn S H, et al. MDM2 and p53 polymorphisms are associated with the development of hepatocellular carcinoma in patients with chronic hepatitis B virus infection. Carcinogenesis, 2008, 29:1192–1196.

    PubMed  CAS  Google Scholar 

  18. Migita K, Miyazoe S, Maeda Y, et al. Cytokine gene polymorphisms in Japanese patients with hepatitis B virus infection: association between TGF-beta1 polymorphisms and hepatocellular carcinoma. J Hepatol, 2005, 42: 505–510.

    PubMed  CAS  Google Scholar 

  19. Tseng C S, Tang K S, Lo H W, et al. UDP-glucuronosyltransferase 1A7 genetic polymorphisms are associated with hepatocellular carcinoma risk and onset age. Am J Gastroenterol, 2005, 100: 1758–1763.

    PubMed  CAS  Google Scholar 

  20. Shih W L, Yu M W, Chen P J, et al. Localization of a susceptibility locus for hepatocellular carcinoma to chromosome 4q in a hepatitis B hyperendemic area. Oncogene, 2006, 25: 3219–3124.

    PubMed  CAS  Google Scholar 

  21. Xu T, Zhu Y, Wei Q K, et al. A functional polymorphism in the miR-146a gene is associated with the risk for hepatocellular carcinoma. Carcinogenesis, 2008, 29: 2126–2131.

    PubMed  CAS  Google Scholar 

  22. Nagasue N, Yamanoi A, Takemoto Y, et al. Comparison between diploid and aneuploid hepatocellular carcinomas: a flow cytometric study. Br J Surg, 1992, 79: 667–670.

    PubMed  CAS  Google Scholar 

  23. Attallah A M, Tabll A A, Salem S F, et al. DNA ploidy of liver biopsies from patients with liver cirrhosis and hepatocellular carcinoma: a flow cytometric analysis. Cancer Lett, 1999, 142: 65–69.

    PubMed  CAS  Google Scholar 

  24. Kawai H, Suda T, Aoyagi Y, et al. Quantitative evaluation of genomic instability as a possible predictor for development of hepatocellular carcinoma: comparison of loss of heterozygosity and replication error. Hepatology, 2000, 31: 1246–1250.

    PubMed  CAS  Google Scholar 

  25. Kuroki T, Fujiwara Y, Tsuchiya E, et al. Accumulation of genetic changes during development and progression of hepatocellular carcinoma: loss of heterozygosity of chromosome arm 1p occurs at an early stage of hepatocarcinogenesis. Genes Chromosomes Cancer, 1995, 13: 163–167.

    PubMed  CAS  Google Scholar 

  26. Li S P, Wang H Y, Li J Q, et al. Genome-wide analyses on loss of heterozygosity in hepatocellular carcinoma in Southern China. J Hepatol, 2001, 34: 840–849.

    PubMed  CAS  Google Scholar 

  27. Nagai H, Pineau P, Tiollais P, et al. Comprehensive allelotyping of human hepatocellular carcinoma. Oncogene, 1997, 14: 2927–2933.

    PubMed  CAS  Google Scholar 

  28. Okabe H, Ikai I, Matsuo K, et al. Comprehensive allelotype study of hepatocellular carcinoma: potential differences in pathways to hepatocellular carcinoma between hepatitis B virus-positive and-negative tumors. Hepatology, 2000, 31: 1073–1079.

    PubMed  CAS  Google Scholar 

  29. Piao Z, Park C, Park J H, et al. Allelotype analysis of hepatocellular carcinoma. Int J Cancer, 1998, 75: 29–33.

    PubMed  CAS  Google Scholar 

  30. Bando K, Nagai H, Matsumoto S, et al. Identification of a 1-cM region of common deletion on 4q35 associated with progression of hepatocellular carcinoma. Genes Chromosomes Cancer, 1999, 25: 284–289.

    PubMed  CAS  Google Scholar 

  31. Bluteau O, Beaudoin J C, Pasturaud P, et al. Specific association between alcohol intake, high grade of differentiation and 4q34–q35 deletions in hepatocellular carcinomas identified by high resolution allelotyping. Oncogene, 2002, 21: 1225–1232.

    PubMed  CAS  Google Scholar 

  32. Chan K L, Lee J M, Guan X Y, et al. High-density allelotyping of chromosome 8p in hepatocellular carcinoma and clinicopathologic correlation. Cancer, 2002, 94: 3179–3185.

    PubMed  CAS  Google Scholar 

  33. Emi M, Fujiwara Y, Ohata H, et al. Allelic loss at chromosome band 8p21.3–p22 is associated with progression of hepatocellular carcinoma. Genes Chromosomes Cancer, 1993, 7: 152–157.

    PubMed  CAS  Google Scholar 

  34. Piao Z, Park C, Park J H, et al. Deletion mapping of chromosome 4q in hepatocellular carcinoma. Int J Cancer, 1998, 79: 356–360.

    PubMed  CAS  Google Scholar 

  35. Pineau P, Nagai H, Prigent S, et al. Identification of three distinct regions of allelic deletions on the short arm of chromosome 8 in hepatocellular carcinoma. Oncogene, 1999, 18: 3127–3134.

    PubMed  CAS  Google Scholar 

  36. Wong C M, Lee J M, Lau T C, et al. Clinicopathological significance of loss of heterozygosity on chromosome 13q in hepatocellular carcinoma. Clin Cancer Res, 2002, 8: 2266–2272.

    PubMed  CAS  Google Scholar 

  37. Tamura S, Nakamori S, Kuroki T, et al. Association of cumulative allelic losses with tumor aggressiveness in hepatocellular carcinoma. J Hepatol, 1997, 27: 669–676.

    PubMed  CAS  Google Scholar 

  38. Raidl M, Pirker C, Schulte-Hermann R, et al. Multiple chromosomal abnormalities in human liver (pre)neoplasia. J Hepatol, 2004, 40: 660–668.

    PubMed  CAS  Google Scholar 

  39. Kahng Y S, Lee Y S, Kim B K, et al. Loss of heterozygosity of chromosome 8p and 11p in the dysplastic nodule and hepatocellular carcinoma. J Gastroenterol Hepatol, 2003, 18: 430–436.

    PubMed  CAS  Google Scholar 

  40. Sun M, Eshleman J R, Ferrell L D, et al. An early lesion in hepatic carcinogenesis: loss of heterozygosity in human cirrhotic livers and dysplastic nodules at the 1p36–p34 region. Hepatology, 2001, 33: 1415–1424.

    PubMed  CAS  Google Scholar 

  41. Laurent-Puig P, Legoix P, Bluteau O, et al. Genetic alterations associated with hepatocellular carcinomas define distinct pathways of hepatocarcinogenesis. Gastroenterology, 2001, 120: 1763–1773.

