Skip to main content

Optical Properties of Silicon Nanoparticles

  • Chapter
  • First Online:
Book cover Nanoparticles from the Gasphase

Part of the book series: NanoScience and Technology ((NANO))

Abstract

This chapter reviews recent results on optical spectroscopy on silicon nanoparticles. The quantum confinement effect causing a spectral shift of the photoluminescence together with an intensity enhancement is discussed. The small spatial dimensions lead not only to a change of the electronic states, but affect also the vibronic spectrum as is seen in results on first- and second-order Raman scattering. Using time-resolved spectroscopy, the excitonic fine structure of silicon nano-particles is investigated and a crossover of bright and dark exciton states is found. The analysis of the recombination dynamics allows to determine the size-dependence of the oscillator strength, which is in the order of 10\(^{-5}\) and increases with decreasing particle size. Finally, we demonstrate an electroluminescence device based on silicon particles using impact ionization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L.T. Canham, Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett. 57, 1046 (1990)

    Article  ADS  Google Scholar 

  2. S. Furukawa, T. Miyasato, Quantum size effects on the optical band gap of microcrystalline Si:H. Phys. Rev. B 38, 5726 (1988)

    Article  ADS  Google Scholar 

  3. H.Z. Song, X.M. Bao, Visible photoluminescence from silicon-ion-implanted SiO2 film and its multiple mechanisms. Phys. Rev. B 55, 6988 (1997)

    Article  ADS  Google Scholar 

  4. M. Zacharias, J. Heitmann, R. Scholz, U. Kahler, M. Schmidt, J. Blasing, Size-controlled highly luminescent silicon nanocrystals: a SiO/SiO[sub 2] superlattice approach. Appl. Phys. Lett. 80, 661 (2002)

    Article  ADS  Google Scholar 

  5. J. Knipping, H. Wiggers, B. Rellinghaus, P. Roth, D. Konjhodzic, C. Meier, Synthesis of high purity silicon nanoparticles in a low pressure microwave reactor. J. Nanosci. Nanotechnol. 4, 1039 (2004)

    Article  Google Scholar 

  6. H. Wiggers, R. Starke, P. Roth, Silicon particle formation by pyrolysis of silane in a hot wall gas phase reactor. Chem. Eng. Technol. 24, 261 (2001)

    Article  Google Scholar 

  7. M.V. Wolkin, J. Jorne, P.M. Fauchet, G. Allan, C. Delerue, Electronic states and luminescence in porous silicon quantum dots: the role of oxygen. Phys. Rev. Lett. 82, 197 (1999)

    Article  ADS  Google Scholar 

  8. S. Godefroo, M. Hayne, M. Jivanescu, A. Stesmans, M. Zacharias, O.I. Lebedev, G. Van Tendeloo, V.V. Moshchalkov, Classification and control of the origin of photoluminescence from Si nanocrystals. Nat. Nano. 3, 174 (2008)

    Article  Google Scholar 

  9. V.G. Kravets, C. Meier, D. Konjhodzic, A. Lorke, H. Wiggers, Infrared properties of silicon nanoparticles. J. Appl. Phys. 97, 084306 (2005)

    Article  ADS  Google Scholar 

  10. C. Meier, S. Lüttjohann, V.G. Kravets, H. Nienhaus, A. Lorke, H. Wiggers, Raman properties of silicon nanoparticles. Phys. E Low dimens. Sys. Nanostruct. 32, 155 (2006)

    Article  ADS  Google Scholar 

  11. M.H. Nayfeh, O. Akcakir, G. Belomoin, N. Barry, J. Therrien, E. Gratton, Second harmonic generation in microcrystallite films of ultrasmall Si nanoparticles. Appl. Phys. Lett. 77, 4086 (2000)

    Article  ADS  Google Scholar 

  12. H. Richter, Z.P. Wang, L. Ley, The one phonon Raman spectrum in microcrystalline silicon. Solid State Commun. 39, 625 (1981)

    Article  ADS  Google Scholar 

  13. I.H. Campbell, P.M. Fauchet, The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors. Solid State Commun. 58, 739 (1986)

    Article  ADS  Google Scholar 

  14. S. Brunauer, P.H. Emmett, E. Teller, Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309 (1938)

    Article  ADS  Google Scholar 

  15. R. Meyer, D. Comtesse, Vibrational density of states of silicon nanoparticles. Phys. Rev. B 83, 014301 (2011)

    Article  ADS  Google Scholar 

  16. F. Trani, G. Cantele, D. Ninno, G. Iadonisi, Tight-binding calculation of the optical absorption cross section of spherical and ellipsoidal silicon nanocrystals. Phys. Rev. B 72, 075423 (2005)

