Skip to main content

Electromagnetic Aspects in Cell Biology

  • Chapter
  • First Online:
  • 1822 Accesses

Abstract

In the present review we will concentrate on the “new view” (which emerged in the last years) onto ion—related and electrical processes in biological cells. In the second part we will look onto the consequences of these properties for interfacing with technical devices.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Adams, D.S., Masi, A., Levin, M.: \({\rm H}^{+}\) pump-dependent changes in membrane voltage are an early mechanism necessary and sufficient to induce Xenopus tail regeneration. Development 134, 1323–1335 (2007)

    Article  CAS  Google Scholar 

  2. Adams, D.S., Robinson, K.R., Fukumoto, T., Yuan, S., Albertson, R.C., Yelick, P., Kuo, L., McSweeney, M., Levin, M.: Early, \({\rm H}^{+}\)-V-ATPase-dependent proton flux is necessary for consistent left-right patterning of non-mammalian vertebrates. Development 133, 1657–1671 (2006)

    Article  CAS  Google Scholar 

  3. Adey, W.R.: Collective properties of cell membranes. In: B. Norden, K. Ramel (eds.) Interaction Mechanisms of Low-Level Electromagnetic Fields in Living Systems. Oxford University Press, Oxford (1992)

    Google Scholar 

  4. Adey, W.R.: Elf magnetic fields and promotion of cancer; experimental studies. In: B. Norden, K. Ramel (eds.) Interaction Mechanisms of Low-Level Electromagnetic Fields in Living Systems. Oxford University Press, Oxford (1992)

    Google Scholar 

  5. Adey, W.R.: Evidence for nonthermal electromagnetic bioeffects: potential health risks in evolving low-frequency and microwave environments. In: Clements-Croome, D. (ed.) Electromagnetic Environments and Safety in Buildings. Taylor and Francis, Spon Press, London (2003)

    Google Scholar 

  6. Astumian, R.D.: Electroconformational coupling of membrane proteins. Annals N. Y. Acad. Sci. 720, 136–140 (1994)

    Article  CAS  Google Scholar 

  7. Astumian, R.D.: Thermodynamics and kinetics of a brownian motor. Science 276, 917–922 (1997)

    Article  CAS  Google Scholar 

  8. Aswal, D.K., Lenfant, S., Guerin, D., Yakhmi, J.V., Vuillaume, D.: Self assembled monolayers on silicon for molecular electronics. Anal. Chim. Acta 568, 84–108 (2006)

    Article  CAS  Google Scholar 

  9. Badzey, R.L., Mohanty, P.: Coherent signal amplification in bistable nanomechanical oscillators by stochastic resonance. Nature 437, 995–998 (2005)

    Article  CAS  Google Scholar 

  10. Blank, M.: Do electromagnetic fields interact with electrons in the Na, K-ATPase? Bioelectromagnetics 26, 677–683 (2005)

    Article  CAS  Google Scholar 

  11. Blank, M., Soo, L.: Enhancement of cytochrome oxidase activity in 60 Hz magnetic fields. Bioelectrochem. Bioenerg. 45, 253–259 (1998)

    Article  CAS  Google Scholar 

  12. Blank, M., Soo, L.: Frequency dependency of cytochrome oxidase activity in magnetic fields. Bioelectrochem. Bioenerg. 46, 139–143 (1998)

    Article  CAS  Google Scholar 

  13. Blank, M., Soo, L.: Optimal frequencies for magnetic acceleration of cytochrome oxidase and NaK-ATPase reactions. Bioelectrochemistry 53, 171–174 (2001)

    Article  CAS  Google Scholar 

  14. Blank, M., Soo, L.: Electromagnetic acceleration of the Belousov-Zhabotinski reaction. Bioelectrochemistry 61, 93–97 (2003)

    Article  CAS  Google Scholar 

  15. Borgens, R., et al.: Electric Fields in Vertebrate Repair. Wiley, NewYork (1989)

    Google Scholar 

  16. Braun, D., Fromherz, P.: Imaging neuronal seal resistance on silicon chip using fluorescent voltage-sensitive dye. Biophys. J. 87, 1351–1359 (2004)