    PubMed  CAS  Google Scholar 

  42. Kallioniemi A, Kallioniemi O P, Sudar D, et al. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science, 1992, 258: 818–821.

    PubMed  CAS  Google Scholar 

  43. Marchio A, Meddeb M, Pineau P, et al. Recurrent chromosomal abnormalities in hepatocellular carcinoma detected by comparative genomic hybridization. Genes Chromosomes Cancer, 1997, 18: 59–65.

    PubMed  CAS  Google Scholar 

  44. Zondervan P E, Wink J, Alers J C, et al. Molecular cytogenetic evaluation of virus-associated and non-viral hepatocellular carcinoma: analysis of 26 carcinomas and 12 concurrent dysplasias. J Pathol, 2000, 192: 207–215.

    PubMed  CAS  Google Scholar 

  45. Wong N, Lai P, Lee S W, et al. Assessment of genetic changes in hepatocellular carcinoma by comparative genomic hybridization analysis: relationship to disease stage, tumor size, and cirrhosis. Am J Pathol, 1999, 154: 37–43.

    PubMed  CAS  Google Scholar 

  46. Tornillo L, Carafa V, Richter J, et al. Marked genetic similarities between hepatitis B virus-positive and hepatitis C virus-positive hepatocellular carcinomas. J Pathol, 2000, 192: 307–312.

    PubMed  CAS  Google Scholar 

  47. Kusano N, Shiraishi K, Kubo K, et al. Genetic aberrations detected by comparative genomic hybridization in hepatocellular carcinomas: their relationship to clinicopathological features. Hepatology, 1999, 29: 1858–1862.

    PubMed  CAS  Google Scholar 

  48. Guan X Y, Fang Y, Sham J S, et al. Recurrent chromosome alterations in hepatocellular carcinoma detected by comparative genomic hybridization. Genes Chromosomes Cancer, 2000, 29: 110–116.

    PubMed  CAS  Google Scholar 

  49. Collonge-Rame M A, Bresson-Hadni S, Koch S, et al. Pattern of chromosomal imbalances in non-B virus related hepatocellular carcinoma detected by comparative genomic hybridization. Cancer Genet Cytogenet, 2001, 127: 49–52.

    PubMed  CAS  Google Scholar 

  50. Kusano N, Okita K, Shirahashi H, et al. Chromosomal imbalances detected by comparative genomic hybridization are associated with outcome of patients with hepatocellular carcinoma. Cancer, 2002, 94: 746–751.

    PubMed  Google Scholar 

  51. Sakakura C, Hagiwara A, Taniguchi H, et al. Chromosomal aberrations in human hepatocellular carcinomas associated with hepatitis C virus infection detected by comparative genomic hybridization. Br J Cancer, 1999, 80: 2034–2039.

    PubMed  CAS  Google Scholar 

  52. Fang W, Piao Z, Simon D, et al. Mapping of a minimal deleted region in human hepatocellular carcinoma to 1p36.13–p36.23 and mutational analysis of the RIZ (PRDM2) gene localized to the region. Genes Chromosomes Cancer, 2000, 28: 269–275.

    PubMed  CAS  Google Scholar 

  53. Russell S E, McIlhatton M A, Burrows J F, et al. Isolation and mapping of a human septin gene to a region on chromosome 17q, commonly deleted in sporadic epithelial ovarian tumors. Cancer Res, 2000, 60: 4729–4734.

    PubMed  CAS  Google Scholar 

  54. Albertson D G, Ylstra B, Segraves R, et al. Quantitative mapping of amplicon structure by array CGH identifies CYP24 as a candidate oncogene. Nat Genet, 2000, 25: 144–146.

    PubMed  CAS  Google Scholar 

  55. Pinkel D, Segraves R, Sudar D, et al. High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat Genet, 1998, 20: 207–211.

    PubMed  CAS  Google Scholar 

  56. Ching Y P, Wong C M, Chan S F, et al. Deleted in liver cancer (DLC) 2 encodes a RhoGAP protein with growth suppressor function and is underexpressed in hepatocellular carcinoma. J Biol Chem, 2003, 278: 10824–10830.

    PubMed  CAS  Google Scholar 

  57. Wong C C, Wong C M, Ko F C, et al. Deleted in liver cancer 1 (DLC1) negatively regulates Rho/ROCK/MLC pathway in hepatocellular carcinoma. PLoS One, 2008, 3: e2779.

    PubMed  Google Scholar 

  58. Leung T H, Ching Y P, Yam J W, et al. Deleted in liver cancer 2 (DLC2) suppresses cell transformation by means of inhibition of RhoA activity. Proc Natl Acad Sci USA, 2005, 102: 15207–15212.

    PubMed  CAS  Google Scholar 

  59. Wong C M, Yam J W, Ching Y P, et al. Rho GTPase-activating protein deleted in liver cancer suppresses cell proliferation and invasion in hepatocellular carcinoma. Cancer Res, 2005, 65: 8861–8868.

    PubMed  CAS  Google Scholar 

  60. Zhou X, Thorgeirsson S S, Popescu N C. Restoration of DLC-1 gene expression induces apoptosis and inhibits both cell growth and tumorigenicity in human hepatocellular carcinoma cells. Oncogene, 2004, 23: 1308–1313.

    PubMed  CAS  Google Scholar 

  61. Cheng I K, Ching A K, Chan T C, et al. Reduced CRYL1 expression in hepatocellular carcinoma confers cell growth advantages and correlates with adverse patient prognosis. J Pathol, 2009, 220: 348–360.

    Google Scholar 

  62. Tomoda K, Kubota Y, Kato J. Degradation of the cyclin-dependent-kinase inhibitor p27Kip1 is instigated by Jab1. Nature, 1999, 398: 160–165.

    PubMed  CAS  Google Scholar 

  63. Ruddon R W (ed). Cancer Biology. 3rd edn. New York: Oxford University Press, 1995.

    Google Scholar 

  64. Ozturk M. p53 mutation in hepatocellular carcinoma after aflatoxin exposure. Lancet, 1991, 338: 1356–1359.

    PubMed  CAS  Google Scholar 

  65. Scorsone K A, Zhou Y Z, Butel J S, et al. p53 mutations cluster at codon 249 in hepatitis B virus-positive hepatocellular carcinomas from China. Cancer Res, 1992, 52: 1635–1638.

    PubMed  CAS  Google Scholar 

  66. Ng I O, Chung L P, Tsang S W, et al. p53 gene mutation spectrum in hepatocellular carcinomas in Hong Kong Chinese. Oncogene, 1994, 9: 985–990.

