Skip to main content

Material and Doping Contrast in III/V Nanowires Probed by Kelvin Probe Force Microscopy

  • Chapter
  • First Online:
Nanoparticles from the Gasphase

Part of the book series: NanoScience and Technology ((NANO))

  • 1721 Accesses

Abstract

We have studied the local surface potential and the voltage drop along individual VLS grown GaAs nanowires using Kelvin probe force microscopy. With the obtained information, we identify a core–shell structure in GaAs/GaP heterostructure nanowires, which we attribute to the difference in radial and vertical growth between the two semiconductor materials. In p-doped GaAs nanowires, qualitative and quantitative doping levels are estimated. Furthermore, we find a better incorporation of the zinc compared to the carbon to realize doping in partially p-doped GaAs nanowires by localizing the doping transitions and estimating the width of their depletion layers. Additionally, the p–n junction can be localized with a resolution better than 50 nm and the bias dependence of the depletion layer width can be studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L.-E. Wernersson, C. Thelander, E. Lind, L. Samuelson, Proc. IEEE 98, 2047 (2010)

    Article  Google Scholar 

  2. W. Lu, C.M. Lieber, J. Phys. D Appl. Phys. 39, R387 (2006)

    Article  ADS  Google Scholar 

  3. X. Zianni, Appl. Phys. Lett. 97, 233106 (2010)

    Article  ADS  Google Scholar 

  4. Q.-T. Do, K. Blekker, I. Regolin, W. Prost, F.J. Tegude, IEEE Electr. Dev. Lett. 28, 682 (2007)

    Article  ADS  Google Scholar 

  5. X. Jiang, Q. Xiong, S. Nam, F. Qian, Y. Li, C.M. Lieber, Nano Lett. 7, 3214 (2007)

    Article  ADS  Google Scholar 

  6. S.L. Diedenhofen, G. Vecchi, R.E. Algra, A. Hartsuiker, O.L. Muskens, G. Immink, E.P.A.M. Bakkers, W.L. Vos, J.G. Rivas, Adv. Mat. 21, 973 (2009)

    Article  Google Scholar 

  7. E. Garnett, P. Yang, Nano Lett. 10, 1082 (2010)

    Article  ADS  Google Scholar 

  8. M.T. Borgström, J. Wallentin, M. Heurlin, S. Fält, P. Wickert, J. Leene, M.H. Magnusson, K. Deppert, L. Samuelson, IEEE J. Sel. Top. Quant. DOI: 10.1109/JSTQE.2010.2073681

    Google Scholar 

  9. J.A. Czaban, D.A. Thompson, R.R. LaPierre, Nano Lett. 9, 148 (2009)

    Article  ADS  Google Scholar 

  10. C. Colombo, M. Heiß, M. Grätzel, A. Fontcuberta i Morral, Appl. Phys. Lett. 94, 173108 (2009)

    Google Scholar 

  11. A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, P. Yang, Nature 451, 163 (2008)

    Article  ADS  Google Scholar 

  12. A.I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W.A. Goddard III, J.R. Heath, Nature 451, 168 (2008)

    Article  ADS  Google Scholar 

  13. R.S. Wagner, W.C. Ellis, Appl. Phys. Lett. 4, 89 (1964)

    Article  ADS  Google Scholar 

  14. K.A. Dick, P. Caroff, J. Bolinsson, M.E. Messing, J. Johansson, K. Deppert, L.R. Wallenberg, L. Samuelson, Semicond. Sci. Technol. 25, 024009 (2010)

    Article  ADS  Google Scholar 

  15. M.S. Gudiksen, L.J. Lauhon, J. Wang, D.C. Smith, C.M. Lieber, Nature 415, 617 (2002)

    Article  ADS  Google Scholar 

  16. I. Regolin, D. Sudfeld, S. Lüttjohann, V. Khorenko, W. Prost, J. Kästner, G. Dumpich, C. Meier, A. Lorke, F.J. Tegude, J. Cryst. Growth 298, 607 (2007)

    Article  ADS  Google Scholar 

  17. Y. Li, F. Qian, J. Xiang, C.M. Lieber, Mater. Today 9, 18 (2006)

    Article  Google Scholar 

  18. K.A. Dick, K. Deppert, L.S. Karlson, L.R. Wallenberg, L. Samuelson, W. Seifert, Adv. Funct. Mater. 15, 1603 (2005)

    Article  Google Scholar 

  19. M.A. Verheijen, G. Immink, T. de Smet, M.T. Borgström, E.P.A.M. Bakkers, J. Am. Chem. Soc. 128, 1353 (2006)

    Article  Google Scholar 

  20. D.E. Perea, E.R. Hemesath, E.J. Schwalbach, J.L. Lensch-Falk, P.W. Voorhees, L.J. Lauhon, Nat. Nanotechnol. 4, 315 (2009)