    Article  CAS  Google Scholar 

  17. Breme, J., Kirkpatrick, C.J., Thull, R.: Metallic Biomaterial Interfaces. Wiley-Vch, Weinheim (2007). ISBN: 978-3527318605

    Google Scholar 

  18. Brown, M.J., Loew, L.M.: Electric field-directed fibroblast locomotion involves cell surface molecular reorganization and is calcium independent. J. Cell Biol. 127, 117–128 (1994)

    Article  CAS  Google Scholar 

  19. Buck, S.M., Xu, H., Brasuel, M., Philbert, M.A., Kopelman, R.: Nanoscale probes encapsulated by biologically localized embedding (PEBBLEs) for ion sensing and imaging in live cells. Talanta 63, 41–59 (2004)

    Article  CAS  Google Scholar 

  20. Chang, W.H., Chang, K.T., Li, J.: Applications of therapeutic effects of electromagnetic fields. In: Stavroulakis, P. (ed.) Biological Effects of Electromagnetic Fields: Mechanisms, Modeling, Biological Effects, Therapeutic Effects, International Standards. Exposure Criteria. Springer, Berlin (2003). ISBN 978-3540429890

    Google Scholar 

  21. Cho, M.R., Thatte, H.S., Lee, R.C., Golan, D.E.: Reorganization of microfilament structure induced by ac electric fields. FASEB J. 10, 1552–1558 (1996)

    CAS  Google Scholar 

  22. Cooper, M.S., Keller, R.E.: Perpendicular orientation and directional migration of amphibian neural crest cells in dc electrical fields. Proc. Natl. Acad. Sci. USA 81, 160–164 (1984)

    Article  CAS  Google Scholar 

  23. Denker, S.P., Huang, D.C., Orlowski, J., Furthmayr, H., Barber, D.L.: Direct binding of the Na-H exchanger NHE1 to ERM proteins regulates the cortical cytoskeleton and cell shape independently of H(+) translocation. Mol. Cell. 6, 1425–1436 (2000)

    Article  CAS  Google Scholar 

  24. Eddleman, C.S., Bittner, G.D., Fishman, H.M.: Barrier permeability at cut axonal ends progressively decreases until an ionic seal is formed. Biophys. J. 79, 1883–1890 (2000)

    Article  CAS  Google Scholar 

  25. Fecko, C.J., Eaves, J.D., Loparo, J.J., Tokmakoff, A., Geissler, P.L.: Ultrafast hydrogen-bond dynamics in the infrared spectroscopy of water. Science 301, 1698–1702 (2003)

    Article  CAS  Google Scholar 

  26. Fields, R.D.: The shark’s electric sense. Sci. Am. 297, 74–80 (2007)

    Article  Google Scholar 

  27. Fishman, H.M., Bittner, G.D.: Vesicle-mediated restoration of a plasmalemmal barrier in severed axons. News Physiol. Sci. 18, 115–118 (2003)

    Google Scholar 

  28. Fitzsimmons, R.J., Baylink, D.J.: Growth factors and electromagnetic fields in bone. Clin. Plast. Surg. 21, 401–406 (1994)

    CAS  Google Scholar 

  29. Fitzsimmons, R.J., Strong, D.D., Mohan, S., Baylink, D.J.: Low-amplitude, low-frequency electric field-stimulated bone cell proliferation may in part be mediated by increased IGF-II release. J. Cell. Physiol. 150, 84–89 (1992)

    Article  CAS  Google Scholar 

  30. Friedl, P., Wolf, K.: Tumour-cell invasion and migration: diversity and escape mechanisms. Nat. Rev. Cancer 3, 362–374 (2003)

    Article  CAS  Google Scholar 

  31. Funk, R.H., Monsees, T., Ozkucur, N.: Electromagnetic effects—from cell biology to medicine. Prog. Histochem. Cytochem. 43, 177–264 (2009)

    Article  Google Scholar 

  32. Funk, R.H., Monsees, T.K.: Effects of electromagnetic fields on cells: physiological and therapeutical approaches and molecular mechanisms of interaction. A review. Cells Tissues Organs 182, 59–78 (2006)