    PubMed  CAS  Google Scholar 

  67. Ng I O, Lai E C, Chan A S, et al. Overexpression of p53 in hepatocellular carcinomas: a clinicopathological and prognostic correlation. J Gastroenterol Hepatol, 1995, 10: 250–255.

    PubMed  CAS  Google Scholar 

  68. Hsu I C, Metcalf R A, Sun T, et al. Mutational hotspot in the p53 gene in human hepatocellular carcinomas. Nature, 1991, 350: 427–428.

    PubMed  CAS  Google Scholar 

  69. Dumenco L, Oguey D, Wu J, et al. Introduction of a murine p53 mutation corresponding to human codon 249 into a murine hepatocyte cell line results in growth advantage, but not in transformation. Hepatology, 1995, 22: 1279–1288.

    PubMed  CAS  Google Scholar 

  70. Ponchel F, Puisieux A, Tabone E, et al. Hepatocarcinoma-specific mutant p53-249ser induces mitotic activity but has no effect on transforming growth factor beta 1-mediated apoptosis. Cancer Res, 1994, 54: 2064–2068.

    PubMed  CAS  Google Scholar 

  71. Eferl R, Ricci R, Kenner L, et al. Liver tumor development. c-Jun antagonizes the proapoptotic activity of p53. Cell, 2003, 112: 181–192.

    PubMed  CAS  Google Scholar 

  72. Wong C M, Fan S T, Ng I O. beta-Catenin mutation and overexpression in hepatocellular carcinoma: clinicopathologic and prognostic significance. Cancer, 2001, 92: 136–145.

    PubMed  CAS  Google Scholar 

  73. Terris B, Pineau P, Bregeaud L, et al. Close correlation between beta-catenin gene alterations and nuclear accumulation of the protein in human hepatocellular carcinomas. Oncogene, 1999, 18: 6583–6588.

    PubMed  CAS  Google Scholar 

  74. de La Coste A, Romagnolo B, Billuart P, et al. Somatic mutations of the beta-catenin gene are frequent in mouse and human hepatocellular carcinomas. Proc Natl Acad Sci USA, 1998, 95: 8847–8851.

    Google Scholar 

  75. Hsu H C, Jeng Y M, Mao T L, et al. beta-Catenin mutations are associated with a subset of low-stage hepatocellular carcinoma negative for hepatitis B virus and with favorable prognosis. Am J Pathol, 2000, 157: 763–770.

    PubMed  CAS  Google Scholar 

  76. Taniguchi K, Roberts L R, Aderca I N, et al. Mutational spectrum of beta-catenin, AXIN1, and AXIN2 in hepatocellular carcinomas and hepatoblastomas. Oncogene, 2002, 21: 4863–4871.

    PubMed  CAS  Google Scholar 

  77. Nhieu J T, Renard C A, Wei Y, et al. Nuclear accumulation of mutated beta-catenin in hepatocellular carcinoma is associated with increased cell proliferation. Am J Pathol, 1999, 155: 703–710.

    PubMed  CAS  Google Scholar 

  78. Cieply B, Zeng G, Proverbs-Singh T, et al. Unique phenotype of hepatocellular cancers with exon-3 mutations in beta-catenin gene. Hepatology, 2009, 49: 821–831.

    PubMed  CAS  Google Scholar 

  79. Nishida N, Nishimura T, Nagasaka T, et al. Extensive methylation is associated with beta-catenin mutations in hepatocellular carcinoma: evidence for two distinct pathways of human hepatocarcinogenesis. Cancer Res, 2007, 67: 4586–4594.

    PubMed  CAS  Google Scholar 

  80. Botstein D, Risch N. Discovering genotypes underlying human phenotypes: past successes for mendelian disease, future approaches for complex disease. Nat Genet, 2003, 33 Suppl: 228–237.

    PubMed  CAS  Google Scholar 

  81. Risch N J. Searching for genetic determinants in the new millennium. Nature, 2000, 405: 847–856.

    PubMed  CAS  Google Scholar 

  82. Shin H D, Park B L, Kim L H, et al. Interleukin 10 haplotype associated with increased risk of hepatocellular carcinoma. Hum Mol Genet, 2003, 12: 901–906.

    PubMed  CAS  Google Scholar 

  83. Miyazoe S, Hamasaki K, Nakata K, et al. Influence of interleukin-10 gene promoter polymorphisms on disease progression in patients chronically infected with hepatitis B virus. Am J Gastroenterol, 2002, 97: 2086–2092.

    PubMed  CAS  Google Scholar 

  84. Zhai Y, Zhou G, Deng G, et al. Estrogen receptor alpha polymorphisms associated with susceptibility to hepatocellular carcinoma in hepatitis B virus carriers. Gastroenterology, 2006, 130: 2001–2009.

    PubMed  CAS  Google Scholar 

  85. Saffroy R, Pham P, Chiappini F, et al. The MTHFR 677C>T polymorphism is associated with an increased risk of hepatocellular carcinoma in patients with alcoholic cirrhosis. Carcinogenesis, 2004, 25: 1443–1448.

    PubMed  CAS  Google Scholar 

  86. Yuan J M, Lu S C, Van Den Berg D, et al. Genetic polymorphisms in the methylenetetrahydrofolate reductase and thymidylate synthase genes and risk of hepatocellular carcinoma. Hepatology, 2007, 46: 749–758.

    PubMed  CAS  Google Scholar 

  87. Wang X Q, Luk J M, Garcia-Barcelo M, et al. Liver intestine-cadherin (CDH17) haplotype is associated with increased risk of hepatocellular carcinoma. Clin Cancer Res, 2006, 12: 5248–5252.

    PubMed  CAS  Google Scholar 

  88. Segat L, Milanese M, Pirulli D, et al. Secreted protein acidic and rich in cysteine (SPARC) gene polymorphism association with hepatocellular carcinoma in Italian patients. J Gastroenterol Hepatol, 2009, 24: 1840–1846.

    PubMed  CAS  Google Scholar 

  89. Kim Y S, Cheong J Y, Cho S W, et al. A functional snp of the interleukin-18 gene is associated with the presence of hepatocellular carcinoma in hepatitis B virus-infected patients. Dig Dis Sci, 2009, 54: 2722–2728.

    PubMed  CAS  Google Scholar 

  90. Ezzikouri S, El Feydi A E, Benazzouz M, et al. Single nucleotide polymorphism in DNMT3B promoter and its association with hepatocellular carcinoma in a Moroccan population. Infect Genet Evol, 2009, 9: 877–881.

    PubMed  CAS  Google Scholar 

  91. Wu Y, Lin J S. DNA methyltransferase 3B promoter polymorphism and its susceptibility to primary hepatocellular carcinoma in the Chinese Han nationality population: a case-control study. World J Gastroenterol, 2007, 13: 6082–6086.