    Article  ADS  Google Scholar 

  17. J.C. Kim, H. Rho, L.M. Smith, H.E. Jackson, S. Lee, M. Dobrowolska, J.K. Furdyna, Temperature-dependent micro-photoluminescence of individual CdSe self-assembled quantum dots. Appl. Phys. Lett. 75, 214 (1999)

    Article  ADS  Google Scholar 

  18. Y.G. Kim, Y.S. Joh, J.H. Song, K.S. Baek, S.K. Chang, E.D. Sim, Temperature-dependent photoluminescence of ZnSe/ZnS quantum dots fabricated under the Stranski-Krastanov mode. Appl. Phys. Lett. 83, 2656 (2003)

    Article  ADS  Google Scholar 

  19. E.C. Le Ru, J. Fack, R. Murray, Temperature and excitation density dependence of the photoluminescence from annealed InAs/GaAs quantum dots. Phys. Rev. B 67, 245318 (2003)

    Article  ADS  Google Scholar 

  20. S. Lüttjohann, C. Meier, M. Offer, A. Lorke, H. Wiggers, Temperature-induced crossover between bright and dark exciton emission in silicon nanoparticles. Europhys. Lett. 79, 37002 (2007)

    Article  ADS  Google Scholar 

  21. M.L. Brongersma, P.G. Kik, A. Polman, K.S. Min, H.A. Atwater, Size-dependent electron-hole exchange interaction in Si nanocrystals. Appl. Phys. Lett. 76, 351 (2000)

    Article  ADS  Google Scholar 

  22. M. Dovrat, Y. Shalibo, N. Arad, I. Popov, S.T. Lee, A. Sa’ar, Fine structure and selection rules for excitonic transitions in silicon nanostructures. Phys. Rev. B 79, 125306 (2009)

    Article  ADS  Google Scholar 

  23. G. Ledoux, O. Guillois, D. Porterat, C. Reynaud, F. Huisken, B. Kohn, V. Paillard, Photoluminescence properties of silicon nanocrystals as a function of their size. Phys. Rev. B 62, 15942 (2000)

    Article  ADS  Google Scholar 

  24. L. Pavesi, M. Ceschini, Stretched-exponential decay of the luminescence in porous silicon. Phys. Rev. B 48, 17625 (1993)

    Article  ADS  Google Scholar 

  25. M. Paillard, X. Marie, E. Vanelle, T. Amand, V.K. Kalevich, A.R. Kovsh, A.E. Zhukov, V.M. Ustinov, Time-resolved photoluminescence in self-assembled InAs/GaAs quantum dots under strictly resonant excitation. Appl. Phys. Lett. 76, 76 (2000)

    Article  ADS  Google Scholar 

  26. S. Raymond, S. Fafard, S. Charbonneau, R. Leon, D. Leonard, P.M. Petroff, J.L. Merz, Photocarrier recombination in Al\(_{y}\) In\(_{1-y}\) As/Al\(_{x}\) Ga\(_{1-x}\) As self-assembled quantum dots. Phys. Rev. B 52, 17238 (1995)

    Google Scholar 

  27. D. Kovalev, H. Heckler, M. Ben-Chorin, G. Polisski, M. Schwartzkopff, F. Koch, Breakdown of the k-conservation rule in Si nanocrystals. Phys. Rev. Lett. 81, 2803 (1998)

    Article  ADS  Google Scholar 

  28. M.S. Hybertsen, Absorption and emission of light in nanoscale silicon structures. Phys. Rev. Lett. 72, 1514 (1994)

    Article  ADS  Google Scholar 

  29. B. Julsgaard, Y.-W. Lu, P. Balling, A.N. Larsen, Thermalization of exciton states in silicon nanocrystals. Appl. Phys. Lett. 95, 183107 (2009)

    Article  ADS  Google Scholar 

  30. J.C. Merle, M. Capizzi, P. Fiorini, A. Frova, Uniaxially stressed silicon: Fine structure of the exciton and deformation potentials. Phys. Rev. B 17, 4821 (1978)

    Article  ADS  Google Scholar 

  31. D.H. Feng, Z.Z. Xu, T.Q. Jia, X.X. Li, S.Q. Gong, Quantum size effects on exciton states in indirect-gap quantum dots. Phys. Rev. B 68, 035334 (2003)

