Skip to main content

Seaweed Responses to Ocean Acidification

  • Chapter
  • First Online:

Part of the book series: Ecological Studies ((ECOLSTUD,volume 219))

Abstract

Ocean acidification (OA) is the decline in seawater pH caused by the sustained absorption by the oceans of anthropogenically produced atmospheric CO2. The consequences of OA to seaweed-based coastal ecosystems range from organismal to community levels of biological organization. Organismal responses can be species specific, depending on their carbon physiology, mode of calcification, and morphology (functional form). At the community scale, changes in community structure and function can have severe consequences on trophic dynamics. Biologically driven fluctuations in seawater carbonate chemistry are observed from micro- (diffusion boundary layer, DBL) to mesoscales (e.g., within a kelp forest), and such fluctuations may be exacerbated by OA. The synergistic effects of elevated CO2 with other human-induced environmental stressors (e.g., warming, eutrophication, and UVR) could make the primary producers of coastal ecosystems vulnerable to global climate change; some species may perform better than others under “greenhouse” conditions, leading to community phase shifts.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adey WH, Steneck RS (2001) Thermography over time creates biogeographic regions: a temperature/space/time-integrated model and an abundance-weighted test for benthic marine algae. J Phycol 37:677–698

    Google Scholar 

  • Axelsson L, Larsson C, Ryberg H (1999) Affinity, capacity and oxygen sensitivity of two different mechanisms for bicarbonate utilization in Ulva lactuca L. (Chlorophyta). Plant Cell Environ 22:969–978

    CAS  Google Scholar 

  • Axelsson L, Mercado JM, Figueroa FL (2000) Utilization of HCO3 at high pH by the brown macroalgae Laminaria saccharina. Eur J Phycol 35:53–59

    Google Scholar 

  • Badger MR, Andrews TJ, Whitney SM, Ludwig M, Yellowlees DC, Leggat W, Price GD (1998) The diversity and coevolution of Rubisco, plastids, pyrenoids, and chloroplast-based CO2-concentrating mechanisms in algae. Can J Bot 76:1052–1071

    CAS  Google Scholar 

  • Beardall J, Beer S, Raven JA (1998) Biodiversity of marine plants in an era of climate change: some predictions based on physiological performance. Bot Mar 41:113–123

    CAS  Google Scholar 

  • Beer S (1994) Mechanisms of inorganic carbon acquisition in marine macroalgae (with special reference to the Chlorophyta). Prog Phycol Res 10:179–207

    CAS  Google Scholar 

  • Beman JM, Chow CE, King AL, Feng YY, Fuhrman JA, Andersson A, Bates NR, Popp BN, Hutchins DA (2011) Global declines in oceanic nitrification rates as a consequence of ocean acidification. Proc Natl Acad Sci USA 108:208–213. doi:10.1073/pnas.1011053108

    PubMed Central  PubMed  CAS  Google Scholar 

  • Bensoussan N, Gattuso J-P (2007) Community primary production and calcification in a NW Mediterranean ecosystem dominated by calcareous macroalgae. Mar Ecol Prog Ser 334:37–45

    CAS  Google Scholar 

  • Bischof K, Gómez I, Molis M, Hanelt D, Karsten U, Lüder U, Roleda MY, Zacher K, Wiencke C (2006) Ultraviolet radiation shapes seaweed communities. Rev Environ Sci Biotechnol 5:141–166. doi:10.1007/s11157-006-002-3

    CAS  Google Scholar 

  • Björk M, Haglund K, Ramazanov Z, Garcia-Reina G, Pedersen M (1992) Inorganic-carbon assimilation in the green seaweed Ulva rigida C. Ag. (Chlorophyta). Planta 187:152–156

    PubMed  Google Scholar 

  • Björk M, Haglund K, Ramazanov Z, Pedersen M (1993) Inducible mechanisms for HCO3 utilization and repression of photorespiration in protoplasts and thalli of three species of Ulva (Chlorophyta). J Phycol 29:166–173