    PubMed  CAS  Google Scholar 

  92. Hunter D J, Kraft P, Jacobs K B, et al. A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. Nat Genet, 2007, 39: 870–874.

    PubMed  CAS  Google Scholar 

  93. Easton D F, Pooley K A, Dunning A M, et al. Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 2007, 447: 1087–1093.

    PubMed  CAS  Google Scholar 

  94. Li E, Bestor T H, Jaenisch R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell, 1992, 69: 915–926.

    PubMed  CAS  Google Scholar 

  95. Wong N, Lam W C, Lai P B, et al. Hypomethylation of chromosome 1 heterochromatin DNA correlates with q-arm copy gain in human hepatocellular carcinoma. Am J Pathol, 2001, 159: 465–471.

    PubMed  CAS  Google Scholar 

  96. Saito Y, Kanai Y, Sakamoto M, et al. Expression of mRNA for DNA methyltransferases and methyl-CpG-binding proteins and DNA methylation status on CpG islands and pericentromeric satellite regions during human hepatocarcinogenesis. Hepatology, 2001, 33: 561–568.

    PubMed  CAS  Google Scholar 

  97. Nambu S, Inoue K, Saski H. Site-specific hypomethylation of the c-myc oncogene in human hepatocellular carcinoma. Jpn J Cancer Res, 1987, 78: 695–704.

    PubMed  CAS  Google Scholar 

  98. Lin C H, Hsieh S Y, Sheen I S, et al. Genome-wide hypomethylation in hepatocellular carcinogenesis. Cancer Res, 2001, 61: 4238–4243.

    PubMed  CAS  Google Scholar 

  99. Antequera F, Bird A. Number of CpG islands and genes in human and mouse. Proc Natl Acad Sci USA, 1993, 90: 11995–11999.

    PubMed  CAS  Google Scholar 

  100. Panning B, Jaenisch R. RNA and the epigenetic regulation of X chromosome inactivation. Cell, 1998, 93: 305–308.

    PubMed  CAS  Google Scholar 

  101. Greger V, Passarge E, Hopping W, et al. Epigenetic changes may contribute to the formation and spontaneous regression of retinoblastoma. Hum Genet, 1989, 83: 155–158.

    PubMed  CAS  Google Scholar 

  102. Kanai Y, Ushijima S, Hui A M, et al. The E-cadherin gene is silenced by CpG methylation in human hepatocellular carcinomas. Int J Cancer, 1997, 71: 355–359.

    PubMed  CAS  Google Scholar 

  103. Kaneto H, Sasaki S, Yamamoto H, et al. Detection of hypermethylation of the p16 (INK4A) gene promoter in chronic hepatitis and cirrhosis associated with hepatitis B or C virus. Gut, 2001, 48: 372–377.

    PubMed  CAS  Google Scholar 

  104. Oh B K, Kim H, Park H J, et al. DNA methyltransferase expression and DNA methylation in human hepatocellular carcinoma and their clinicopathological correlation. Int J Mol Med, 2007, 20: 65–73.

    PubMed  CAS  Google Scholar 

  105. Lee S, Lee H J, Kim J H, et al. Aberrant CpG island hypermethylation along multistep hepatocarcinogenesis. Am J Pathol, 2003, 163: 1371–1378.

    PubMed  CAS  Google Scholar 

  106. Schagdarsurengin U, Wilkens L, Steinemann D, et al. Frequent epigenetic inactivation of the RASSF1A gene in hepatocellular carcinoma. Oncogene, 2003, 22: 1866–1871.

    PubMed  CAS  Google Scholar 

  107. Zhong S, Tang M W, Yeo W, et al. Silencing of GSTP1 gene by CpG island DNA hypermethylation in HBV-associated hepatocellular carcinomas. Clin Cancer Res, 2002, 8: 1087–1092.

    PubMed  CAS  Google Scholar 

  108. Yoshikawa H, Matsubara K, Qian G S, et al. SOCS-1, a negative regulator of the JAK/STAT pathway, is silenced by methylation in human hepatocellular carcinoma and shows growth-suppression activity. Nat Genet, 2001, 28: 29–35.

    PubMed  CAS  Google Scholar 

  109. Shih Y L, Shyu R Y, Hsieh C B, et al. Promoter methylation of the secreted frizzled-related protein 1 gene SFRP1 is frequent in hepatocellular carcinoma. Cancer, 2006, 107: 579–590.

    PubMed  CAS  Google Scholar 

  110. Wong C M, Lee J M, Ching Y P, et al. Genetic and epigenetic alterations of DLC-1 gene in hepatocellular carcinoma. Cancer Res, 2003, 63: 7646–7651.

    PubMed  CAS  Google Scholar 

  111. Wang L, Wang W L, Zhang Y, et al. Epigenetic and genetic alterations of PTEN in hepatocellular carcinoma. Hepatol Res, 2007, 37: 389–396.

    PubMed  CAS  Google Scholar 

  112. Wong I H, Lo Y M, Zhang J, et al. Detection of aberrant p16 methylation in the plasma and serum of liver cancer patients. Cancer Res, 1999, 59: 71–73.

    PubMed  CAS  Google Scholar 

  113. Zhang Y J, Wu H C, Shen J, et al. Predicting hepatocellular carcinoma by detection of aberrant promoter methylation in serum DNA. Clin Cancer Res, 2007, 13: 2378–2384.

    PubMed  CAS  Google Scholar 

  114. Lee R C, Feinbaum R L, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993, 75: 843–854.

    PubMed  CAS  Google Scholar 

  115. Alvarez-Garcia I, Miska E A. MicroRNA functions in animal development and human disease. Development, 2005, 132: 4653–4662.

    PubMed  CAS  Google Scholar 

  116. Slack F J, Basson M, Liu Z, et al. The lin-41 RBCC gene acts in the C. elegans heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor. Mol Cell, 2000, 5: 659–669.

    PubMed  CAS  Google Scholar 

  117. Calin G A, Dumitru C D, Shimizu M, et al. Frequent deletions and downregulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA, 2002, 99: 15524–15529.

    PubMed  CAS  Google Scholar 

  118. Gramantieri L, Ferracin M, Fornari F, et al. Cyclin G1 is a target of miR-122a, a microRNA frequently down-regulated in human hepatocellular carcinoma. Cancer Res, 2007, 67: 6092–6099.

    PubMed  CAS  Google Scholar 

  119. Meng F, Henson R, Wehbe-Janek H, et al. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology, 2007, 133: 647–658.

    PubMed  CAS  Google Scholar 

  120. Murakami Y, Yasuda T, Saigo K, et al. Comprehensive analysis of micro RNA expression patterns in hepatocellular carcinoma and non-tumorous tissues. Oncogene, 2006, 25: 2537–2545.

    PubMed  CAS  Google Scholar 

  121. Budhu A, Jia H L, Forgues M, et al. Identification of metastasis-related micro RNAs in hepatocellular carcinoma. Hepatology, 2008, 47: 897–907.

    PubMed  CAS  Google Scholar 

  122. Jiang J, Gusev Y, Aderca I, et al. Association of micro RNA expression in hepatocellular carcinomas with hepatitis infection, cirrhosis, and patient survival. Clin Cancer Res, 2008, 14: 419–427.

    PubMed  CAS  Google Scholar 

  123. Wang Y, Kato N, Jazag A, et al. Hepatitis C virus core protein is a potent inhibitor of RNA silencing-based antiviral response. Gastroenterology, 2006, 130: 883–892.

    PubMed  CAS  Google Scholar 

  124. Melo S A, Ropero S, Moutinho C, et al. A TARBP2 mutation in human cancer impairs micro RNA processing and DICER1 function. Nat Genet, 2009, 41: 365–370.

    PubMed  CAS  Google Scholar 

  125. He L, Thomson J M, Hemann M T, et al. A micro RNA polycistron as a potential human oncogene. Nature, 2005, 435: 828–833.

    PubMed  CAS  Google Scholar 

  126. Fornari F, Gramantieri L, Ferracin M, et al. MiR-221 controls CDKN1C/p57 and CDKN1B/p27 expression in human hepatocellular carcinoma. Oncogene, 2008, 27: 5651–5661.

    PubMed  CAS  Google Scholar 

  127. Pineau P, Volinia S, McJunkin K, et al. miR-221 overexpression contributes to liver tumorigenesis. Proc Natl Acad Sci USA, 2010, 107: 264–269.

    PubMed  CAS  Google Scholar 

  128. Coulouarn C, Factor V M, Andersen J B, et al. Loss of miR-122 expression in liver cancer correlates with suppression of the hepatic phenotype and gain of metastatic properties. Oncogene, 2009, 28: 3526–3536.

    PubMed  CAS  Google Scholar 

  129. Lin C J, Gong H Y, Tseng H C, et al. miR-122 targets an anti-apoptotic gene, Bcl-w, in human hepatocellular carcinoma cell lines. Biochem Biophys Res Commun, 2008, 375: 315–320.

    PubMed  CAS  Google Scholar 

  130. Ji J, Shi J, Budhu A, et al. MicroRNA expression, survival, and response to interferon in liver cancer. N Engl J Med, 2009, 361: 1437–1447.

    PubMed  CAS  Google Scholar 

  131. Kota J, Chivukula R R, O’Donnell K A, et al. Therapeutic micro RNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell, 2009, 137: 1005–1017.

    PubMed  CAS  Google Scholar 

  132. Chen X, Cheung S T, So S, et al. Gene expression patterns in human liver cancers. Mol Biol Cell, 2002, 13: 1929–1939.

    PubMed  CAS  Google Scholar 

  133. Delpuech O, Trabut J B, Carnot F, et al. Identification, using cDNA macroarray analysis, of distinct gene expression profiles associated with pathological and virological features of hepatocellular carcinoma. Oncogene, 2002, 21: 2926–2937.

    PubMed  CAS  Google Scholar 

  134. Goldenberg D, Ayesh S, Schneider T, et al. Analysis of differentially expressed genes in hepatocellular carcinoma using cDNA arrays. Mol Carcinog, 2002, 33: 113–124.

    PubMed  CAS  Google Scholar 

  135. Okabe H, Satoh S, Kato T, et al. Genome-wide analysis of gene expression in human hepatocellular carcinomas using cDNA microarray: identification of genes involved in viral carcinogenesis and tumor progression. Cancer Res, 2001, 61: 2129–2137.

    PubMed  CAS  Google Scholar 

  136. Shirota Y, Kaneko S, Honda M, et al. Identification of differentially expressed genes in hepatocellular carcinoma with cDNA microarrays. Hepatology, 2001, 33: 832–840.

    PubMed  CAS  Google Scholar 

  137. Xu L, Hui L, Wang S, et al. Expression profiling suggested a regulatory role of liver-enriched transcription factors in human hepatocellular carcinoma. Cancer Res, 2001, 61: 3176–3181.

    PubMed  CAS  Google Scholar 

  138. Xu X R, Huang J, Xu Z G, et al. Insight into hepatocellular carcinogenesis at transcriptome level by comparing gene expression profiles of hepatocellular carcinoma with those of corresponding noncancerous liver. Proc Natl Acad Sci USA, 2001, 98: 15089–15094.

    PubMed  CAS  Google Scholar 

  139. Iizuka N, Oka M, Yamada-Okabe H, et al. Comparison of gene expression profiles between hepatitis B virus-and hepatitis C virus-infected hepatocellular carcinoma by oligonucleotide microarray data on the basis of a supervised learning method. Cancer Res, 2002, 62: 3939–3944.

    PubMed  CAS  Google Scholar 

  140. Westermarck J, Kahari V M. Regulation of matrix metalloproteinase expression in tumor invasion. Faseb J, 1999, 13: 781–792.

    PubMed  CAS  Google Scholar 

  141. Maatta M, Soini Y, Liakka A, et al. Differential expression of matrix metalloproteinase (MMP)-2, MMP-9, and membrane type 1-MMP in hepatocellular and pancreatic adenocarcinoma: implications for tumor progression and clinical prognosis. Clin Cancer Res, 2000, 6: 2726–2734.

    PubMed  CAS  Google Scholar 

  142. Clark E A, Golub T R, Lander E S, et al. Genomic analysis of metastasis reveals an essential role for RhoC. Nature, 2000, 406: 532–535.

    PubMed  CAS  Google Scholar 

  143. Hakem A, Sanchez-Sweatman O, You-Ten A, et al. RhoC is dispensable for embryogenesis and tumor initiation but essential for metastasis. Genes Dev, 2005, 19: 1974–1979.

    PubMed  CAS  Google Scholar 

  144. Wang W, Yang L Y, Huang G W, et al. Genomic analysis reveals RhoC as a potential marker in hepatocellular carcinoma with poor prognosis. Br J Cancer, 2004, 90: 2349–2355.

    PubMed  CAS  Google Scholar 

  145. Wang W, Yang L Y, Yang Z L, et al. Expression and significance of RhoC gene in hepatocellular carcinoma. World J Gastroenterol, 2003, 9: 1950–1953.

    PubMed  CAS  Google Scholar 

  146. Huang J, Sheng H H, Shen T, et al. Correlation between genomic DNA copy number alterations and transcriptional expression in hepatitis B virus-associated hepatocellular carcinoma. FEBS Lett, 2006, 580: 3571–3581.