    Article  ADS  Google Scholar 

  21. X. Ou, P.D. Kanungo, R. Kögler, P. Werner, U. Gösele, W. Skorupa, X. Wang, Nano Lett. 10, 171 (2010)

    Article  ADS  Google Scholar 

  22. M. Nonnenmacher, M.P. O’Boyle, H.K. Wickramasinghe, Appl. Phys. Lett. 58, 2921 (1991)

    Article  ADS  Google Scholar 

  23. A. Lochthofen, W. Mertin, G. Bacher, L. Hoeppel, S. Bader, J. Off, B. Hahn, Appl. Phys. Lett. 93, 022107 (2008)

    Article  ADS  Google Scholar 

  24. S. Vinaji, A. Lochthofen, W. Mertin, I. Regolin, C. Gutsche, W. Prost, F.J. Tegude, G. Bacher, Nanotechnology 20, 385702 (2009)

    Article  ADS  Google Scholar 

  25. V. Palermo, M. Palma, P. Samori, Adv. Mater. 18, 145 (2006)

    Article  Google Scholar 

  26. T. Meoded, R. Shikler, N. Fried, Y. Rosenwaks, Appl. Phys. Lett. 75, 2435 (1999)

    Article  ADS  Google Scholar 

  27. A. Doukkali, S. Ledain, C. Guasch, J. Bonnet, Appl. Surf. Sci. 235, 507 (2004)

    Article  ADS  Google Scholar 

  28. T. Mizutani, T. Usunami, S. Kishimoto, K. Meazawa, Jpn. J. Appl. Phys. 38, 4893 (1999)

    Article  ADS  Google Scholar 

  29. G. Lévêque, P. Girard, E. Skouri, D. Yarekha, Appl. Surf. Sci. 157, 251 (2000)

    Article  Google Scholar 

  30. A.V. Ankudinov, V.P. Evtikhiev, E.Y. Kotelnikov, A.N. Titkov, R. Laiho, J. Appl. Phys. 93, 432 (2003)

    Article  ADS  Google Scholar 

  31. Kl.-D. Katzer, W. Mertin, G. Bacher, A. Jaeger, K. Streubel, Appl. Phys. Lett. 89, 103522 (2006)

    Google Scholar 

  32. X. Cui, M. Freitag, R. Martel, L. Brus, P. Avouris, Nano Lett. 3, 783 (2003)

    Article  ADS  Google Scholar 

  33. B.R. Goldsmith, J.G. Coroneus, V.R. Khalap, A.A. Kane, G.A. Weiss, P.G. Collins, Science 315, 77 (2007)

    Article  ADS  Google Scholar 

  34. E. Koren, Y. Rosenwaks, J.E. Allen, E.R. Hemesath, L.J. Lauhon, Appl. Phys. Lett. 95, 092105 (2009)

    Article  ADS  Google Scholar 

  35. E. Koren, N. Berkovitch, Y. Rosenwaks, Nano Lett. 10, 1163 (2010)

    Article  ADS  Google Scholar 

  36. E. Koren, J.K. Hyun, U. Givan, E.R. Hemesath, L.J. Lauhon, Y. Rosenwaks, Nano Lett. 11, 183 (2011)

    Article  ADS  Google Scholar 

  37. Z. Fan, J.G. Lu, Appl. Phys. Lett. 86, 032111 (2005)

    Article  ADS  Google Scholar 

  38. G. Cheng, S. Wang, K. Cheng, X. Jiang, L. Wang, L. Li, Z. Du, G. Zou, Appl. Phys. Lett. 92, 223116 (2008)

    Article  ADS  Google Scholar 

  39. Y.-J. Doh, K.N. Maher, L. Ouyang, C.L. Yu, H. Park, J. Park, Nano Lett. 8, 4552 (2008)

    Article  ADS  Google Scholar 

  40. E.D. Minot, F. Kelkensberg, M. van Kouwen, J.A. van Dam, L.P. Kouwenhoven, V. Zwiller, M.T. Borgström, O. Wunnicke, M.A. Verheijen, E.P.A.M. Bakkers, Nano Lett. 7, 367 (2007)

    Article  ADS  Google Scholar 

  41. P.M. Bridger, Z.Z. Bandić, E.C. Piquette, T.C. McGill, Appl. Phys. Lett. 74, 3522 (1999)

    Article  ADS  Google Scholar 

  42. A. Lochthofen, Mikroskopische Strom- und Spannungsverteilung in GaN-Lichtemittern. Dissertation Universität Duisburg-Essen, Fakultät für Ingenieurwissenschaften, 2009