    Article  Google Scholar 

  33. Funk, R.H.W., Apple, D.J., Naumann, G.O.H.: Embryologie, anatomie und untersuchungstechnik. In: Naumann, G.O.H. (ed.) Pathologie des Auges. Springer, Berlin (2002)

    Google Scholar 

  34. Gartzke, J., Lange, K.: Cellular target of weak magnetic fields: ionic conduction along actin filaments of microvilli. Am. J. Physiol. Cell Physiol. 283, C1333–C1346 (2002)

    CAS  Google Scholar 

  35. Grasso, S., Hernandez, J.A., Chifflet, S.: Roles of wound geometry, wound size, and extracellular matrix in the healing response of bovine corneal endothelial cells in culture. Am. J. Physiol. Cell Physiol. 293, C1327–C1337 (2007)

    Article  CAS  Google Scholar 

  36. Grinstein, S., Woodside, M., Waddell, T.K., Downey, G.P., Orlowski, J., Pouyssegur, J., Wong, D.C., Foskett, J.K.: Focal localization of the NHE-1 isoform of the \({\rm Na}^{+}\)/\({\rm H}^{+}\) antiport: assessment of effects on intracellular pH. Embo J. 12, 5209–5218 (1993)

    CAS  Google Scholar 

  37. Harris, A.K., Pryer, N.K., Paydarfar, D.: Effects of electric fields on fibroblast contractility and cytoskeleton. J. Exp. Zool. 253, 163–176 (1990)

    Article  CAS  Google Scholar 

  38. Hastings, G.W., Mahmud, F.A.: Electrical effects in bone. J. Biomed. Eng. 10, 515–521 (1988)

    Article  CAS  Google Scholar 

  39. Hotary, K.B., Robinson, K.R.: Endogenous electrical currents and the resultant voltage gradients in the chick embryo. Dev. Biol. 140, 149–160 (1990)

    Article  CAS  Google Scholar 

  40. Hotary, K.B., Robinson, K.R.: Evidence of a role for endogenous electrical fields in chick embryo development. Development 114, 985–996 (1992)

    CAS  Google Scholar 

  41. Jaffe, L.: Developmental currents, voltages, and gradients. In: S. Subtelny (ed.) Developmental Order: its origin and regulation, pp. 183–215. Alan R Liss, NewYork (1982)

    Google Scholar 

  42. Kindzelskii, A.L., Petty, H.R.: Ion channel clustering enhances weak electric field detection by neutrophils: apparent roles of SKF96365-sensitive cation channels and myeloperoxidase trafficking in cellular responses. Eur. Biophys. J. 35, 1–26 (2005)

    Article  CAS  Google Scholar 

  43. Klein, M., Seeger, P., Schuricht, B., Alper, S.L., Schwab, A.: Polarization of \({{\rm Na}^{+}}/{{\rm H}^{+}}\) and \({{\rm Cl}^{-}}/{{\rm HCO}^{-}_3}\) exchangers in migrating renal epithelial cells. J. Gen. Physiol. 115, 599–608 (2000)

    Article  CAS  Google Scholar 

  44. Konig, S., Beguet, A., Bader, C.R., Bernheim, L.: The calcineurin pathway links hyperpolarization (Kir2.1)-induced \({\rm Ca}^{2+}\) signals to human myoblast differentiation and fusion. Development 133, 3107–3114 (2006)

    Article  CAS  Google Scholar 

  45. Kruglikov, I.L., Dertinger, H.: Stochastic resonance as a possible mechanism of amplification of weak electric signals in living cells. Bioelectromagnetics 14, 539–547 (1994)

    Article  Google Scholar 

  46. Kushmerick, J.G., Blum, A.S., Long, D.P.: Metrology for molecular electronics. Anal. Chim. Acta 568, 20–27 (2006)

    Article  CAS  Google Scholar 

  47. Lauffenburger, D.A., Horwitz, A.F.: Cell migration: a physically integrated molecular process. Cell 84, 359–369 (1996)

    Article  CAS  Google Scholar 

  48. Lee, H., Cheng, Y.C., Fleming, G.R.: Coherence dynamics in photosynthesis: protein protection of excitonic coherence. Science 316, 1462–1465 (2007)