    PubMed  CAS  Google Scholar 

  147. Lee S A, Ho C, Roy R, et al. Integration of genomic analysis and in vivo transfection to identify sprouty 2 as a candidate tumor suppressor in liver cancer. Hepatology, 2008, 47: 1200–1210.

    PubMed  CAS  Google Scholar 

  148. El-Serag H B, Rudolph K L. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology, 2007, 132: 2557–2576.

    PubMed  CAS  Google Scholar 

  149. Villanueva A, Newell P, Chiang D Y, et al. Genomics and signaling pathways in hepatocellular carcinoma. Semin Liver Dis, 2007, 27: 55–76.

    PubMed  CAS  Google Scholar 

  150. Huelsken J, Behrens J. The Wnt signalling pathway. J Cell Sci, 2002, 115: 3977–3978.

    PubMed  CAS  Google Scholar 

  151. Clevers H. Wnt/beta-catenin signaling in development and disease. Cell, 2006, 127: 469–480.

    PubMed  CAS  Google Scholar 

  152. Fodde R, Brabletz T. Wnt/beta-catenin signaling in cancer stemness and malignant behavior. Curr Opin Cell Biol, 2007, 19: 150–158.

    PubMed  CAS  Google Scholar 

  153. He T C, Sparks A B, Rago C, et al. Identification of c-myc as a target of the APC pathway. Science, 1998, 281: 1509–1512.

    PubMed  CAS  Google Scholar 

  154. Tetsu O, McCormick F. beta-Catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature, 1999, 398: 422–426.

    PubMed  CAS  Google Scholar 

  155. Huang H, Fujii H, Sankila A, et al. beta-Catenin mutations are frequent in human hepatocellular carcinomas associated with hepatitis C virus infection. Am J Pathol, 1999, 155: 1795–1801.

    PubMed  CAS  Google Scholar 

  156. Cui J, Zhou X, Liu Y, et al. Wnt signaling in hepatocellular carcinoma: analysis of mutation and expression of beta-catenin, T-cell factor-4 and glycogen synthase kinase 3-beta genes. J Gastroenterol Hepatol, 2003, 18: 280–287.

    PubMed  CAS  Google Scholar 

  157. Cottrell S, Bicknell D, Kaklamanis L, et al. Molecular analysis of APC mutations in familial adenomatous polyposis and sporadic colon carcinomas. Lancet, 1992, 340: 626–630.

    PubMed  CAS  Google Scholar 

  158. Yang B, Guo M, Herman J G, et al. Aberrant promoter methylation profiles of tumor suppressor genes in hepatocellular carcinoma. Am J Pathol, 2003, 163: 1101–1107.

    PubMed  CAS  Google Scholar 

  159. Colnot S, Decaens T, Niwa-Kawakita M, et al. Liver-targeted disruption of Apc in mice activates beta-catenin signaling and leads to hepatocellular carcinomas. Proc Natl Acad Sci USA, 2004, 101: 17216–17221.

    PubMed  CAS  Google Scholar 

  160. Ryo A, Nakamura M, Wulf G, et al. Pin1 regulates turnover and subcellular localization of beta-catenin by inhibiting its interaction with APC. Nat Cell Biol, 2001, 3: 793–801.

    PubMed  CAS  Google Scholar 

  161. Pang R, Yuen J, Yuen M F, et al. PIN1 overexpression and beta-catenin gene mutations are distinct oncogenic events in human hepatocellular carcinoma. Oncogene, 2004, 23: 4182–4186.

    PubMed  CAS  Google Scholar 

  162. Satoh S, Daigo Y, Furukawa Y, et al. AXIN1 mutations in hepatocellular carcinomas, and growth suppression in cancer cells by virus-mediated transfer of AXIN1. Nat Genet, 2000, 24: 245–250.

    PubMed  CAS  Google Scholar 

  163. Chan D W, Chan C Y, Yam J W, et al. Prickle-1 negatively regulates Wnt/beta-catenin pathway by promoting Dishevelled ubiquitination/ degradation in liver cancer. Gastroenterology, 2006, 131: 1218–1227.

    PubMed  CAS  Google Scholar 

  164. Uematsu K, He B, You L, et al. Activation of the Wnt pathway in non small cell lung cancer: evidence of dishevelled overexpression. Oncogene, 2003, 22: 7218–7221.

    PubMed  CAS  Google Scholar 

  165. Uematsu K, Kanazawa S, You L, et al. Wnt pathway activation in mesothelioma: evidence of Dishevelled overexpression and transcriptional activity of beta-catenin. Cancer Res, 2003, 63: 4547–4551.

    PubMed  CAS  Google Scholar 

  166. Yau T O, Chan C Y, Chan K L, et al. HDPR1, a novel inhibitor of the WNT/beta-catenin signaling, is frequently downregulated in hepatocellular carcinoma: involvement of methylation-mediated gene silencing. Oncogene, 2005, 24: 1607–1614.

    PubMed  CAS  Google Scholar 

  167. Bengochea A, de Souza M M, Lefrancois L, et al. Common dysregulation of Wnt/Frizzled receptor elements in human hepatocellular carcinoma. Br J Cancer, 2008, 99: 143–150.

    PubMed  CAS  Google Scholar 

  168. Kim M, Lee H C, Tsedensodnom O, et al. Functional interaction between Wnt3 and Frizzled-7 leads to activation of the Wnt/beta-catenin signaling pathway in hepatocellular carcinoma cells. J Hepatol, 2008, 48: 780–791.

    PubMed  CAS  Google Scholar 

  169. Kawano Y, Kypta R. Secreted antagonists of the Wnt signalling pathway. J Cell Sci, 2003, 116: 2627–2634.

    PubMed  CAS  Google Scholar 

  170. Suzuki H, Gabrielson E, Chen W, et al. A genomic screen for genes upregulated by demethylation and histone deacetylase inhibition in human colorectal cancer. Nat Genet, 2002, 31: 141–149.

    PubMed  CAS  Google Scholar 

  171. Takagi H, Sasaki S, Suzuki H, et al. Frequent epigenetic inactivation of SFRP genes in hepatocellular carcinoma. J Gastroenterol, 2008, 43: 378–389.

    PubMed  Google Scholar 

  172. Mao B, Wu W, Li Y, et al. LDL-receptor-related protein 6 is a receptor for Dickkopf proteins. Nature, 2001, 411: 321–325.

    PubMed  CAS  Google Scholar 

  173. Qin X, Zhang H, Zhou X, et al. Proliferation and migration mediated by Dkk-1/Wnt/beta-catenin cascade in a model of hepatocellular carcinoma cells. Transl Res, 2007, 150: 281–294.

    PubMed  CAS  Google Scholar 

  174. Merle P, de la Monte S, Kim M, et al. Functional consequences of frizzled-7 receptor overexpression in human hepatocellular carcinoma. Gastroenterology, 2004, 127: 1110–1122.