    Google Scholar 

  • Björk M, Axelsson L, Beer S (2004) Why is Ulva intestinalis the only macroalga inhabiting isolated rock pools along the Swedish Atlantic coast? Mar Ecol Prog Ser 284:109–116

    Google Scholar 

  • Black CC, Bender MM (1976) δ13C values in marine organisms from the Great Barrier Reef. Aust J Plant Physiol 3:25–32

    CAS  Google Scholar 

  • Bode A, Alvarez-Ossorio MT, Varela M (2006) Phytoplankton and macrophyte contributions to littoral food webs in the Galician upwelling estimated from stable isotopes. Mar Ecol Prog Ser 318:89–102

    CAS  Google Scholar 

  • Borowitzka MA (1987) Calcification in algae: mechanisms and the role of metabolism. CRC Cr Rev Plant Sci 6:1–45

    Google Scholar 

  • Borowitzka MA, Larkum AWD (1976) Calcification in the green alga Halimeda. 3. sources of inorganic carbon for photosynthesis and calcification and a model of mechanism of calcification. J Exp Bot 27:879–893

    CAS  Google Scholar 

  • Borowitzka MA, Larkum AWD (1986) Reef algae. Oceanus 29:49–54

    Google Scholar 

  • Boyd P, Doney SC, Strzepek R, Dusenberry J, Lindsay K, Fung I (2008) Climate-mediated changes to mixed-layer properties in the Southern Ocean: assessing the phytoplankton response. Biogeosciences 5:847–864

    CAS  Google Scholar 

  • Brownlee C, Taylor A (2004) Calcification in coccolithophores: A cellular perspective. In: Thierstein HR, Young JR (eds) Coccolithophores: from cellular processes to global impact. Springer, Berlin, pp 31–49

    Google Scholar 

  • Caldeira K, Wickett ME (2003) Anthropogenic carbon and ocean pH. Science 425:365–365. doi:10.1038/425365a

    CAS  Google Scholar 

  • Cao L, Caldeira K (2008) Atmospheric CO2 stabilization and ocean acidification. Geophys Res Lett. doi:10.1029/2008GL035072

  • Connell SD, Russell BD (2010) The direct effects of increasing CO2 and temperature on non-calcifying organisms: increasing the potential for phase shifts in kelp forest. Proc R Soc B-Biol Sci 227:1409–1415. doi:10.1098/rspb.2009.2069

    Google Scholar 

  • Corbisier TN, Soares LSH, Petti MAV, Muto EY, Silva MHC, McClelland J, Valiela I (2006) Use of isotopic signatures to assess the food web in a tropical shallow marine ecosystem of Southeastern Brazil. Aquat Ecol 40:381–390. doi:10.1007/s10452-006-9033-7

    CAS  Google Scholar 

  • Cornwall CE, Hepburn CD, Pritchard D, Currie KI, McGraw CM, Hunter KA, Hurd CL (2012) Carbon use-strategies in macroalgae: differential responses to lowered pH and implications for ocean acidification. J Phycol 48:137–144. doi:10.1111/j.1529-8817.2011.01085.x

    Google Scholar 

  • De Beer D, Larkum AWD (2001) Photosynthesis and calcification in the calcifying algae Halimeda discoidea studied with microsensors. Plant Cell Environ 24:1209–1217

    Google Scholar 

  • Delille B, Delille D, Fiala M, Prevost C, Frankignoulle M (2000) Seasonal changes of pCO2 over a subantarctic Macrocystis kelp bed. Polar Biol 23:706–716

    Google Scholar 

  • Delille B, Borges AV, Delille D (2009) Influence of giant kelp beds (Macrocystis pyrifera) on diel cycles of pCO2 and DIC in the Sub-Antarctic coastal area. Estuar Coast Shelf S 81:114–122. doi:10.1016/j.ecss.2008.10.004