    Article  CAS  Google Scholar 

  49. Levin, M.: Large-scale biophysics: ion flows and regeneration. Trends Cell Biol. 17, 261–270 (2007)

    Article  CAS  Google Scholar 

  50. Levin, M., Thorlin, T., Robinson, K.R., Nogi, T., Mercola, M.: Asymmetries in \({{\rm H}^{+}}/{{\rm K}^{+}}\)-ATPase and cell membrane potentials comprise a very early step in left-right patterning. Cell 111, 77–89 (2002)

    Article  CAS  Google Scholar 

  51. Liboff, R.L.: Ion cyclotron resonance in biological systems: Experimental evidence. In: Stavroulakis, P. (ed.) Biological Effects of Electromagnetic Fields: mechanisms, modeling, biological effects, therapeutic effects, international standards. Exposure Criteria. Springer, Berlin (2003)

    Google Scholar 

  52. Marsh, G., Beams, H.W.: Electrical control of morphogenesis in regenerating dugesia tigrina. I. relation of axial polarity to field strength. J. Cell. Physiol. 39, 191–213 (1952)

    Article  CAS  Google Scholar 

  53. Mathias, R.T., Rae, J.L., Baldo, G.J.: Physiological properties of the normal lens. Physiol. Rev. 77, 21–50 (1997)

    CAS  Google Scholar 

  54. McCaig, C.D., Rajnicek, A.M., Song, B., Zhao, M.: Controlling cell behavior electrically: current views and future potential. Physiol. Rev. 85, 943–978 (2005)

    Article  Google Scholar 

  55. McCaig, C.D., Zhao, M.: Physiological electrical fields modify cell behaviour. Bioessays 19, 819–826 (1997)

    Article  CAS  Google Scholar 

  56. McLeod, K.J., Rubin, C.T., Donahue, H.J.: Electromagnetic fields in bone repair and adaption. Radio Sci. 30, 233–244 (1995)

    Article  Google Scholar 

  57. Metcalf, M.E.M., Shi, R., Borgens, R.B.: Endogenous ionic currents and voltages in amphibian embryos. J. Exp. Zool. 268, 307–322 (1994)

    Article  Google Scholar 

  58. Mifsud, N., Scott, I., Green, A., Tattersall, J.: Temperature effects in brain slices exposed to radiofrequency fields. In: Presentation during the ERG101.013 (EDA) meeting at Dutch Ministry of Deference. The Hague, 21–22 Nov 2006

    Google Scholar 

  59. Monsees, T.K., Barth, K., Tippelt, S., Heidel, K., Gorbunov, A., Pompe, W., Funk, R.H.: Effects of different titanium alloys and nanosize surface patterning on adhesion, differentiation, and orientation of osteoblast-like cells. Cells Tissues Organs 180, 81–95 (2005)

    Article  Google Scholar 

  60. Mycielska, M.E., Djamgoz, M.B.: Cellular mechanisms of direct-current electric field effects: galvanotaxis and metastatic disease. J. Cell Sci. 117, 1631–1639 (2004)

    Article  CAS  Google Scholar 

  61. Nishimura, K.Y., Isseroff, R.R., Nuccitelli, R.: Human keratinocytes migrate to the negative pole in direct current electric fields comparable to those measured in mammalian wounds. J. Cell Sci. 109(1), 199–207 (1996)

    CAS  Google Scholar 

  62. Nohe, A., Keating, E., Fivaz, M., van der Goot, F.G., Petersen, N.O.: Dynamics of GPI-anchored proteins on the surface of living cells. Nanomedicine 2, 1–7 (2006)

    Article  CAS  Google Scholar 

  63. Nuccitelli, R.: A role for endogenous electric fields in wound healing. Curr. Top. Dev. Biol. 58, 1–26 (2003)

    Article  Google Scholar 

  64. Ojingwa, J.C., Isseroff, R.R.: Electrical stimulation of wound healing. J. Invest. Dermatol. 121, 1–12 (2003)

    Article  CAS  Google Scholar 

  65. Otter, M.W., McLeod, K.J., Rubin, C.T.: Effects of electromagnetic fields in experimental fracture repair. Clin. Orthop. Relat. Res. 355, 90–104 (1998)