    PubMed  CAS  Google Scholar 

  175. Merle P, Kim M, Herrmann M, et al. Oncogenic role of the frizzled-7/beta-catenin pathway in hepatocellular carcinoma. J Hepatol, 2005, 43: 854–862.

    PubMed  CAS  Google Scholar 

  176. Tolwinski N S, Wehrli M, Rives A, et al. Wg/Wnt signal can be transmitted through arrow/LRP5,6 and Axin independently of Zw3/Gsk3beta activity. Dev Cell, 2003, 4: 407–418.

    PubMed  CAS  Google Scholar 

  177. Tamai K, Semenov M, Kato Y, et al. LDL-receptor-related proteins in Wnt signal transduction. Nature, 2000, 407: 530–535.

    PubMed  CAS  Google Scholar 

  178. Satoh T, Kaziro Y. Ras in signal transduction. Semin Cancer Biol, 1992, 3: 169–177.

    PubMed  CAS  Google Scholar 

  179. Vojtek A B, Der C J. Increasing complexity of the Ras signaling pathway. J Biol Chem, 1998, 273: 19925–19928.

    PubMed  CAS  Google Scholar 

  180. Downward J. Ras signalling and apoptosis. Curr Opin Genet Dev, 1998, 8: 49–54.

    PubMed  CAS  Google Scholar 

  181. Avruch J, Zhang X F, Kyriakis J M. Raf meets Ras: completing the framework of a signal transduction pathway. Trends Biochem Sci, 1994, 19: 279–283.

    PubMed  CAS  Google Scholar 

  182. Ogata N, Kamimura T, Asakura H. Point mutation, allelic loss and increased methylation of c-Ha-ras gene in human hepatocellular carcinoma. Hepatology, 1991, 13: 31–37.

    PubMed  CAS  Google Scholar 

  183. Weihrauch M, Benicke M, Lehnert G, et al. Frequent k-ras-2 mutations and p16(INK4A)methylation in hepatocellular carcinomas in workers exposed to vinyl chloride. Br J Cancer, 2001, 84: 982–989.

    PubMed  CAS  Google Scholar 

  184. Nonomura A, Ohta G, Hayashi M, et al. Immunohistochemical detection of ras oncogene p21 product in liver cirrhosis and hepatocellular carcinoma. Am J Gastroenterol, 1987, 82: 512–518.

    PubMed  CAS  Google Scholar 

  185. Wang Q, Lin Z Y, Feng X L. Alterations in metastatic properties of hepatocellular carcinoma cell following H-ras oncogene transfection. World J Gastroenterol, 2001, 7: 335–339.

    PubMed  CAS  Google Scholar 

  186. Jacob J R, Tennant B C. Transformation of immortalized woodchuck hepatic cell lines with the c-Ha-ras proto-oncogene. Carcinogenesis, 1996, 17: 631–636.

    PubMed  CAS  Google Scholar 

  187. Osada S, Kanematsu M, Imai H, et al. Evaluation of extracellular signal regulated kinase expression and its relation to treatment of hepatocellular carcinoma. J Am Coll Surg, 2005, 201: 405–411.

    PubMed  Google Scholar 

  188. Schuierer M M, Bataille F, Weiss T S, et al. Raf kinase inhibitor protein is downregulated in hepatocellular carcinoma. Oncol Rep, 2006, 16: 451–456.

    PubMed  CAS  Google Scholar 

  189. Lee H C, Tian B, Sedivy J M, et al. Loss of Raf kinase inhibitor protein promotes cell proliferation and migration of human hepatoma cells. Gastroenterology, 2006, 131: 1208–1217.

    PubMed  CAS  Google Scholar 

  190. Yoshida T, Hisamoto T, Akiba J, et al. Spreds, inhibitors of the Ras/ERK signal transduction, are dysregulated in human hepatocellular carcinoma and linked to the malignant phenotype of tumors. Oncogene, 2006, 25: 6056–6066.

    PubMed  CAS  Google Scholar 

  191. Vos M D, Ellis C A, Bell A, et al. Ras uses the novel tumor suppressor RASSF1 as an effector to mediate apoptosis. J Biol Chem, 2000, 275: 35669–35672.

    PubMed  CAS  Google Scholar 

  192. Calvisi D F, Ladu S, Gorden A, et al. Ubiquitous activation of Ras and JAK/STAT pathways in human HCC. Gastroenterology, 2006, 130: 1117–1128.

    PubMed  CAS  Google Scholar 

  193. Zhong S, Yeo W, Tang M W, et al. Intensive hypermethylation of the CpG island of Ras association domain family 1A in hepatitis B virus-associated hepatocellular carcinomas. Clin Cancer Res, 2003, 9: 3376–3382.

    PubMed  CAS  Google Scholar 

  194. Samuels Y, Wang Z, Bardelli A, et al. High frequency of mutations of the PIK3CA gene in human cancers. Science, 2004, 304: 554.

    PubMed  CAS  Google Scholar 

  195. Tanaka Y, Kanai F, Tada M, et al. Absence of PIK3CA hotspot mutations in hepatocellular carcinoma in Japanese patients. Oncogene, 2006, 25: 2950–2952.

    PubMed  CAS  Google Scholar 

  196. Lee J W, Soung Y H, Kim S Y, et al. PIK3CA gene is frequently mutated in breast carcinomas and hepatocellular carcinomas. Oncogene, 2005, 24: 1477–1480.

    PubMed  CAS  Google Scholar 

  197. Hu T H, Huang C C, Lin P R, et al. Expression and prognostic role of tumor suppressor gene PTEN/MMAC1/TEP1 in hepatocellular carcinoma. Cancer, 2003, 97: 1929–1940.

    PubMed  CAS  Google Scholar 

  198. Fujiwara Y, Hoon D S, Yamada T, et al. PTEN/MMAC1 mutation and frequent loss of heterozygosity identified in chromosome 10q in a subset of hepatocellular carcinomas. Jpn J Cancer Res, 2000, 91: 287–292.

    PubMed  CAS  Google Scholar 

  199. Bhaskar P T, Hay N. The two TORCs and Akt. Dev Cell, 2007, 12: 487–502.

    PubMed  CAS  Google Scholar 

  200. Blanco-Aparicio C, Renner O, Leal J F, et al. PTEN, more than the Akt pathway. Carcinogenesis, 2007, 28: 1379–1386.

    PubMed  CAS  Google Scholar 

  201. Nakanishi K, Sakamoto M, Yamasaki S, et al. Akt phosphorylation is a risk factor for early disease recurrence and poor prognosis in hepatocellular carcinoma. Cancer, 2005, 103: 307–312.