    Google Scholar 

  • Diaz-Pulido G, Anthony KRN, Kline DI, Dove S, Hoegh-Guldberg O (2012) Interactions between ocean acidification and warming on the mortality and dissolution of coralline algae. J Phycol 48:32–39. doi:10.1111/j.1529-8817.2011.01084.x

    Google Scholar 

  • Doney SC, Fabry VJ, Feely RA, Kleypas JA (2009) Ocean acidification: the other CO2 problem. Annu Rev Mar Sci 1:169–192. doi:10.1146/annurev.marine.010908.163834

    Google Scholar 

  • Dromgoole FI (1978) The effects of pH and inorganic carbon on photosynthesis and dark respiration of Carpophyllum (Fucales, Phaeophyceae). Aquat Bot 4:11–22. doi:10.1016/0304-3770(78)90003-7

    CAS  Google Scholar 

  • Dunton KH (2001) δ15N and δ13C measurements of Antarctic peninsula fauna: trophic relationships and assimilation of benthic seaweeds. Am Zool 41:99–112

    Google Scholar 

  • Feely RA, Sabine CL, Lee K, Berelson W, Kleypas JA, Fabry VJ, Millero FJ (2004) Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305:362–366. doi:10.1126/science.1097329

    PubMed  CAS  Google Scholar 

  • Feely RA, Alin SR, Newton J, Sabine CL, Warner M, Devol A, Krembs C, Maloy C (2010) The combined effects of ocean acidification, mixing, and respiration on pH and carbonate saturation in an urbanized estuary. Estuar Coast Shelf Sci 88:442–449. doi:10.1016/j.ecss.2010.05.004

    CAS  Google Scholar 

  • Fischer G, Wiecke C (1992) Stable carbon isotope composition, depth distribution and fate of macroalgae from the Antarctic Peninsula region. Polar Biol 12:341–348

    Google Scholar 

  • Gao K, McKinley KR (1994) Use of macroalgae for marine biomass production and CO2 remediation: a review. J Appl Phycol 6:45–60

    Google Scholar 

  • Gao KS, Zheng YQ (2010) Combined effects of ocean acidification and solar UV radiation on photosynthesis, growth, pigmentation and calcification of the coralline alga Corallina sessilis (Rhodophyta). Glob Change Biol 16:2388–2398. doi:10.1111/j.1365-2486.2009.02113.x

    Google Scholar 

  • Gao K, Aruga Y, Asada K, Ishihara T, Akano T, Kiyohara M (1991) Enhanced growth of the red alga Porphyra yezoensis Ueda in high CO2 concentration. J Appl Phycol 3:355–362

    CAS  Google Scholar 

  • Gao K, Aruga Y, Asada K, Ishihara T, Akano T, Kiyohara M (1993a) Calcification in the articulated coralline alga Corallina pulifera with special reference to the effect of elevated CO2. Mar Biol 117:129–132

    CAS  Google Scholar 

  • Gao K, Aruga Y, Asada K, Kiyohara M (1993b) Influence of enhanced CO2 on growth and photosynthesis of the red algae Gracilaria sp. & G. chilensis. J Appl Phycol 5:563–571

    CAS  Google Scholar 

  • Gerhart LM, Ward JK (2010) Plant responses to low [CO2] of the past. New Phytol 188:674–695. doi:10.1111/j.1469-8137.2010.03441.x

    PubMed  Google Scholar 

  • Giordano M, Maberly SC (1989) Distribution of carbonic anhydrase in British marine macroalgae. Oecologia 81:534–539

    Google Scholar 

  • Giordano M, Beardall J, Raven JA (2005) CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annu Rev Plant Biol 56:99–131. doi:10.1146/annurev.arplant.56.032604.144052

    PubMed  CAS  Google Scholar 

  • Gordillo FJL, Niell FX, Figueroa FL (2001) Non-photosynthetic enhancement of growth by high CO2 level in the nitrophilic seaweed Ulva rigida C. Agardh (Chlorophyta). Planta 213:64–70