    Google Scholar 

  66. Otter, M.W., Palmieri, V.R., Wu, D.D., Seiz, K.G., MacGinitie, L.A., Cochran, G.V.: A comparative analysis of streaming potentials in vivo and in vitro. J. Orthop. Res. 9, 710–719 (1992)

    Article  Google Scholar 

  67. Otter, M.W., Porres, L., McLeod, K.J.: An investigation of the brownian ratchet in MC-3T3-E1 osteoblast-like cells using atomic force microscopy. Trans. Soc. Phys. Regul. Biol. Med. 16, 10–11 (1996)

    Google Scholar 

  68. Otter, M.W., Rubin, C.T., McLeod, K.J.: Can the response of bone to extremely weak stimuli be explained by the brownian ratchet? Ann. Biomed. Eng. 25(1), 76 (1997)

    Google Scholar 

  69. Peskin, C.S., Odell, G.M., Oster, G.F.: Cellular motions and thermal fluctuations: the brownian ratchet. Biophys. J. 65, 316–324 (1993)

    Article  CAS  Google Scholar 

  70. Petrov, A.G.: Electricity and mechanics of biomembrane systems: flexoelectricity in living membranes. Anal. Chim. Acta 568, 70–83 (2006)

    Article  CAS  Google Scholar 

  71. Pilla, A.A.: Weak time-varying and static magnetic fields: From mechanisms to therapeutic applications. In: Stavroulakis, P. (ed.) Biological Effects of Electromagnetic Fields: mechanisms, modeling, biological effects, therapeutic effects, International Standards Exposure Criteria. Springer, Berlin (2003)

    Google Scholar 

  72. Piva, P.G., DiLabio, G.A., Pitters, J.L., Zikovsky, J., Rezeq, M., Dogel, S., Hofer, W.A., Wolkow, R.A.: Field regulation of single-molecule conductivity by a charged surface atom. Nature 435, 658–661 (2005)

    Article  CAS  Google Scholar 

  73. Plopper, G.E., McNamee, H.P., Dike, L.E., Bojanowski, K., Ingber, D.E.: Convergence of integrin and growth factor receptor signaling pathways within the focal adhesion complex. Mol. Biol. Cell 6, 1349–1365 (1995)

    CAS  Google Scholar 

  74. Pullar, C.E., Rizzo, A., Isseroff, R.R.: beta-adrenergic receptor antagonists accelerate skin wound healing: evidence for a catecholamine synthesis network in the epidermis. J. Biol. Chem. 281(21), 225–235 (2006)

    Google Scholar 

  75. Raphael, R.M., Popel, A.S., Brownell, W.E.: A membrane bending model of outer hair cell electromotility. Biophys. J. 78, 2844–2862 (2000)

    Article  CAS  Google Scholar 

  76. Robinson, K.R.: The responses of cells to electrical fields: a review. J. Cell Biol. 101, 2023–2027 (1985)

    Article  CAS  Google Scholar 

  77. Robinson, K.R., Messerli, M.A.: Left/right, up/down: the role of endogenous electrical fields as directional signals in development, repair and invasion. Bioessays 25, 759–766 (2003)

    Article  Google Scholar 

  78. Rosa, L.P., Faber, J.: Quantum models of the mind: are they compatible with environment decoherence? Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 70, 31902 (2004)

    Google Scholar 

  79. Rose, S.M.: Bioelectric control of regeneration in tubularia. Am. Zool. 14, 797–803 (1974)

    Google Scholar 

  80. Rosenspire, A.J., Kindzelskii, A.L., Simon, B.J., Petty, H.R.: Real-time control of neutrophil metabolism by very weak ultra-low frequency pulsed magnetic fields. Biophys. J. 88, 3334–3347 (2005)

    Article  CAS  Google Scholar 

  81. Schoen, I., Fromherz, P.: Extracellular stimulation of mammalian neurons through repetitive activation of \({\rm Na}^{+}\) channels by weak capacitive currents on a silicon chip. J. Neurophysiol. 100, 346–357 (2008)