    Google Scholar 

  43. H.O. Jacobs, P. Leuchtmann, O.J. Homan, A. Stemmer, J. Appl. Phys. 84, 1168 (1998)

    Article  ADS  Google Scholar 

  44. U. Zerweck, C. Loppacher, T. Otto, S. Grafström, L.M. Eng, Phys. Rev. B 71, 125424 (2005)

    Article  ADS  Google Scholar 

  45. Kl.-D. Katzer, Rasterkraftmikroskopie zur elektrischen Charakterisierung von innovativen Bauelementen und Nano-Strukturen. Dissertation Universität Duisburg-Essen, Fakultät für Ingenieurwissenschaften, 2008

    Google Scholar 

  46. All nanowires investigated in this paper were prepared at the Institute of Solid-State Electronics of the University Duisburg-Essen. For details see also: C. Gutsche, I. Regolin, A. Lysov, K. Blekker, Q.-T. Do, W. Prost, F.-J. Tegude, III/V Nanowires for electronic and optoelectronic applications” in this volume

    Google Scholar 

  47. C. Calandra, G. Chiarotti, U. Gradmann, K. Jacobi, F. Manghi, A.A. Maradudin, S.Y. Tong, R.F. Wallis, in Landolt-Börnstein New Series Physics of Solid Surfaces: Electronic and Vibrational Properties III/24b ed. by G. Chiarotti (Springer, Berlin, 1994), pp. 64–66

    Google Scholar 

  48. M. Levinshtein, S. Rumyantsev, M. Shur, Handbook Series on Semiconductor Parameters 1(World Scientific Publisher, Singapore, 1996), p. 77 and pp. 104–105

    Google Scholar 

  49. C. Gutsche, I. Regolin, K. Blekker, A. Lysov, W. Prost, F.J. Tegude, J. Appl. Phys. 105, 024305 (2009)

    Article  ADS  Google Scholar 

  50. I. Regolin, C. Gutsche, A. Lysov, W. Prost, M. Malek, S. Vinaji, W. Mertin, G. Bacher, M. Offer, A. Lorke, F.-J. Tegude, in Proceedings of the EW MOVPE XIII Ulm, pp. 111, 7–10 June 2009

    Google Scholar 

  51. S. Saraf, Y. Rosenwaks, Surf. Sci. 574, L35 (2005)

    Article  ADS  Google Scholar 

  52. D. Stichtenoth, K. Wegener, C. Gutsche, I. Regolin, F.J. Tegude, W. Prost, M. Seibt, C. Ronning, Appl. Phys. Lett. 92, 163107 (2008)

    Article  ADS  Google Scholar 

  53. S. Vinaji, A. Lochthofen, W. Mertin, G. Bacher, I. Regolin, K. Blekker, W. Prost, F.J. Tegude, AIP Conf. Proc. 1199, 329 (2010)

    Article  ADS  Google Scholar 

  54. R. Shikler, T. Meoded, N. Fried, B. Mishori, Y. Rosenwaks, J. Appl. Phys. 86, 107 (1999)

    Article  ADS  Google Scholar 

  55. I. Regolin, C. Gutsche, A. Lysov, K. Blekker, Z.-A. Li, M. Spasova, W. Prost, F.-J. Tegude, J. Cryst. Growth 315, 143 (2011)

    Article  ADS  Google Scholar 

  56. C. Gutsche, A. Lysov, I. Regolin, K. Blekker, W. Prost, F.-J. Tegude, Nanoscale Res. Lett. 6, 65 (2011)

    ADS  Google Scholar 

  57. S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (Wiley, New York, 1981), pp. 77–79

    Google Scholar 

  58. A. Lysov, M. Offer, C. Gutsche, I. Regolin, S. Topaloglu, M. Geller, W. Prost, F.-J. Tegude, Nanotechnology 22, 085702 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support by the German Research Foundation (DFG) through the collaborative research centre SFB 445. The authors also thank F.-J. Tegude, W. Prost, I. Regolin, C. Gutsche, and A. Lysov from the Institute of Solid-State Electronics of the University Duisburg-Essen, for the preparation of the nanowires and for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Mertin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vinaji, S., Bacher, G., Mertin, W. (2012). Material and Doping Contrast in III/V Nanowires Probed by Kelvin Probe Force Microscopy. In: Lorke, A., Winterer, M., Schmechel, R., Schulz, C. (eds) Nanoparticles from the Gasphase. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28546-2_8

Download citation

Publish with us

Policies and ethics