    PubMed  CAS  Google Scholar 

  • Graham MH, Vásquez JA, Buschmann AH (2007) Global ecology of the giant kelp Macrocystis: from ecotypes to ecosystems. Oceanogr Mar Biol 45:39–88

    Google Scholar 

  • Hall-Spencer J, Rodolfo-Metalpa R, Martin S, Ransome E, Fine M, Turner SM, Rowley SJ, Tedesco D, Buia M-C (2008) Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 454:96–99. doi:10.1038/nature07051

    PubMed  CAS  Google Scholar 

  • Hepburn CD, Pritchard DW, Cornwall CE, McLeod RJ, Beardall J, Raven JA, Hurd CL (2011) Diversity of carbon use strategies in a kelp forest community: implications for a high CO2 ocean. Global Change Biol 17:2488–2497. doi:10.1111/j.1365-2486.2011.02411.x

    Google Scholar 

  • Holbrook GP, Beer S, Spenser WE, Reiskind J, Davis JS, Bowes G (1988) Photosynthesis in marine macroalgae: evidence for carbon limitation. Can J Bot 66:577–582

    CAS  Google Scholar 

  • Hurd CL (2000) Water motion, marine macroalgal physiology, and production. J Phycol 36:453–472

    CAS  Google Scholar 

  • Hurd CL, Pilditch CA (2011) Flow-induced morphological variations affect diffusion boundary-layer thickness of Macrocystis pyrifera (Heterokontophyta, Laminariales). J Phycol 47:341–351. doi:10.1111/j.1529-8817.2011.00958.x

    Google Scholar 

  • Hurd CL, Hepburn CD, Currie KI, Raven JA, Hunter KA (2009) Testing the effects of ocean acidification on algal metabolism: considerations for experimental designs. J Phycol 45:1236–1251

    CAS  Google Scholar 

  • Hurd CL, Cornwall CE, Currie K, Hepburn CD, McGraw CM, Hunter KA, Boyd PW (2011) Metabolically-induced pH fluctuations by some coastal calcifiers exceed projected 22nd century ocean acidification: a mechanism for differential susceptibility? Glob Change Biol doi:10.1111/j.1365-2486.2011.02473.x

    Google Scholar 

  • IPCC (2007) Climate Change 2007: The physical science basis. Summary for policymakers. Contribution of working group I to the fourth assessment report. The International Panel on Climate Change, http://www.ipcc.ch/SPM2feb07.pdf

  • Jiang ZJ, Huang X-P, Zhang J-P (2010) Effects of CO2 enrichment on photosynthesis, growth, and biochemical composition of seagrass Thalassia hemprichii (Ehrenb.) Aschers. J Integr Plant Biol 52:904–913. doi:10.1111/j.1744-7909.2010.00991.x

    PubMed  CAS  Google Scholar 

  • Johnston AM (1991) The acquisition of inorganic carbon by marine macroalgae. Can J Bot 69:1123–1132

    CAS  Google Scholar 

  • Johnston AM, Raven JA (1991) Effects of culture in high CO2 on the photosynthetic physiology of Fucus serratus. Br Phycol J 25:75–82

    Google Scholar 

  • Johnston AM, Maberly SC, Raven JA (1992) The acquisition of inorganic carbon by four red macroalgae. Oecologia 92:317–326

    Google Scholar 

  • Kang C-K, Choy EJ, Son Y, Lee J-K, Kim JK, Kim Y, Lee K-S (2008) Food web structure of a restored macroalgal bed in the eastern Korean peninsula determined by C and N stable isotope analyses. Mar Biol 153:1181–1198. doi:10.1007/s00227-007-0890-y

    Google Scholar 

  • Kevekordes K, Holland D, Häubner N, Jenkin S, Koss R, Roberts S, Raven JA, Scrimgeour CM, Shelly K, Stojkovic S, Beardall J (2006) Inorganic carbon acquisition by eight species of Caulerpa (Caulerpaceae, Chlorophyta). Phycologia 45:442–449. doi:10.2216/05-55.1