    Article  Google Scholar 

  82. Schwab, A., Nechyporuk-Zloy, V., Fabian, A., Stock, C.: Cells move when ions and water flow. Pflugers Arch 453, 421–432 (2007)

    Article  CAS  Google Scholar 

  83. Shi, R., Borgens, R.B.: Three-dimensional gradients of voltage during development of the nervous system as invisible coordinates for the establishment of embryonic pattern. Dev. Dyn. 202, 101–114 (1995)

    Article  CAS  Google Scholar 

  84. Simeonova, M., Wachner, D., Gimsa, J.: Cellular absorption of electric field energy: influence of molecular properties of the cytoplasm. Bioelectrochemistry 56, 215–218 (2002)

    Article  CAS  Google Scholar 

  85. Smith, C.: In: H. Fröhlich (ed.) Biological Coherence and Response to External Stimuli, 1st edn., pp. 549–566. Springer, Berlin (1988)

    Google Scholar 

  86. Song, B., Zhao, M., Forrester, J.V., McCaig, C.D.: Electrical cues regulate the orientation and frequency of cell division and the rate of wound healing in vivo. Proc. Natl. Acad. Sci. USA 99(13), 577–582 (2002)

    Google Scholar 

  87. Soong, H.K., Parkinson, W.C., Bafna, S., Sulik, G.L., Huang, S.C.: Movements of cultured corneal epithelial cells and stromal fibroblasts in electric fields. Invest Ophthalmol Vis Sci 31, 2278–2282 (1990)

    CAS  Google Scholar 

  88. Stangl, C., Fromherz, P.: Neuronal field potential in acute hippocampus slice recorded with transistor and micropipette electrode. Eur. J. Neurosci. 27, 958–964 (2008)

    Article  Google Scholar 

  89. Stern, C.D.: Experimental reversal of polarity in chick embryo epiblast sheets in vitro. Exp. Cell Res. 140, 468–471 (1982)

    Article  CAS  Google Scholar 

  90. Stock, C., Gassner, B., Hauck, C.R., Arnold, H., Mally, S., Eble, J.A., Dieterich, P., Schwab, A.: Migration of human melanoma cells depends on extracellular pH and \({\rm Na}^{+}\)/\({\rm H}^{+}\) exchange. J. Physiol. 567, 225–238 (2005)

    Article  CAS  Google Scholar 

  91. Stock, C., Schwab, A.: Role of the Na/H exchanger NHE1 in cell migration. Acta Physiol. (Oxf) 187, 149–157 (2006)

    Article  CAS  Google Scholar 

  92. Sulik, G.L., Soong, H.K., Chang, P.C., Parkinson, W.C., Elner, S.G., Elner, V.M.: Effects of steady electric fields on human retinal pigment epithelial cell orientation and migration in culture. Acta Ophthalmol (Copenh) 70, 115–122 (1992)

    Article  CAS  Google Scholar 

  93. Sun, S., Wise, J., Cho, M.: Human fibroblast migration in three-dimensional collagen gel in response to noninvasive electrical stimulus. I. characterization of induced three-dimensional cell movement. Tissue Eng. 10, 1548–1557 (2004)

    CAS  Google Scholar 

  94. Uzman, J.A., Patil, S., Uzgare, A.R., Sater, A.K.: The role of intracellular alkalinization in the establishment of anterior neural fate in Xenopus. Dev Biol 193, 10–20 (1998)

    Article  CAS  Google Scholar 

  95. Valberg, P.A., Kavet, R., Rafferty, C.N.: Can low-level 50/60 Hz electric and magnetic fields cause biological effects? Radiat. Res. 148, 2–21 (1997)

    Article  CAS  Google Scholar 

  96. Wan, C., Fiebig, T., Kelley, S.O., Treadway, C.R., Barton, J.K., Zewail, A.H.: Femtosecond dynamics of DNA-mediated electron transfer. Proc. Natl. Acad. Sci. USA 96, 6014–6019 (1999)