    PubMed  CAS  Google Scholar 

  202. Xu X, Sakon M, Nagano H, et al. Akt2 expression correlates with prognosis of human hepatocellular carcinoma. Oncol Rep, 2004, 11: 25–32.

    PubMed  CAS  Google Scholar 

  203. Hay N. The Akt-mTOR tango and its relevance to cancer. Cancer Cell, 2005, 8: 179–183.

    PubMed  CAS  Google Scholar 

  204. Sahin F, Kannangai R, Adegbola O, et al. mTOR and P70 S6 kinase expression in primary liver neoplasms. Clin Cancer Res, 2004, 10: 8421–8425.

    PubMed  CAS  Google Scholar 

  205. Semela D, Piguet A C, Kolev M, et al. Vascular remodeling and antitumoral effects of mTOR inhibition in a rat model of hepatocellular carcinoma. J Hepatol, 2007, 46: 840–848.

    PubMed  CAS  Google Scholar 

  206. Yuan B Z, Miller M J, Keck C L, et al. Cloning, characterization, and chromosomal localization of a gene frequently deleted in human liver cancer (DLC-1) homologous to rat RhoGAP. Cancer Res, 1998, 58: 2196–2199.

    PubMed  CAS  Google Scholar 

  207. Ng I O, Liang Z D, Cao L, et al. DLC-1 is deleted in primary hepatocellular carcinoma and exerts inhibitory effects on the proliferation of hepatoma cell lines with deleted DLC-1. Cancer Res, 2000, 60: 6581–6584.

    PubMed  CAS  Google Scholar 

  208. Yam J W, Ko F C, Chan C Y, et al. Interaction of deleted in liver cancer 1 with tensin2 in caveolae and implications in tumor suppression. Cancer Res, 2006, 66: 8367–8372.

    PubMed  CAS  Google Scholar 

  209. Kim T Y, Lee J W, Kim H P, et al. DLC-1, a GTPase-activating protein for Rho, is associated with cell proliferation, morphology, and migration in human hepatocellular carcinoma. Biochem Biophys Res Commun, 2007, 355: 72–77.

    PubMed  CAS  Google Scholar 

  210. Zhou X, Zimonjic D B, Park S W, et al. DLC1 suppresses distant dissemination of human hepatocellular carcinoma cells in nude mice through reduction of RhoA GTPase activity, actin cytoskeletal disruption and down-regulation of genes involved in metastasis. Int J Oncol, 2008, 32: 1285–1291.

    PubMed  CAS  Google Scholar 

  211. Xue W, Krasnitz A, Lucito R, et al. DLC1 is a chromosome 8p tumor suppressor whose loss promotes hepatocellular carcinoma. Genes Dev, 2008, 22: 1439–1444.

    PubMed  CAS  Google Scholar 

  212. Liao YC, Si L, deVere White RW, et al. The phosphotyrosine-independent interaction of DLC-1 and the SH2 domain of cten regulates focal adhesion localization and growth suppression activity of DLC-1. J Cell Biol, 2007, 176: 43–49.

    PubMed  CAS  Google Scholar 

  213. Qian X, Li G, Asmussen H K, et al. Oncogenic inhibition by a deleted in liver cancer gene requires cooperation between tensin binding and Rho-specific GTPase-activating protein activities. Proc Natl Acad Sci USA, 2007, 104: 9012–9017.

    PubMed  CAS  Google Scholar 

  214. Liao Y C, Shih Y P, Lo S H. Mutations in the focal adhesion targeting region of deleted in liver cancer-1 attenuate their expression and function. Cancer Res, 2008, 68: 7718–7722.

    PubMed  CAS  Google Scholar 

  215. Zheng S L, Mychaleckyj J C, Hawkins G A, et al. Evaluation of DLC1 as a prostate cancer susceptibility gene: mutation screen and association study. Mutat Res, 2003, 528: 45–53.

    PubMed  CAS  Google Scholar 

  216. Durkin M E, Ullmannova V, Guan M, et al. Deleted in liver cancer 3 (DLC-3), a novel Rho GTPase-activating protein, is downregulated in cancer and inhibits tumor cell growth. Oncogene, 2007, 26: 4580–4589.

    PubMed  CAS  Google Scholar 

  217. Kawai K, Kiyota M, Seike J, et al. START-GAP3/DLC3 is a GAP for RhoA and Cdc42 and is localized in focal adhesions regulating cell morphology. Biochem Biophys Res Commun, 2007, 364: 783–789.

    PubMed  CAS  Google Scholar 

  218. Yam J W, Ko F C, Chan C Y, et al. Tensin2 variant 3 is associated with aggressive tumor behavior in human hepatocellular carcinoma. Hepatology, 2006, 44: 881–890.

    PubMed  CAS  Google Scholar 

  219. Lin K H, Shieh H Y, Chen S L, et al. Expression of mutant thyroid hormone nuclear receptors in human hepatocellular carcinoma cells. Mol Carcinog, 1999, 26: 53–61.

    PubMed  CAS  Google Scholar 

  220. Yeh S H, Chiu C M, Chen C L, et al. Somatic mutations at the trinucleotide repeats of androgen receptor gene in male hepatocellular carcinoma. Int J Cancer, 2007, 120: 1610–1617.

    PubMed  CAS  Google Scholar 

  221. Soung Y H, Lee J W, Kim S Y, et al. Caspase-8 gene is frequently inactivated by the frameshift somatic mutation 1225_1226delTG in hepatocellular carcinomas. Oncogene, 2005, 24: 141–147.

    PubMed  CAS  Google Scholar 

  222. Kremer-Tal S, Reeves H L, Narla G, et al. Frequent inactivation of the tumor suppressor Kruppel-like factor 6 (KLF6) in hepatocellular carcinoma. Hepatology, 2004, 40: 1047–1052.

    PubMed  CAS  Google Scholar 

  223. Cho Y G, Kim C J, Song J H, et al. Genetic and expression analysis of the KCNRG gene in hepatocellular carcinomas. Exp Mol Med, 2006, 38: 247–255.

    PubMed  CAS  Google Scholar 

  224. Kim C J, Cho Y G, Park J Y, et al. Genetic analysis of the LKB1/STK11 gene in hepatocellular carcinomas. Eur J Cancer, 2004, 40: 136–141.

    PubMed  CAS  Google Scholar 

  225. Xie H J, Bae H J, Noh J H, et al. Mutational analysis of JAK1 gene in human hepatocellular carcinoma. Neoplasma, 2009, 56: 136–140.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Zhejiang University Press, Hangzhou and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wong, C., Ng, I.O.L. (2012). Genomics of Hepatocellular Carcinoma. In: Primary Liver Cancer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28702-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28702-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28701-5

  • Online ISBN: 978-3-642-28702-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics