Skip to main content

Enhancement of Biohydrogen Production by Two-Stage Systems: Dark and Photofermentation

  • Chapter
  • First Online:

Abstract

Hydrogen is an attractive, clean, future renewable energy carrier. Biological H2 production from wastes could be an environmentally friendly and economically viable way to produce hydrogen compared with present production technologies. Hydrogen yields in dark fermentation are rather low since carbohydrates are converted into hydrogen and volatile fatty acids with a maximal theoretical yield of 4 mol H2/mol glucose when acetate is the sole end product. Photofermentation is theoretically capable of the complete conversion of substrate to hydrogen, but the main substrates are expensive organic acids. Therefore combining these systems is a good alternative to improve overall hydrogen yields. By using the acetate produced in dark fermentation with photofermentation, the yield can be theoretically increased to 12 mol H2/mol glucose. Here we review the current research on biohydrogen production using two-stage systems that combine dark fermentation by mixed cultures and photofermentation by purple non-sulfur bacteria.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Chen CY, Yeh KL, Lo YC, Wang HM, Chang JS (2010) Engineering strategies for the enhanced photo H2 production using effluents of dark fermentation processes as substrate. Int J Hydrogen Energy 35:13356–13364. doi:10.1016/j.ijhydene.2009.11.070

    Article  Google Scholar 

  2. Vijayaraghavan K, Mohd A (2006) Trends in biological hydrogen production—a review. Environ Sci 3(4):255–271. doi:10.1016/j.ijhydene.2004.10.007

    Article  Google Scholar 

  3. Redwood MD, Paterson-Beedle M, Macaskie LE (2009) Integrating dark and light biohydrogen production strategies: towards the hydrogen economy. Rev Environ Sci Biotechnol 8:149–185. doi:10.1007/s11157-008-9144-9

    Article  Google Scholar 

  4. Ntaikou I, Kourmentza C, Koutrouli E, Stamatelatou K, Zampraka A, Kornaros M, Lyberatos G (2009) Exploitation of olive oil mill wastewater for combined bio-hydrogen and bio-polymers production. Bioresour Technol 100:3724–3730. doi:10.1016/j.biortech.2008.12.001

    Article  Google Scholar 

  5. Li RY, Fang HHP (2009) Heterotrophic Photo Fermentative Hydrogen Production. Crit Rew Env Sci Tech 39(12):1081–1108. doi:10.1080/10643380802009835

    Article  Google Scholar 

  6. Hallenbeck PC (2009) Fermentative hydrogen production: principles, progress, and prognosis. Int J Hydrogen Energy 34:7379–7389. doi:10.1016/j.ijhydene.2008.12.080

    Article  Google Scholar 

  7. Ntaikou I, Antonopoulou G, Lyberatos G (2010) Biohydrogen production from biomass and wastes via dark fermentation: a review. Waste Biomass Valor 1:21–39. doi:10.1007/s12649-009-9001-2

    Article  Google Scholar 

  8. Su H, Cheng J, Zhou J, Song W, Cen K (2009) Combination of dark and photo-fermentation to enhance hydrogen production and energy conversion efficiency. Int J Hydrogen Energy 34:8846–8853. doi:10.1016/j.ijhydene.2009.09.001

    Article  Google Scholar 

  9. Manish S, Banerje R (2008) Comparision of biohydrogen production processes. Int J Hydrogen Energy 33:279–286. doi:10.1016/j.ijhydene.2007.07.026

    Article  Google Scholar 

  10. Nandi R, Sengupta S (1998) Microbial production of hydrogen: an overview. Critical Rev Microbiol 24(1):61–84. doi:10.1080/10408419891294181

    Article  Google Scholar 

  11. May PS, Blanchard GC, Foley RT (1964) Biochemical hydrogen generators: 18th Annual proceedings power sources conferences. May 19–21

    Google Scholar 

  12. Collet C, Adler N, Schwitzguebel J-P, Peringer P (2004) Hydrogen production by Clostridium thermolactum during continuous fermentation of lactose. Int J Hydrogen Energy 29:1479–1485. doi:10.1016/j.ijhydene.2004.02.009

    Article  Google Scholar 

  13. Ferchichi M, Crabbe E, Hintz W, Gil GH, Almadidy A (2005) Influence of culture parameters on biological hydrogen production by Clostridium saccharoperbutylacetonicum ATCC 27021. World J Microbiol Biotechnol 21(6–7):855–862. doi:10.1007/s11274-004-5972-0

    Article  Google Scholar 

  14. Chen CY, Chang JS (2006) Enhancing phototropic hydrogen production by solid-carrier assisted fermentation and internal optical-fiber illumination. Process Biochem 41:2041–2049. doi:10.1016/j.procbio.2006.05.005

    Article  Google Scholar 

  15. Saint-Amans S, Girbal L, Andrade J, Ahrens K, Soucaille P (2001) Regulation of carbon and electron flow in Clostridium butyricum VPI 3266 grown on glucose–glycerol mixtures. J Bacteriol 183(5):1748–1754

    Article  Google Scholar 

  16. Van Andel JG, Zoutberg GR, Crabbendam PM, Breure AM (1985) Glucose fermentation by Clostridium butyricum grown under a self generated gas atmosphere in chemostat culture. Appl Microbiol Biotechnol 23:21–26. doi:10.1007/BF02660113

    Article  Google Scholar 

  17. Evvyernie D, Morimoto K, Karita S, Kimura T, Sakka K, Ohmiya K (2001) Conversion of chitinous wastes to hydrogen gas by Clostridium paraputrificum M-21. J Biosci Bioeng 91(4):339–343. doi:10.1016/S1389-1723(01)80148-1

    Google Scholar 

  18. Chung KT (1976) Inhibitory effects of H2 on growth of Clostridium cellobioparum. Appl Environ Microbiol 31(3):342–348

    Google Scholar 

  19. Hawkes FR, Dinsdale R, Hawkes DL, Hussy I (2002) Sustainable fermentative hydrogen production: challenges for process optimisation. Int J Hydrogen Energy 27:1339–1347. doi:10.1016/S0360-3199(02)00090-3

    Article  Google Scholar 

  20. Hallenbeck PC (2005) Fundamentals of the fermentative production of hydrogen. Water Sci Technol 52(1–2):21–29

    Google Scholar 

  21. Li YH, Engle M, Weiss N, Mandelco L, Wiegel J (1994) Clostridium thermoalcaliphilum sp. nov., an anaerobic and thermotolerant facultative alkaliphile. Int J Syst Bacteriol 44(1):111–118

    Article  Google Scholar 

  22. Wiegel J, Kuk SU, Kohring GW (1989) Clostridium thermobutyricum sp. nov., a moderate thermophile isolated from a cellulolytic culture, that produces butyrate as the major product. Int J Syst Bacteriol 39(2):199–204

    Article  Google Scholar 

  23. Lovitt RW, Shen GJ, Zeikus JG (1988) Ethanol production by thermophilic bacteria: biochemical basis for ethanol and hydrogen tolerance in Clostridium thermohydrosulfuricum. J Bacteriol 170(6):2809–2815

    Google Scholar 

  24. Vancanneyt M, de Vos P, Vennens L, de Ley J (1990) Lactate and ethanol dehydrogenase activities in continuous cultures of Clostridium thermosaccharolyticum LMG 6564. J Gen Microbiol 136:1945–1951. doi:10.1099/00221287-136-10-1945

    Article  Google Scholar 

  25. Schink B, Zeikus JG (1983) Clostridium thermosulfurogenes sp. nov., a new thermophile that produces elemental sulphur from thiosulphate. J Gen Microbiol 129:1149–1158. doi:10.1099/00221287-129-4-1149

    Google Scholar 

  26. Dien BS, Nichols NN, O’Bryan PJ, Bothast RJ (2000) Development of new ethanologenic Escherichia coli strains for fermentation of lignocellulosic biomass. Appl Biochem Biotechnol 84–86:181–196. doi:10.1385/ABAB:84-86:1-9:181

    Article  Google Scholar 

  27. Blackwood AC, Neish AC, Ledingham GA (1956) Dissimilation of glucose at controlled pH values by pigmented and non-pigmented strains of Escherichia coli. J Bacteriol 72:497–516

    Google Scholar 

  28. Mahyudin AR, Furutani Y, Nakashimada Y, Kakizono T, Nishio (1997) Enhanced hydrogen production in altered mixed acid fermentation of glucose by Enterobacter aerogenes. J Ferm Bioeng 83(4):358–363. doi:10.1016/S0922-338X(97)80142-80150

  29. Kumar N, Das D (2000) Enhancement of hydrogen production by Enterobacter cloacae IIT-BT 08. Process Biochem 35:589–593. doi:10.1016/S0032-9592(99)00109-0

    Article  Google Scholar 

  30. Kumar N, Das D (2001) Continuous hydrogen production by immobilized Enterobacter cloacae IIT-BT 08 using lignocellulosic materials as solid matrices. Enzyme Microbiol Technol 29:280–287. doi:10.1016/S0141-0229(01)00394-5

    Article  Google Scholar 

  31. Tanisho S, Kuromoto M, Kadokura N (1998) Effect of CO2 removal on hydrogen production by fermentation. Int J Hydrogen Energy 23:559–563. doi:10.1016/S0360-3199(97)00117-1

    Article  Google Scholar 

  32. Tanisho S (2000) A strategy for improving the yield of hydrogen by fermentation. In: Mao ZQ, Veziroglu TN (eds) Hydrogen Energy Progress XIII, vol 1. Beijing, China, pp 370–374

    Google Scholar 

  33. Leitea JAC, Fernandesa BS, Pozzi E, Barbozab M, Zaiat M (2008) Application of an anaerobic packed-bed bioreactor for the production of hydrogen and organic acids. Int J Hydrogen Energy 33:579–586. doi:10.1016/j.ijhydene.2007.10.009

    Article  Google Scholar 

  34. Van Ginkel SW, Oh SE, Logan BE (2005) Biohydrogen gas production from food processing and domestic wastewaters. Int J Hydrogen Energy 30(15):1535–1542. doi:10.1016/j.ijhydene.2004.09.017

    Article  Google Scholar 

  35. Park W, Hyun SH, Oh SE, Logan BE, Kim IS (2005) Removal of headspace CO2 increases biological hydrogen production. Environ Sci Technol 39(12):4416–4420. doi:10.1021/es048569d

    Article  Google Scholar 

  36. Zheng XJ, Yu HQ (2005) Inhibitory effects of butyrate on biological hydrogen production with mixed anaerobic cultures. J Environ Manag 74(1):65–70. doi:10.1016/j.jenvman.2004.08.015

    Article  Google Scholar 

  37. Cheong DY, Hansen CL (2006) Acidogenesis characteristics of natural, mixed anaerobes converting carbohydrate-rich synthetic wastewater to hydrogen. Process Biochem 41(8):1736–1745. doi:10.1016/j.procbio.2006.03.014

    Article  Google Scholar 

  38. Logan BE, Oh SE, Kim IS, Van Ginkel S (2002) Biological hydrogen production measured in batch anaerobic respirometers. Environ Sci Technol 36(11):2530–2535. doi:10.1021/es015783i

    Article  Google Scholar 

  39. Mu Y, Wang G, Yu HQ (2006) Response surface methodological analysis on biohydrogen production by enriched anaerobic cultures. Enzym Microb Technol 38(7):905–913. doi:10.1016/j.enzmictec.2005.08.016

    Article  Google Scholar 

  40. Mu Y, Wang G, Yu HQ (2006) Kinetic modeling of batch hydrogen production process by mixed anaerobic cultures. Bioresour Technol 97(11):1302–1307. doi:10.1016/j.biortech.2005.05.014

    Article  Google Scholar 

  41. Oh SE, Van Ginkel S, Logan BE (2003) The relative effectiveness of pH control and heat treatment for enhancing biohydrogen gas production. Environ Sci Technol 37(22):5186–5190. doi:10.1021/es034291y

    Article  Google Scholar 

  42. Salerno MB, Park W, Zuo Y, Logan BE (2006) Inhibition of biohydrogen production by ammonia. Water Res 40(6):1167–1172. doi:10.1016/j.watres.2006.01.024

    Article  Google Scholar 

  43. Valdez-Vazquez I, Rios-Leal E, Carmona-Martinez A, Munoz-Paez KM, Poggi-Varaldo HM (2006) Improvement of biohydrogen production from solid wastes by intermittent venting and gas flushing of batch reactors headspace. Environ Sci Technol 40(10):3409–3415. doi:10.1021/es052119j

    Article  Google Scholar 

  44. Atif AAY, Fakhru’l-Razi A, Ngan MA, Morimoto M, Iyuke SE, Veziroglu NT (2005) Fed batch production of hydrogen from palm oil mill effluent using anaerobic microflora. Int J Hydrogen Energy 30(13–14):1393–1397. doi:10.1016/j.ijhydene.2004.10.002

    Article  Google Scholar 

  45. Calli B, Boenne W, Vanbroekhoven K (2006) Bio-hydrogen potential of easily biodegradable substrate through dark fermentation. In: Proceedings of the 16th world hydrogen energy conference. Lyon, France, pp 215–216

    Google Scholar 

  46. Lin CY, Chang CC, Hung CH (2008) Fermentative hydrogen production from starch using natural mixed cultures. Int J Hydrogen Energy 33:2445–2453. doi:10.1016/j.ijhydene.2008.02.069

    Article  Google Scholar 

  47. Zhang JJ, Li XY, Oh SE, Logan BE (2004) Physical and hydrodynamic properties of flocs produced during biological hydrogen production. Biotechnol Bioeng 88(7):854–860. doi:10.1002/bit.20297

    Article  Google Scholar 

  48. Kraemer JT, Bagley DM (2005) Continuous fermentative hydrogen production using a two-phase reactor system with recycle. Environ Sci Technol 39(10):3819–3825. doi:10.1021/es048502q

    Article  Google Scholar 

  49. Lin CY, Lee CY, Tseng IC, Shiao IZ (2006) Biohydrogen production from sucrose using base-enriched anaerobic mixed microflora. Process Biochem 41(4):915–919. doi:10.1016/j.procbio.2005.10.010

    Article  Google Scholar 

  50. Kyazze G, Martinez-Perez N, Dinsdale R, Premier GC, Hawkes FR, Guwy AJ, Hawkes DL, (2006) Influence of substrate concentration on the stability and yield of continuous biohydrogen production. Biotechnol Bioeng 93(5):971–979. doi:10.1002/bit.20802

    Article  Google Scholar 

  51. Lin CY, Chen HP (2006) Sulfate effect on fermentative hydrogen production using anaerobic mixed microflora. Int J Hydrogen Energy 31(7):953–960. doi:10.1016/j.ijhydene.2005.07.009

    Article  Google Scholar 

  52. Chang JS, Lee KS, Lin PJ (2002) Biohydrogen production with fixed-bed bioreactors. Int J Hydrogen Energy 27:1167–1174. doi:10.1016/S0360-3199(02)00130-1

    Article  Google Scholar 

  53. Lee SK, Lo YS, Lo YC, Lin PJ, Chang JS (2003) H2 production with anaerobic sludge using activated-carbon supported packed bed bioreactors. Biotechnol Lett 25:133–138. doi:10.1023/A:1021915318179

    Article  Google Scholar 

  54. Fang HHP, Liu H, Zhang T (2002) Characterisation of a hydrogen-producing granular sludge. Biotechnol Bioeng 78:44–52. doi:10.1002/bit.10174

    Article  Google Scholar 

  55. Wu SY, Lin CN, Chang JS, Lee KS, Lin PJ (2002) Microbial hydrogen production with immobilized sewage sludge. Biotechnol Prog 18:921–926. doi:10.1021/bp0200548

    Article  Google Scholar 

  56. Wu SY, Hung CH, Lin CN, Chen HW, Lee AS, Chang JS (2006) Fermentative hydrogen production and bacterial community structure in high rate anaerobic bioreactors containing silicone-immobilised self-flocculating sludge. Biotechnol Bioeng 93(5):934–46. doi:10.1002/bit.20800

    Article  Google Scholar 

  57. Chang FY, Lin CY (2004) Biohydrogen production using an up-flow anaerobic sludge blanket reactor. Int J Hydrogen Energy 29(1):33–39. doi:10.1016/S0360-3199(03)00082-X

    Article  Google Scholar 

  58. Lee KS, Lo YS, Lo YC, Lin PJ, Chang JS (2004) Operational strategies for biohydrogen production with a high-rate anaerobic granular sludge bed bioreactor. Enzym Microbial Technol 35:605–612. doi:10.1016/j.enzmictec.2004.08.013

    Article  Google Scholar 

  59. Kotsopoulos TA, Zeng RJ, Angelidaki I (2006) Biohydrogen production in granular up-flow anaerobic sludge blanket (UASB) reactors with mixed cultures under hyper-thermophilic temperature (70 °C). Biotechnol Bioeng 94(2):296–302

    Article  Google Scholar 

  60. Mu Y, Yu HQ (2006) Biological hydrogen production in a UASB reactor with granules. I: physicochemical characteristics of hydrogen-producing granules. Biotechnol Bioeng 94(5):980–987

    Article  Google Scholar 

  61. Yang H, Shao P, Lu T, Shen J, Wang D, Xu Z, Yuan X (2006) Continuous bio-hydrogen production from citric acid wastewater via facultative anaerobic bacteria. Int J Hydrogen Energy 31(10):1306–1313. doi:10.1016/j.ijhydene.2005.11.018

    Article  Google Scholar 

  62. Lay JJ, Fan KS, Chang IJ, Ku CH (2003) Influence of chemical nature of organic wastes on their conversion to hydrogen by heat-shock digested sludge. Int J Hydrogen Energy 28:1361–1367. doi:10.1016/S0360-3199(03)00027-2

    Article  Google Scholar 

  63. Nath K, Muthukumar M, Kumar A, Das D (2008) Kinetics of two-stage fermentation process for the production of hydrogen. Int J Hydrogen Energy 33:1195–1203. doi:10.1016/j.ijhydene.2007.12.011

    Article  Google Scholar 

  64. Pan CM, Fan YT, Zhao P, Hou HW (2008) Fermentative hydrogen production by the newly isolated Clostridium beijerinckii. Int J Hydrogen Energy 33:5383–5391. doi:10.1016/j.ijhydene.2008.05.037

    Article  Google Scholar 

  65. Ren N, Cao G, Wang A, Lee DJ, Guo W, Zhu Y (2008) Dark fermentation of xylose and glucose mix using isolated Thermoanaerobacterium thermosaccharolyticum W16. Int J Hydrogen Energy 33:6124–6132

    Article  Google Scholar 

  66. Zhu D, Wang G, Qiao H, Cai J (2008) Fermentative hydrogen production by the new marine Pantoea agglomerans isolated from the mangrove sludge. Int J Hydrogen Energy 33:6116–6123. doi:10.1016/j.ijhydene.2008.07.008

    Article  Google Scholar 

  67. Manish S, Venkatesh KV, Banerjee R (2007) Metabolic flux analysis of biological hydrogen production by Escherichia coli. Int J Hydrogen Energy 32:3820–3830. doi:10.1016/j.ijhydene.2007.03.033

    Article  Google Scholar 

  68. De Vrije T, Mars AE, Budde MAW, Lai MH, Dijkema C, de Waard P (2007) Glycolytic pathway and hydrogen yield studies of the extreme thermophile Caldicellulosiruptor saccharolyticus. Appl Microbiol Biotechnol 74(6):1358–1367. doi:10.1007/s00253-006-0783-x

    Article  Google Scholar 

  69. Zhao BH, Yue ZB, Zhao QB, Mu Y, Yu HQ, Harada H (2008) Optimisation of hydrogen production in a granule-based UASB reactor. Int J Hydrogen Energy 33:2454–2461. doi:10.1016/j.ijhydene.2008.03.008

    Article  Google Scholar 

  70. Wang J, Wan W (2008) Comparison of different pretreatment methods for enriching hydrogen-producing bacteria from digested sludge. Int J Hydrogen Energy 33:2934–2941

    Article  Google Scholar 

  71. Luo Y, Zhang H, Salerno M, Logan BE (2008) Organic loading rates affect composition of soil-derived bacterial communities during continuous, fermentative biohydrogen production. Int J Hydrogen Energy 33:6566–6576. doi:10.1016/j.ijhydene.2008.08.047

    Article  Google Scholar 

  72. Xie B, Cheng J, Zhou J, Song W, Cen K (2008) Cogeneration of hydrogen and methane from glucose to improve energy conversion efficiency. Int J Hydrogen Energy 33:5006–5011. doi:10.1016/j.ijhydene.2008.07.048

    Article  Google Scholar 

  73. Fritsch M, Hartmeier W, Chang JS (2008) Enhancing hydrogen production of Clostridium butyricum using a column reactor with square-structured ceramic fittings. Int J Hydrogen Energy 33:6549–6557. doi:10.1016/j.ijhydene.2008.07.070