    Google Scholar 

  • Kremer BP (1981) Aspects of carbon metabolism in marine macroalgae. In: Barnes HB, Barnes M (eds) Oceanography and marine biology: an annual review, 19. Aberdeen University Press, Aberdeen, UK, pp 41–94

    Google Scholar 

  • Kübler JE, Raven JA (1994) Consequences of light limitation for carbon acquisition in three rhodophytes. Mar Ecol Prog Ser 110:203–209

    Google Scholar 

  • Kübler JE, Johnston AM, Raven JA (1999) The effects of reduced and elevated CO2 and O2 on the seaweed Lomentaria articulata. Plant Cell Environ 22:1303–1310

    Google Scholar 

  • Kuffner IB, Andersson AJ, Jokiel PL, Rodgers KS, Mackenzie FT (2008) Decreased abundance of crustose coralline algae due to ocean acidification. Nat Geosci 1:114–117. doi:10.1038/ngeo100

    CAS  Google Scholar 

  • Laurand S, Riera P (2006) Trophic ecology of the supralittoral rocky shore (Roscoff, France): a dual stable isotope (δ13C, δ15N) and experimental approach. J Sea Res 56:27–36. doi:10.1016/j.seares.2006.03.002

    CAS  Google Scholar 

  • Maberly SC (1990) Exogenous sources of inorganic carbon for photosynthesis by marine macroalgae. J Phycol 26:439–449

    CAS  Google Scholar 

  • Maberly SC, Raven JA, Johnston AM (1992) Discrimination between 12 C and 13 C by marine plants. Oecologia 91:481–492

    Google Scholar 

  • Magnusson G, Larsson C, Axelsson L (1996) Effects of high CO2 treatment on nitrate and ammonium uptake by Ulva lactuca grown in different nutrient regimes. Sci Mar 60(Supplement 1):179–189

    CAS  Google Scholar 

  • Martin S, Gattuso JP (2009) Response of Mediterranean coralline algae to ocean acidification and elevated temperature. Glob Change Biol 15:2089–2100. doi:10.1111/j.1365-2486.2009.01874.x

    Google Scholar 

  • Mathis JT, Cross JN, Bates NR (2011) Coupling primary production and terrestrial runoff to ocean acidification and carbonate mineral suppression in the eastern Bering Sea. J Geophys Res-Oceans. doi:10.1029/2010JC006453

  • McGraw CM, Cornwall CE, Reid MR, Currie KI, Hepburn CD, Boyd P, Hurd CL, Hunter KA (2010) An automated pH-controlled culture system for laboratory-based ocean acidification experiments. Limnol Oceanogr Meth 8:686–694. doi:10:4319/lom.2010.8.686

    CAS  Google Scholar 

  • McNeil BI, Matear RJ (2008) Southern Ocean acidification: a tipping point at 450-ppm atmospheric CO2. Proc Natl Acad Sci USA 105:18860–18864. doi:10.1073/pnas.0806318105

    PubMed Central  PubMed  CAS  Google Scholar 

  • Mercado JM, Niell FX, Gil-Rodríquez MC (2001) Photosynthesis might be limited by light, not inorganic carbon availability, in three intertidal Gelidiales species. New Phytol 149:431–439

    CAS  Google Scholar 

  • Mercado JM, Andria JR, Pérez-Llorens JL, Vergara JJ, Axelsson L (2006) Evidence for a plasmalemma-based CO2 concentrating mechanism in Laminaria saccharina. Photosynth Res 88:259–268. doi:10.1007/s11120-006-9039-y

    PubMed  CAS  Google Scholar 

  • Merzouk A, Johnson LE (2011) Kelp distribution in the northwest Atlantic Ocean under a changing climate. J Exp Mar Biol Ecol 400:90–98. doi:10.1016/j.jembe.2011.02.020