    Article  ADS  Google Scholar 

  32. L. Mangolini, E. Thimsen, U. Kortshagen, High-Yield Plasma Synthesis of Luminescent Silicon Nanocrystals. Nano Lett. 5, 655 (2005)

    Article  ADS  Google Scholar 

  33. D. Jurbergs, E. Rogojina, L. Mangolini, U. Kortshagen, Silicon nanocrystals with ensemble quantum yields exceeding 60%. Appl. Phys. Lett. 88, 233116 (2006)

    Article  ADS  Google Scholar 

  34. J.-B. Xia, Electronic structures of zero-dimensional quantum wells. Phys. Rev. B 40, 8500 (1989)

    Article  ADS  Google Scholar 

  35. A.D. Yoffe, Low-dimensional systems: quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi-two-dimensional systems. Adv. Phys. 42, 173 (1993)

    Article  ADS  Google Scholar 

  36. C. Meier, A. Gondorf, S. Lüttjohann, A. Lorke, H. Wiggers, Silicon nanoparticles: absorption, emission, and the nature of the electronic bandgap. J. Appl.Phys. 101, 103112 (2007)

    Article  ADS  Google Scholar 

  37. A. Richter, P. Steiner, F. Kozlowski, W. Lang, Current-induced light emission from a porous silicon device. IEEE Electron Device Lett. 12, 691 (1991)

    Article  ADS  Google Scholar 

  38. J. Valenta, N. Lalic, J. Linnros, Electroluminescence microscopy and spectroscopy of silicon nanocrystals in thin SiO2 layers. Opt. Mater. 17, 45 (2001)

    Article  ADS  Google Scholar 

  39. A. Fojtik, J. Valenta, T.H. Stuchlíková, J. Stuchlík, I. Pelant, J. Kocka, Electroluminescence of silicon nanocrystals in p-i-n diode structures. Thin Solid Films 515, 775 (2006)

    Article  ADS  Google Scholar 

  40. H.J. Cheong, A. Tanaka, D. Hippo, K. Usami, Y. Tsuchiya, H. Mizuta, S. Oda, Visible Electroluminescence from Spherical-Shaped Silicon Nanocrystals. Jpn. J. Appl. Phys. 47, 8137 (2008)

    Article  ADS  Google Scholar 

  41. J. Theis, M. Geller, A. Lorke, H. Wiggers, C. Meier, Electroluminescence from silicon nanoparticles fabricated from the gas phase. Nanotechnology 21, 455201 (2010)

    Article  ADS  Google Scholar 

  42. J. Xu, K. Makihara, H. Deki, S. Miyzazki, Electroluminescence from Si quantum dots/SiO2 multilayers with ultrathin oxide layers due to bipolar injection. Solid State Commun. 149, 739 (2009)

    Article  ADS  Google Scholar 

  43. R.J. Walters, G.I. Bourianoff, H.A. Atwater, Field-effect electroluminescence in silicon nanocrystals. Nat. Mater. 4, 143 (2005)

    Article  ADS  Google Scholar 

  44. A. Irrera, D. Pacifici, M. Miritello, G. Franzo, F. Priolo, F. Iacona, D. Sanfilippo, G. Di Stefano, P.G. Fallica, Excitation and de-excitation properties of silicon quantum dots under electrical pumping. Appl. Phys. Lett. 81, 1866 (2002)

    Article  ADS  Google Scholar 

  45. C.W. Liu, S.T. Chang, W.T. Liu, M.-J. Chen, C.-F. Lin, Hot carrier recombination model of visible electroluminescence from metal-oxide-silicon tunneling diodes. Appl. Phys. Lett. 77, 4347 (2000)

    Article  ADS  Google Scholar 

  46. A. Gupta, S.G. Khalil, M. Offer, M. Geller, M. Winterer, A. Lorke, H. Wiggers, Synthesis and ink-jet printing of highly luminescing silicon nanoparticles for printable electronics. J. Nanosci. Nanotechnol. 11, 5028 (2011)

    Article  Google Scholar 

  47. A. Gondorf, M. Geller, J. Weißbon, A. Lorke, M. Inhester, A. Prodi-Schwab, D. Adam, Mobility and carrier density in nanoporous indium tin oxide films. Phys. Rev. B 83, 212201 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cedrik Meier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Meier, C., Lorke, A. (2012). Optical Properties of Silicon Nanoparticles. In: Lorke, A., Winterer, M., Schmechel, R., Schulz, C. (eds) Nanoparticles from the Gasphase. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28546-2_9

Download citation

Publish with us

Policies and ethics