Skip to main content

Electrical Transport in Semiconductor Nanoparticle Arrays: Conductivity, Sensing and Modeling

  • Chapter
  • First Online:
Book cover Nanoparticles from the Gasphase

Part of the book series: NanoScience and Technology ((NANO))

Abstract

Electrical properties of nanoparticle ensembles are dominated by interparticle transport processes, mainly due to particle–particle and particle-contact interactions. This makes their electrical properties dependent on the network properties such as porosity and particle size and is a main prerequisite for solid- state gas sensors, as the surrounding gas atmosphere influences the depletion layer surrounding each particle. Different kinds of nanoparticle arrays such as pressed pellets, printed layer, and thin films prepared by molecular beam-assisted deposition are characterized with respect to their electrical transport properties. Experimental results are shown for the electrical and sensing properties of several metal oxide nanoparticle ensembles and the influence of porosity is investigated during compaction of nanoparticle powders exposed to an external force. A model describing these properties is developed and it is shown that for a given material only porosity, geometry, and particle size influence the overall electrical properties. The model developed for the description of current transport in particulate matter can also be utilized to describe current-assisted sintering.

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the literature the process is also called “spark plasma sintering” or “field assisted sinter technique”.

References

  1. C.W.J. Beenakker, H. Vanhouten, Solid State Phys. Adv. Res. Appl. 44, 1–228 (1991)

    Google Scholar 

  2. M. Büttiker, Y. Imry, R. Landauer, S. Pinhas, Phys. Rev. B 31(10), 6207–6215 (1985)

    Article  ADS  Google Scholar 

  3. T. vanDijk, A.J. Burggraaf, Phys. Status Solidi A Appl. Res. 63(1), 229–240 (1981)

    Google Scholar 

  4. N. Barsan, U. Weimar, J. Electroceram. 7(3), 143–167 (2001)

    Article  Google Scholar 

  5. E. Barsoukov, J.R. Macdonald, Impedance Spectroscopy: Theory, Experiment, and Applications (Wiley, New York, 2005)

    Book  Google Scholar 

  6. B.A. Boukamp, Solid State Ion. 169(1–4), 65–73 (2004). doi:10.1016/j.ssi.2003.07.002

    Article  Google Scholar 

  7. I. Plümel, H. Wiggers in In-situ Investigation of the Mechanical and Electrical Properties of Nanosized Silicon Powders, MRS Spring Meeting, San Francisco, 2008, Materials Research Society: San Francisco, 2008, pp. 1083-R05-06

    Google Scholar 

  8. M. Morgeneyer, M.Röck, J. Schwedes, L. Brendel, K. Johnson, D. Kadau, D.E. Wolf, L.-O. Heim, in Behavior of Granular Media, eds. by P. Walzel, S. Linz, C. Krülle, R. Grochowski (Shaker, Aachen, 2006), pp. 107–136

    Google Scholar 

  9. P. Calvert, Chem. Mater. 13(10), 3299–3305 (2001)

    Article  Google Scholar 

  10. E. Tekin, P.J. Smith, U.S. Schubert, Soft Matter 4, 703–713 (2008). doi:10.1039/B711984D

    Google Scholar 

  11. M. Ali, N. Friedenberger, M. Spasova, M. Winterer, Chem. Vapor Depos. 15(7–9), 192–198 (2009). doi:10.1002/cvde.200806722

    Article  Google Scholar 

  12. S. Hartner, M. Ali, C. Schulz, M. Winterer, H. Wiggers, Nanotechnology 20(44), 445701 (2009). doi:10.1088/0957-4484/20/44/445701

    Article  ADS  Google Scholar 

  13. M. Ali, M. Winterer, Chemistry of Materials 22(1), 85–91 (2010). doi:10.1021/cm902240c

    Article  Google Scholar 

  14. T.P.Hülser, A. Lorke, P. Ifeacho, H. Wiggers, C. Schulz, J. Appl. Phys. 102(12), 124305 (2007)

    Google Scholar 

  15. T.P. Hülser, H. Wiggers, F.E. Kruis, A. Lorke, Sens. Actuators B Chem. 109(1), 13–18 (2005)

    Article  Google Scholar 

  16. N. Barsan, U. Weimar, J. Phys. Condes. Matter 15(20), R813–R839 (2003)

    Article  ADS  Google Scholar 

  17. Z.Z. Fang, H. Wang, Int. Mater. Rev. 53(6), 326–352 (2008). doi:10.1179/174328008x353538

    Article  MathSciNet  Google Scholar 

  18. J.R. Groza, Nanostruct. Mater. 12(5–8), 987–992 (1999)

    Article  Google Scholar 

  19. H.A. Knudsen, S. Fazekas, J. Comput. Phys. 211(2), 700–718 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. S. Kirkpatrick, Rev. Mod. Phys. 45(4), 574–588 (1973)

    Article  ADS  Google Scholar 

  21. D. Stauffer, Phys. Rep. Rev. Sec. Phys. Lett. 54(1), 1–74 (1979)

    Google Scholar 

  22. P. Grassberger, Phys. A 262(3–4), 251–263 (1999)

    MathSciNet  Google Scholar 

  23. T. Kiefer, G. Villanueva, J. Brugger, Phys. Rev. E 80(2), 021104 (2009)

    Article  ADS  Google Scholar 

  24. D. Schwesig, G. Schierning, R. Theissmann, N. Stein, N. Petermann, H. Wiggers, R. Schmechel, D.E. Wolf, Nanotechnology 22(13), 135601 (2011)

    Article  ADS  Google Scholar 

  25. E. Falcon, B. Castaing, Am. J. Phys. 73(4), 302–307 (2005)

    Article  ADS  Google Scholar 

  26. M.K. Kennedy, F.E. Kruis, H. Fissan, B.R. Mehta, S. Stappert, G. Dumpich, J. Appl. Phys. 93(1), 551–560 (2003)

    Article  ADS  Google Scholar 

  27. A. Dieguez, A. Romano-Rodriguez, J.R. Morante, J. Kappler, N. Barsan, W. Gopel, Sens. Actuators B Chem. 60(2–3), 125–137 (1999)

    Article  Google Scholar 

  28. J. Tamaki, T. Hayashi, Y. Yamamoto, M. Matsuoka, Electrochemistry (Tokyo, Japan) 71(6), 468–474 (2003)

    Google Scholar 

  29. Y. Shimizu, A. Kawasoe, Y. Takao, E. Makoto, in Proceedings—Electrochemical Society 96-27 (Ceramic Sensors) (1997), pp. 117–122

    Google Scholar 

  30. C.A. Papadopoulos, D.S. Vlachos, J.N. Avaritsiotis, Sens. Actuators B Chem. B32(1), 61–69 (1996)

    Article  Google Scholar 

  31. G. Lu, N. Miura, N. Yamazoe, Sens. Actuators B Chem. B35(1–3), 130–135 (1996)

    Article  Google Scholar 

  32. A. Ponzoni, E. Comini, M. Ferroni, G. Sberveglieri, Thin Solid Films 490(1), 81–85 (2005)

    Article  ADS  Google Scholar 

  33. G. Sberveglieri, L. Depero, S. Groppelli, P. Nelli, Sens. Actuators B Chem. B26(1–3), 89–92 (1995)

    Article  Google Scholar 

  34. F. Ahmed, S. Nicoletti, S. Zampolli, I. Elmi, A. Parisini, L. Dori, A. Mezzi, S. Kaciulis, in Sensors and Microsystems, Proceedings of the 7th Italian Conference, Bologna, Italy, February 4–6, 2002, pp. 197–204

    Google Scholar 

  35. S.R. Morrison, Sens. Actuators 11, 283–287 (1987)

    Article  Google Scholar 

  36. L.F. Reyes, A. Hoel, S. Saukko, P. Heszler, V. Lantto, C.G. Granquist, Sens. Actuators B 117, 128–134 (2006)

    Article  Google Scholar 

  37. F.A. Kröger, H.J. Vink, Solid State Phys. Adv. Res. Appl. 3, 307–435 (1956)

    Google Scholar 

  38. R.K. Joshi, F.E. Kruis, Appl. Phys. Lett. 89(15), 153116–1-3 (2006)

    Google Scholar 

  39. Z. Ling, C. Leach, R. Freer, J. Eur. Ceram. Soc. 23(11), 1881–1891 (2003)

    Article  Google Scholar 

  40. A. Labidi, C. Jacolin, M. Bendahan, A. Abdelghani, J. Guerin, K. Aguir, M. Maaref, Sens. Actuators B 106, 713–718 (2005)

    Article  Google Scholar 

  41. N. Barsan, U. Weimar, J. Phys. Condens. Matter 15, R813–R839 (2003)

    Article  ADS  Google Scholar 

  42. K. Hadjiivanov, P. Lukinska, H. Knötzinger, Catal. Lett. 82(1–2), 73–77 (2002)

    Article  Google Scholar 

  43. Y. Yan, Q. Xin, S. Jiang, X. Guo, J. Catal. 131, 234–242 (1991)

    Article  Google Scholar 

  44. T. Weingand, S. Kuba, K. Hadjiivanov, H. Knötzinger, J. Catal. 209, 539–546 (2002)

    Article  Google Scholar 

  45. Y. Furubayashi, T. Hitosugi, Y. Yamamoto, K. Inaba, G. Kinoda, Y. Hirose, T. Shimada, T. Hasegawa, Appl. Phys. Lett. 86(25), 252101 (2005)

    Article  ADS  Google Scholar 

  46. T. Minami, Semicond. Sci. Technol. 20(4), S35–S44 (2005)

    Article  ADS  Google Scholar 

  47. N.S. Baik, G. Sakai, K. Shimanoe, N. Miura, N. Yamazoe, Sens. Actuators B Chem. 65(1–3), 97–100 (2000)

    Article  Google Scholar 

  48. V. Bhosle, A. Tiwari, J. Narayan, Appl. Phys. Lett. 88(3), 032106 (2006)

    Article  ADS  Google Scholar 

  49. E. Fortunato, D. Ginley, H. Hosono, D.C. Paine, MRS Bull. 32(3), 242–247 (2007)

    Article  Google Scholar 

  50. R.G. Gordon, MRS Bull. 25(8), 52–57 (2000)

    Article  Google Scholar 

  51. C.G. van de Walle, Phys. Rev. Lett. 85(5), 1012–1015 (2000)

    Article  ADS  Google Scholar 

  52. M. Arita, H. Konishi, M. Masuda, Y. Hayashi, Mater. Trans. 43(11), 2670–2672 (2002)

    Article  Google Scholar 

  53. D.G. Thomas, J.J. Lander, J. Chem. Phys. 25(6), 1136–1142 (1956)

    Article  ADS  Google Scholar 

  54. G. Kwak, K.J. Yong, J. Phys. Chem. C 112(8), 3036–3041 (2008)

    Article  Google Scholar 

  55. L. Liao, H.B. Lu, J.C. Li, H. He, D.F. Wang, D.J. Fu, C. Liu, W.F. Zhang, J. Phys. Chem. C 111(5), 1900–1903 (2007)

    Article  Google Scholar 

  56. A.S.G. Khalil, S. Hartner, M. Ali, H. Wiggers, M. Winterer, J. Nanosci. Nanotechnol. 11(12), 10839–10843 (2011). doi:10.1166/jnn.2011.4043

    Google Scholar 

  57. R.D. Deegan, O. Bakajin, T.F. Dupont, G. Huber, S.R. Nagel, T.A. Witten, Nature 389(6653), 827–829 (1997)

    Article  ADS  Google Scholar 

  58. K. Okamura, N. Mechau, D. Nikolova, H. Hahn, Appl. Phys. Lett. 93(8), 083105 (2008)

    Article  ADS  Google Scholar 

  59. B.M. Kulwicki, J. Am. Ceram. Soc. 74(4), 697–708 (1991)

    Article  Google Scholar 

  60. W.P. Tai, J.H. Oh, J. Mater. Sci. Mater. Electron. 13(7), 391–394 (2002)

    Article  Google Scholar 

  61. F. Fang, J. Futter, A. Markwitz, J. Kennedy, Nanotechnology 20(24), 245502 (2009)

    Article  ADS  Google Scholar 

  62. Y.S. Zhang, K. Yu, D.S. Jiang, Z.Q. Zhu, H.R. Geng, L.Q. Luo, Appl. Surf. Sci. 242(1–2), 212–217 (2005)

    Article  ADS  Google Scholar 

  63. V.E. Henrich, P.A. Cox, Appl. Surf. Sci. 72(4), 277–284 (1993)

    Article  ADS  Google Scholar 

  64. H. Wiggers, R. Starke, P. Roth, Chem. Eng. Technol. 24(3), 261–264 (2001)

    Article  Google Scholar 

Download references

Acknowledgments

The financial support of this work through the German research foundation (DFG) within SFB445 is gratefully acknowledged. The authors are also grateful to Lothar Brendel and Gabi Schierning for their productive and rewarding joint research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hartmut Wiggers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hartner, S., Schwesig, D., Plümel, I., Wolf, D.E., Lorke, A., Wiggers, H. (2012). Electrical Transport in Semiconductor Nanoparticle Arrays: Conductivity, Sensing and Modeling. In: Lorke, A., Winterer, M., Schmechel, R., Schulz, C. (eds) Nanoparticles from the Gasphase. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28546-2_10

Download citation

Publish with us

Policies and ethics