Skip to main content

Comparative Performance of Random Forest and Support Vector Machine Classifiers for Detection of Colorectal Lesions in CT Colonography

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7029))

Abstract

A major problem of computer-aided detection (CAD) for computed tomographic colonography (CTC) is that CAD systems display large numbers of false-positive detections, thereby distracting users. Support vector machine (SVM) classifiers have been a popular choice for reducing false-positive detections in CAD systems. Recently, random forests (RF) have emerged as a novel type of highly accurate classifier. We compared the relative performance of RF and SVM classifiers in automated detection of colorectal lesions in CTC. The CAD system was trained with the CTC data of 123 patients and tested with an independent set of 737 patients. The results indicate that the performance of an RF classifier compares favorably with that of an SVM classifier in CTC.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Näppi, J., Nagata, K.: Sources of False Positives in Computer-Assisted CT Colonography. Abdom. Imaging 36, 153–164 (2011)

    Article  Google Scholar 

  2. Schölkopf, B., Burges, C.J.C., Smola, A.J. (eds.): Advances in Kernel Methods: Support Vector Learning. MIT Press, Cambridge (1999)

    Google Scholar 

  3. Breiman, L.: Random Forests. Machine Learning 45, 5–32 (2001)

    Article  MATH  Google Scholar 

  4. Vapnik, V.: Statistical Learning Theory. Wiley, New York (1998)

    MATH  Google Scholar 

  5. Näppi, J., Yoshida, H.: Fully Automated Three-Dimensional Detection of Polyps in Fecal-Tagging CT Colonography. Acad. Radiol. 14, 287–300 (2007)

    Article  Google Scholar 

  6. Yoshida, H., Näppi, J.: Three-Dimensional Computer-Aided Diagnosis Scheme for Detection of Colonic Polyps. IEEE Trans. Med. Imaging 20, 1261–1274 (2001)

    Article  Google Scholar 

  7. Näppi, J., Yoshida, H.: Feature-Guided Analysis for Reduction of False Positives in CAD of Polyps for Computed Tomographic Colonography. Med. Phys. 30, 1592–1601 (2003)

    Article  Google Scholar 

  8. Näppi, J., Yoshida, H.: Automated Detection of Polyps with CT Colonography: Evaluation of Volumetric Features for Reduction of False-Positive Findings. Acad. Radiol. 9, 386–397 (2002)

    Article  Google Scholar 

  9. Yoshida, H., Näppi, J., MacEneaney, P., Rubin, D.T., Dachman, A.H.: Computer-Aided Diagnosis Scheme for Detection of Polyps at CT Colonography. Radiographics 22, 963–979 (2002)

    Google Scholar 

  10. Pickhardt, P.J., Choi, J.R., Hwang, I., et al.: Computed Tomographic Virtual Colonoscopy to Screen for Colorectal Neoplasia in Asymptomatic Adults. N. Engl. J. Med. 349, 2191–2200 (2003)

    Article  Google Scholar 

  11. Rockey, D.C., Paulson, E., Niedzwiecki, D., et al.: Analysis of Air Contrast Barium Enema, Computed Tomographic Colonography, and Colonoscopy: Prospective Comparison. Lancet 365, 305–311 (2005)

    Google Scholar 

  12. Regge, D., Laudi, C., Galatola, G., et al.: Diagnostic Accuracy of Computed Tomographic Colonography for the Detection of Advanced Neoplasia in Individuals at Increased Risk of Colorectal Cancer. JAMA 301, 2458–2461 (2009)

    Article  Google Scholar 

  13. Ambroise, C., McLachlan, J.H.: Selection Bias in Gene Extraction on the Basis of Microarray Gene-Expression Data. PNAS 99, 6562–6566 (2002)

    Article  MATH  Google Scholar 

  14. Chakraborty, D.P.: Validation and Statistical Power Comparison of Methods for Analyzing Free-Response Observer Performance Studies. Acad. Radiol. 15, 1554–1566 (2008)

    Article  Google Scholar 

  15. Noreen, E.W.: Computer-Intensive Methods for Testing Hypotheses: an Introduction. John Wiley & Sons, New York (1989)

    Google Scholar 

  16. Fidler, J., Johnson, C.: Flat Polyps of the Colon: Accuracy of Detection by CT Colonography and Histologic Significance. Abdom. Imaging 34, 157–171 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Näppi, J.J., Regge, D., Yoshida, H. (2012). Comparative Performance of Random Forest and Support Vector Machine Classifiers for Detection of Colorectal Lesions in CT Colonography. In: Yoshida, H., Sakas, G., Linguraru, M.G. (eds) Abdominal Imaging. Computational and Clinical Applications. ABD-MICCAI 2011. Lecture Notes in Computer Science, vol 7029. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28557-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28557-8_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28556-1

  • Online ISBN: 978-3-642-28557-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics