Skip to main content

A Single Origin of Heterothermy in Mammals

  • Chapter
  • First Online:
Book cover Living in a Seasonal World

Abstract

Some mammal lineages survived the global fires that occurred in the hours following the asteroid impact at Chicxulub, Yucatan, at the Cretaceous/Tertiary Boundary (K/T Boundary) 65 mya. Several studies have proposed that it was the capacity for torpor and refuge underground, in tree holes, caves, and underwater, that ensured the short- and long-term survival of the post-impact conditions. Here I test the hypothesis that heterothermy was a pleisiomorphic condition in ancestral mammals which allowed certain mammal lineages to survive the K/T Boundary. I employed a maximum likelihood approach to reconstruct the likely heterothermic status of the last mammalian ancestor. With our current knowledge, the probability of heterothermy (58%) slightly exceeds that of no heterothermy. However, if some mammals that have yet to be studied, but which have been identified as highly likely heterotherms, are scored as heterotherms, the proportional likelihood of heterothermy in ancestral mammals exceeds the 96% probability. At the least, these data confirm that there was single origin of heterothermy in mammals, but further research is required to determine how extensive heterothermy was in Mesozoic mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Asher RJ, Helgen KM (2010) Nomenclature and placental mammal phylogeny. BMC Evol Biol 10:102

    Article  PubMed  Google Scholar 

  • Barnes B (1989) Freeze avoidance in a mammal: body temperatures below 0°C in an arctic hibernator. Science 244:1593–1595

    Article  PubMed  CAS  Google Scholar 

  • Bininda-Emonds ORP, Cardillo M, Jones KE, Macphee RDE, Beck RMD, Grenyer R, Price SA, Vos RA, Gittleman JL, Purvis A (2007) The delayed rise of present-day mammals. Nature 446:507–512

    Article  PubMed  CAS  Google Scholar 

  • Bradley SR, Hudson JW (1974) Temperature regulation in the tree shrew, Tupaia glis. Comp Biochem Physiol 48A:55–60

    Article  Google Scholar 

  • Campbell KL, Hochachka PW (2000) Thermal biology and metabolism of the American shrew-mole, Neurotrichus gibbsii. J Mammal 81:578–585

    Article  Google Scholar 

  • Delsuc F, Scally M, Madsen O, Stanhope MJ, de Jong WW, Catzeflis FM, Springer MS, Douzery EJP (2002) Molecular phylogeny of living xenarthrans and the impact of character and taxon sampling on the placental tree rooting. Mol Biol Evol 19:1656–1671

    Article  PubMed  CAS  Google Scholar 

  • Delsuc F, Stanhope MJ, Douzery EJP (2003) Molecular systematics of armadillos (Xenarthra, Dasypodidae): contribution of maximum liklihood and Bayesian analyses of mitochondrial and nuclear genes. Mol Phyl Evol 28:261–275

    Article  CAS  Google Scholar 

  • Douady CJ, Douzery EJP (2003) Molecular estimation of eulipotyphlan divergence times and the evolution of the “Insectivora”. Mol Phyl Evol 28:285–296

    Article  CAS  Google Scholar 

  • Dubey S, Salamin N, Ohdachi SD, Barriere P, Vogel P (2007) Molecular phylogenetics of shrews (Mammalia: Soricidae) reveal timing of transcontinental colonizations. Mol Phyl Evol 44:126–137

    Article  CAS  Google Scholar 

  • Eagle RA, Schauble EA, Tripati AK, Tüken T, Hulbert RC, Eiler JM (2010) Body temperatures of modern and extinct vertebrates from 13C–18O bond abundances in bioapatite. Proc Natl Acad Sci U S A 107:10377–11382

    Article  PubMed  CAS  Google Scholar 

  • Flannery T (1995) Mammals of new guinea. Cornell University Press, New York

    Google Scholar 

  • Geiser F (1998) Evolution of daily torpor and hibernation in birds and mammals: importance of body size. Clin Exp Pharm Physiol 25:736–740

    Article  CAS  Google Scholar 

  • Geiser F (2008) Ontogeny and phylogeny of endothermy and torpor in mammals and birds. Comp Biochem Physiol A 150:176–180

    Article  Google Scholar 

  • Geiser F, Ruf T (1995) Hibernation versus daily torpor in mammals and birds: physiological variables and classification of torpor patterns. Physiol Zool 68:935–966

    Google Scholar 

  • Geiser F, Stawski C (2011) Hibernation and torpor in tropical and subtropical bats in relation to energetics, extinctions, and the evolution of endothermy. Int Comp Biol 51:337–348

    Article  Google Scholar 

  • Hillenius WJ (1994) Turbinates in therepasids: evidence for Late Permian origins of mammalian endothermy. Evolution 48:207–229

    Article  Google Scholar 

  • Hillenius WJ, Ruben JA (2004) The evolution of endothermy in terrestrial vertebrates: who? when? why? Physiol Biochem Zool 77:1019–1042

    Article  PubMed  Google Scholar 

  • Huber M (2008) A hotter greenhouse? Science 321:353–354

    Article  PubMed  CAS  Google Scholar 

  • Kemp TS (2006) The origin of mammalian endothermy: a paradigm for the evolution of complex biological structure. Zool J Linn Soc 147:473–488

    Article  Google Scholar 

  • Kikuchi R, Vanneste M (2010) A theoretical exercise in the modeling of ground-level ozone resulting from the K–T asteroid impact: its possible link with the extinction selectivity of terrestrial vertebrates. Palaeogeogr Palaeoclimatol Palaeoecol 288:14–23

    Article  Google Scholar 

  • Kring DA (2007) The Chicxulub impact event and its environmental consequences at the Cretaceous-Tertiary boundary. Palaeogeogr Palaeoclimatol Palaeoecol 255:4–21

    Article  Google Scholar 

  • Kulzer E (1965) Temperaturregulation bei Fledermausen (Chiroptera) aus verschiedenen Klimatozonen. Z Vergl Physiol 50:1–34

    Article  Google Scholar 

  • Lovegrove BG (2012) The evolution of endothermy in Cenozoic mammals: a plesiomorphic−apomorphic continuum. Biol Rev 87:128–162

    Article  PubMed  Google Scholar 

  • Luo ZX (2007) Transformation and diversification in early mammal evolution. Nature 450:1011–1019

    Article  PubMed  CAS  Google Scholar 

  • MacLeod N (1996) K/T redux. Paleobiology 22:311–317

    Google Scholar 

  • Maddison WP, Maddison DR (2009) Mesquite: a modular system for evolutionary analysis. Version 1.12

    Google Scholar 

  • Malan A (1996) The origins of hibernation: a reappraisal. In: Geiser F, Hulbert AJ, Nicol SC (eds) Adaptations to the cold: tenth international hibernation symposium. University of New England Press, Armidale, pp 1–6

    Google Scholar 

  • Matsui A, Rakotondraparany F, Munechika I, Hasegawa M, Horai S (2009) Molecular phylogeny and evolution of prosimians based on complete sequences of mitochondrial DNAs. Gene 441:53–66

    Article  PubMed  CAS  Google Scholar 

  • McNab BK, Wright PC (1987) Temperature regulation and oxygen consumption in the Philippine tarsier, Tarsier syrichta. Physiol Zool 60:596–600

    Google Scholar 

  • Melosh HJ, Schneider NM, Zahnle KJ, Latham D (1990) Ignition of global wildfires at the Cretaceous/Tertiary boundary. Nature 343:251–254

    Article  PubMed  CAS  Google Scholar 

  • Meredith RW, Westerman M, Case JA, Springer MS (2008) A phylogeny and timescale for marsupial evolution based on sequences for five nuclear genes. J Mammal Evol 15:1–36

    Article  Google Scholar 

  • Meredith RW, Westerman M, Springer MS (2009) A phylogeny of Diprotodontia (Marsupialia) based on sequences for five nuclear genes. Mol Phyl Evol 51:554–571

    Article  CAS  Google Scholar 

  • Montgelard C, Forty E, Arnal V, Matthee CA (2008) Suprafamilial relationships among Rodentia and the phylogenetic effect of removing fast-evolving nucleotides in mitochondrial, exon and intron fragments. BMC Evol Biol 8:231

    Article  Google Scholar 

  • Murphy WJ, Pringle TH, Crider TA, Springer MS (2007) Using genomic data to unravel the root of the placental tree. Genome Res 17:413–421

    Article  PubMed  CAS  Google Scholar 

  • Nelson LE, Asling CW (1962) Metabolic rate of tree shrews, Urogale evertii. Proc Soc Exp Biol Med 46:180–185

    Google Scholar 

  • Newman JR, Rudd RL (1978) Observations of torpor-like behavior in shrew, Sorex sinuosus. Acta Theriol 23:446–448

    Google Scholar 

  • Purvis A (1995) A composite estimate of primate phylogeny. Philos Trans R Soc Lond B 348:405–421

    Article  CAS  Google Scholar 

  • Refinetti R, Menaker M (1992) Body temperature rhythm of the tree shrew, Tupaia belangeri. J Exp Zool 263:453–457

    Article  PubMed  CAS  Google Scholar 

  • Robertson DS, McKenna MC, Toon OB, Hope S, Lillegraven JA (2004) Survival in the first hours of the Cenozoic. Geol Soc Am Bull 116:760–768

    Article  Google Scholar 

  • Rosa MGP, Pettigrew JD, Cooper HM (1996) Unusual pattern of retinogeniculate projections in the controversial Primate Tarsius. Brain Behav Evol 48:121–129

    Article  PubMed  CAS  Google Scholar 

  • Rowe TB, Macrini TE, Luo ZX (2011) Fossil evidence on origin of the mammalian brain. Science 332:958–960

    Article  Google Scholar 

  • Schmidt-Nielsen K (1983) Animal physiology: adaptation and environment. Cambridge University Press, Cambridge

    Google Scholar 

  • Steppan SJ, Storz BL, Hoffmann RS (2004) Nuclear DNA phylogeny of the squirrels (Mammalia: Rodentia) and the evolution of arboreality from c-myc and RAG1. Mol Phyl Evol 30:703–719

    Article  CAS  Google Scholar 

  • Strahan R (1991) Complete book of Australian mammals. Cornstalk, Sydney

    Google Scholar 

  • Tabuce R, Asher RJ, Lehmann T (2008) Afrotherian mammals: a review of current data. Mammalia 72:2–14

    Article  Google Scholar 

  • Teeling EC, Springer MS, Madsen O, Bates P, O’Brien SJ, Murphy WJ (2005) A molecular phylogeny for bats illuminates biogeography and the fossil record. Science 307:580–584

    Article  PubMed  CAS  Google Scholar 

  • Whittow GC, Gould E (1976) Body temperature and oxygen consumption of the pentail tree shrew (Ptilocerus lowii). J Mammal 57:754–756

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The research was financed by incentive grants from the University of KwaZulu-Natal and the National Research Foundation, South Africa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barry G. Lovegrove .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lovegrove, B.G. (2012). A Single Origin of Heterothermy in Mammals. In: Ruf, T., Bieber, C., Arnold, W., Millesi, E. (eds) Living in a Seasonal World. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28678-0_1

Download citation

Publish with us

Policies and ethics