    Google Scholar 

  • Moroney JV, Ynalvez RA (2007) Proposed carbon dioxide concentrating mechanism in Chlamydomonas reinhardtii. Eukaryot Cell 6:1251–1259. doi:10.1128/EC.00064-07

    PubMed Central  PubMed  CAS  Google Scholar 

  • Murru M, Sandgren CD (2004) Habitat matters for inorganic carbon acquisition in 38 species of red macroalgae (Rhodophyta) from Puget Sound, Washington, USA. J Phycol 40:837–845. doi:10.1111/j.1529-8817.2004.03182.x

    CAS  Google Scholar 

  • Nelson WA (2009) Calcified macroalgae- critical to coastal ecosystems and vulnerable to change: a review. Mar Freshwater Res 60:787–801. doi:10.1071/MF08335

    CAS  Google Scholar 

  • Pinnegar JK, Polunin NVC (2000) Contributions of stable-isotope data to elucidating food webs of Mediterranean rocky littoral fishes. Oecologia 122:399–409

    Google Scholar 

  • Porzio L, Buia MC, Hall-Spencer JM (2011) Effects of ocean acidification on macroalgal communities. J Exp Mar Biol Ecol 400:278–287. doi:10.1016/j.jembe.2011.02.011

    CAS  Google Scholar 

  • Raven JA (2010) Inorganic carbon acquisition by eukaryotic algae: four current questions. Photosynth Res 106:123–134. doi:10.1007/s11120-010-9563-7

    PubMed  CAS  Google Scholar 

  • Raven JA, Giordano M (2009) Biomineralization by photosynthetic organisms: evidence of coevolution of the organisms and their environment? Geobiology 7:140–154. doi:10.1111/j.1472-4669.2008.00181.x

    PubMed  CAS  Google Scholar 

  • Raven JA, Walker DI, Johnston AM, Handley LL, Kübler JE (1995) Implications of 13C natural abundance measurements for photosynthetic performance by marine macrophytes in their natural environment. Mar Ecol Prog Ser 123:193–205

    Google Scholar 

  • Raven JA, Johnston AM, Kübler JE, Korb R, McInroy SG, Handley LL, Scrimgeour CM, Walker DI, Beardall J, Clayton MN, Vanderklift M, Fredriksen S, Dunton KH (2002a) Seaweeds in cold seas: evolution and carbon acquisition. Ann Bot 90:525–536. doi:10.1093/aob/mcf171

    PubMed  CAS  Google Scholar 

  • Raven JA, Johnston AM, Kübler JE, Korb R, McInroy SG, Handley LL, Scrimgeour CM, Walker DI, Beardall J, Vanderklift M, Fredriksen S, Dunton KH (2002b) Mechanistic interpretation of carbon isotope discrimination by marine macroalgae and seagrasses. Funct Plant Biol 29:355–378. doi:10.1071/PP01201

    CAS  Google Scholar 

  • Raven JA, Ball LA, Beardall J, Giordana M, Maberly SC (2005) Algae lacking carbon-concentrating mechanisms. Can J Bot 83:879–890. doi:10.1139/B05-074

    CAS  Google Scholar 

  • Raven JA, Cockell CS, De La Rocha CL (2008) The evolution of inorganic carbon concentrating mechanisms in photosynthesis. Philos Trans R Soc B 363:2641–2650. doi:10.1098/rstb.2008.0020

    CAS  Google Scholar 

  • Riebesell U, Fabry VJ, Hansson L, Gattuso J-P (2010) Guide to best practices for ocean acidification research and data reporting. Publications Office of the European Union, Luxembourg

    Google Scholar 

  • Ries JB (2009) Effects of secular variation in seawater Mg/Ca ratio (calcite-aragonite seas) on CaCO3 sediment production by the calcareous algae Halimeda, Penicillus and Udotea – evidence from recent experiments and the geological record. Terra Nova 21:323–339. doi:10.1111/j.1365-3121.2009.00899.x