    Article  CAS  Google Scholar 

  97. Wang, E., Zhao, M., Forrester, J.V., McCaig, C.D.: Bi-directional migration of lens epithelial cells in a physiological electrical field. Exp. Eye Res. 76, 29–37 (2003)

    Article  CAS  Google Scholar 

  98. Wang, E., Zhao, M., Forrester, J.V., et al.: Re-orientation and faster, directed migration of lens epithelial cells in a physiological electric field. Exp. Eye Res. 71, 91–98 (2000)

    Article  CAS  Google Scholar 

  99. Wenger, O.S., Leigh, B.S., Villahermosa, R.M., Gray, H.B., Winkler, J.R.: Electron tunneling through organic molecules in frozen glasses. Science 307, 99–102 (2005)

    Article  CAS  Google Scholar 

  100. Woodruff, R.I.: Calmodulin transit via gap junctions is reduced in the absence of an electric field. J. Insect Physiol. 51, 843–852 (2005)

    Article  CAS  Google Scholar 

  101. Xie, T.D., Chen, Y., Marszalek, P., Tsong, T.Y.: Fluctuation-driven directional flow in biochemical cycle: further study of electric activation of NaK pumps. Biophys. J. 72, 2496–2502 (1997)

    Article  CAS  Google Scholar 

  102. Xie, T.D., Marszalek, P., Chen, Y.D., Tsong, T.Y.: Recognition and processing of randomly fluctuating electric signals by Na. K-ATPase. Biophys. J. 67, 1247–1251 (1994)

    Article  CAS  Google Scholar 

  103. Yoda, A., Clark, A.W., Yoda, S.: Reconstitution of (\({{\rm Na}^{+}}{+}{{\rm K}^{+}}\))-ATPase proteoliposomes having the same turnover rate as the membranous enzyme. Biochim. Biophys. Acta 778, 332–340 (1984)

    Article  CAS  Google Scholar 

  104. Yu, S.R., Burkhardt, M., Nowak, M., Ries, J., Petrasek, Z., Scholpp, S., Schwille, P., Brand, M.: Fgf8 morphogen gradient forms by a source-sink mechanism with freely diffusing molecules. Nature 461, 533–536 (2009)

    Article  CAS  Google Scholar 

  105. Zhao, M., Dick, A., Forrester, J.V., McCaig, C.D.: Electric field-directed cell motility involves up-regulated expression and asymmetric redistribution of the epidermal growth factor receptors and is enhanced by fibronectin and laminin. Mol. Biol. Cell 10, 1259–1276 (1999)

    CAS  Google Scholar 

  106. Zhao, M., Forrester, J.V., McCaig, C.D.: A small, physiological electric field orients cell division. Proc. Natl. Acad. Sci. U. S. A. 96, 4942–4946 (1999)

    Article  CAS  Google Scholar 

  107. Zhao, M., McCaig, C.D., Agius-Fernandez, A., Forrester, J.V., Araki-Sasaki, K.: Human corneal epithelial cells reorient and migrate cathodally in a small applied electric field. Curr. Eye Res. 16, 973–984 (1997)

    Article  CAS  Google Scholar 

  108. Zhao, M., Pu, J., Forrester, J.V., McCaig, C.D.: Membrane lipids, EGF receptors, and intracellular signals colocalize and are polarized in epithelial cells moving directionally in a physiological electric field. FASEB J. 16, 857–859 (2002)

    CAS  Google Scholar 

  109. Zhao, M., Song, B., Pu, J., Wada, T., Reid, B., Tai, G., Wang, F., Guo, A., Walczysko, P., Gu, Y., Sasaki, T., Suzuki, A., Forrester, J.V., Bourne, H.R., Devreotes, P.N., McCaig, C.D., Penninger, J.M.: Electrical signals control wound healing through phosphatidylinositol-3-OH kinase-gamma and PTEN. Nature 442, 457–460 (2006)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard H. W. Funk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Funk, R.H.W. (2012). Electromagnetic Aspects in Cell Biology. In: Gerlach, G., Wolter, KJ. (eds) Bio and Nano Packaging Techniques for Electron Devices. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28522-6_22

Download citation

Publish with us

Policies and ethics