    CAS  Google Scholar 

  • Ries JB (2010) Review: geological and experimental evidence for secular variation in seawater Mg/Ca (calcite-aragonite seas) and its effects of marine biological calcification. Biogeosciences 7:2795–2849. doi:10.5194/bg-7-2795-2010

    CAS  Google Scholar 

  • Roleda MY, Wiencke C, Hanelt D, Bischof K (2007) Sensitivity of the early life history stages of macroalgae from the Northern Hemisphere to ultraviolet radiation. Photochem Photobiol 83:851–862. doi:10.1562/2006-08-17-IR-1005

    PubMed  CAS  Google Scholar 

  • Roleda MY, Campana GL, Wiencke C, Hanelt D, Quartino ML, Wulff A (2009) Sensitivity of Antarctic Urospora penicilliformis (Ulotrichales, Chlorophyta) to ultraviolet radiation is life-stage dependent. J Phycol 45:600–609. doi:10.1111/j.1529-8817.2009.00691.x

    Google Scholar 

  • Roleda MY, Morris JN, McGraw CM, Hurd CL (2012) Ocean acidification and seaweed reproduction: increased CO2 ameliorates the negative effect of lowered pH on meiospore germination in the giant kelp Macrocystis pyrifera (Laminariales, Phaeophyceae). Global Change Biol 18:854–864. doi:10.1111/j.1365-2486.2011.02594.x

  • Royal Society (2005) Ocean acidification due to increasing atmospheric carbon dioxide. Policy document 12/05 Royal Society, London. The Clyvedon press Ltd, Cardiff

    Google Scholar 

  • Runcie JW, Gurgel CFD, McDermid KJ (2008) In situ photosynthetic rates of tropical marine macroalgae at their lower depth limit. Eur J Phycol 43:377–388. doi:10.1080/09670260801979303

    CAS  Google Scholar 

  • Russell BD, Connell SD (2009) Eutrophication science: moving into the future. Trends Ecol Evol 24:527–528. doi:10.1016/j.tree.2009.06.001

    PubMed  Google Scholar 

  • Russell BD, Thompson JAI, Falkenberg LJ, Connell SD (2009) Synergistic effects of climate change and local stressors: CO2 and nutrient-driven change in subtidal rocky habitats. Glob Change Biol 15:2153–2162. doi:10.1111/j.1365-2486.2009.01886.x

    Google Scholar 

  • Russell BD, Passarelli CA, Connell SD (2011) Forecasted CO2 modifies the influence of light in shaping subtidal habitat. J Phycol doi:10.1111/j.1529-8817.2011.01002.x

    Google Scholar 

  • Semesi IS, Beer S, Bjork M (2009a) Seagrass photosynthesis controls rates of calcification and photosynthesis of calcareous macroalgae in a tropical seagrass meadow. Mar Ecol Prog Ser 382:41–47. doi:10.3354/meps07973

    CAS  Google Scholar 

  • Semesi IS, Kangwe J, Björk M (2009b) Alterations in seawater pH and CO2 affect calcification and photosynthesis in the tropical coralline alga, Hydrolithon sp. (Rhodophyta). Estuar Coast Shelf Sci 84:337–341. doi:10.1016/j.ecss.2009.03.038

    CAS  Google Scholar 

  • Sherlock DJ, Raven JA (2001) Interactions between carbon dioxide and oxygen in the photosynthesis of three species of marine red algae. Bot J Scotl 53:33–43

    Google Scholar 

  • Smith RG, Bidwell RGS (1989) Inorganic carbon uptake by photosynthetically active protoplast of the red macroalga Chondrus crispus. Mar Biol 102:1–4

    CAS  Google Scholar 

  • Stanley SM (2008) Effects of global seawater chemistry on biomineralization: past, present and future. Chem Rev 108:4483–4498. doi:10.1021/cr800233u

    PubMed  CAS  Google Scholar 

  • Surif MB, Raven JA (1989) Exogenous inorganic carbon sources for photosynthesis in seawater by members of the Fucales and the Laminariales (Phaeophyta): ecological and taxonomic implications. Oecologia 78:97–105

    Google Scholar 

  • Surif MB, Raven JA (1990) Photosynthetic gas exchange under emersed conditions in intertidal and normally submersed members of the Fucales and Laminariales: interpretation in relation to C isotope ratio and N and water use efficiency. Oecologia 82:68–80

    Google Scholar 

  • Thoms S, Pahlow M, Wolf-Gladrow DA (2001) Model of the carbon concentrating mechanism in chloroplasts of eukaryotic algae. J Theor Biol 208:295–313. doi:10.1006/jtbi.2000.2219

    PubMed  CAS  Google Scholar 

  • Turley C (2008) Impacts of changing chemistry in a high-CO2 world. Mineral Mag 72:359–362. doi:10.1180/minmag.2008.072.1.359

    CAS  Google Scholar 

  • van de Waal D, Verschoor AM, Verspagen JMH, van Donk E, Huisman J (2010) Climate-driven changes in the ecological stoichiometry of aquatic ecosystem. Front Ecol Environ 8:145–152. doi:10.1890/080178

    Google Scholar 

  • Vizzini S, Mazzola A (2006) The effects of anthropogenic organic matter inputs on stable carbon and nitrogen isotopes in organisms from different trophic levels in a southern Mediterranean coastal area. Sci Total Environ 368:723–731. doi:10.1016/j.scitotenv.2006.02.001

    PubMed  CAS  Google Scholar 

  • Wang W-L, Yeh H-W (2003) δ13C values of marine macroalgae from Taiwan. Bot Bull Acad Sin 44:107–112

    CAS  Google Scholar 

  • Ward JK (2005) Evolution and growth of plants in a low CO2 world. In: Ehleringer JR, Cerling TE, Dearing MD (eds) A history of atmospheric CO2 and its effects on plants, animals, and ecosystem, vol 177, Ecological Studies. Springer, New York, pp 232–257

    Google Scholar 

  • Wootton JT, Pfister CA, Forester JD (2008) Dynamic patterns and ecological impacts of declining ocean pH in a high-resolution multi-year dataset. Proc Natl Acad Sci USA 105:18848–18853. doi:10.1073/pnas0810079105

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wozniak AS, Roman CT, Wainright SC, McKinney RA, James-Pirri M-J (2006) Monitoring food web changes in tide-restored salt marshes: a carbon stable isotope approach. Estuar Coast 29:568–578

    Google Scholar 

  • Zachos JC, Rohl U, Schellenberg SA, Sluijs A, Hodell DA, Kelly DC, Thomas E, Nicolo M, Raffi I, Lourens LJ, McCarren H, Kroon D (2005) Rapid acidification of the ocean during the Paleocene-Eocene thermal maximum. Science 308:1611–1615. doi:10.1126/science.1109004

    PubMed  CAS  Google Scholar 

  • Zeebe RE, Wolf-Gladrow D (2001) CO2 in seawater: equilibrium, kinetics. Isotopes. Elsevier Science B.V, Amsterdam

    Google Scholar 

  • Zou D, Gao K (2002) Effects of desiccation and CO2 concentrations on emersed photosynthesis in Porphyra haitanensis (Bangiales, Rhodophyta), a species farmed in China. Eur J Phycol 37:587–592. doi:10.1017/S0967026202003876

    Google Scholar 

Download references

Acknowledgments

The authors were funded by the Royal Society of New Zealand Marsden Fund (UOO0914). We thank the two anonymous reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Y. Roleda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Roleda, M.Y., Hurd, C.L. (2012). Seaweed Responses to Ocean Acidification. In: Wiencke, C., Bischof, K. (eds) Seaweed Biology. Ecological Studies, vol 219. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28451-9_19

Download citation

Publish with us

Policies and ethics