    Article  Google Scholar 

  74. O-Thong S, Prasertsan P, Karakashev D, Angelidaki I (2008) High-rate continuous hydrogen production by Thermoanaerobacterium thermosaccharolyticum PSU-2 immobilized on heat-pretreated methanogenic granules. Int J Hydrogen Energy 33:6498–6508. doi:10.1016/j.ijhydene.2008.07.060

    Article  Google Scholar 

  75. Zhang Y, Shen J (2006) Effect of temperature and iron concentration on the growth and hydrogen production of mixed bacteria. Int J Hydrogen Energy 31:441–446. doi:10.1016/j.ijhydene.2005.05.006

    Article  Google Scholar 

  76. Hussy I, Hawkes FR, Dinsdale R, Hawkes DL (2003) Continuous fermentative hydrogen production from a wheat starch co-product by mixed microflora. Biotechnol Bioeng 84(6):619–626. doi:10.1002/bit.10785

    Article  Google Scholar 

  77. Antonopoulou G, Stamatelatou K, Venetsaneas N, Kornaros M, Lyberatos G (2008) Biohydrogen and methane production from cheese whey in a two-stage anaerobic process. Ind Eng Chem Res 47:5227–5233. doi:10.1021/ie071622x

    Article  Google Scholar 

  78. Guo WQ, Ren NQ, Wang XJ, Xiang WS, Meng ZH, Ding J (2008) Biohydrogen production from ethanol-type fermentation of molasses in an expanded granular sludge bed reactor. Int J Hydrogen Energy 33:4981–4988. doi:10.1016/j.ijhydene.2008.05.033

    Article  Google Scholar 

  79. Ueno Y, Otsuka S, Morimoto M (1996) Hydrogen production from industrial wastewater by anaerobic microflora in chemostat culture. J Ferment Bioeng 82:194–197. doi:10.1016/0922-338X(96)85050-85051

  80. Yu H, Zhu Z, Hu W, Zhang H (2002) Hydrogen production from rice winery wastewater in an upflow anaerobic reactor by using mixed anaerobic cultures. Int J Hydrogen Energy 27(11–12):1359–1365. doi:10.1016/S0360-3199(02)00073-3

    Article  Google Scholar 

  81. Shi XY, Yu QH (2006) Continuous production of hydrogen from mixed volatile fatty acids with Rhodopseudomonas capsulata. Int J Hydrogen Energy 31:1641–1647. doi:10.1016/j.ijhydene.2005.12.008

    Article  Google Scholar 

  82. Shin HS, Youn JH, Kim SH (2004) Hydrogen production from food waste in anaerobic mesophilic and thermophilic acidogenesis. Int J Hydrogen Energy 29:1355–1363. doi:10.1016/j.ijhydene.2003.09.011

    Article  Google Scholar 

  83. Davila-Vazquez G, Alatriste-Mondragon F, de Leon-Rodriguez A, Razo-Flores E (2008) Fermentative hydrogen production in batch experiments using lactose, cheese whey and glucose: influence of initial substrate concentration and pH. Int J Hydrogen Energy 33:4989–4997. doi:10.1016/j.ijhydene.2008.06.065

    Article  Google Scholar 

  84. Antonopoulou A, Gavala HN, Skiadas IV, Angelopoulos K, Lyberatos G (2008) Biofuels generation from sweet sorghum: fermentative hydrogen production and anaerobic digestion of the remaining biomass. Bioresour Technol 99:110–119. doi:10.1016/j.biortech.2006.11.048

    Article  Google Scholar 

  85. Azbar N, Dokgoz FT (2010) The effect of dilution and L-malic acid addition on bio-hydrogen production with Rhodopseudomonas palustris from effluent of an acidogenic anaerobic reactor. Int J Hydrogen Energy 35:5028–5033. doi:10.1016/j.ijhydene.2009.10.044

    Article  Google Scholar 

  86. Yang P, Zhang R, McGarvey JA, Benemann JR (2007) Biohydrogen production from cheese processing wastewater by anaerobic fermentation using mixed microbial communities. Int J Hydrogen Energy 32:4761–4771. doi:10.1016/j.ijhydene.2007.07.038

    Article  Google Scholar 

  87. Mohan SV (2009) Harnessing of biohydrogen from wastewater treatment using mixed fermentative consortia: Process evaluation towards optimization. Int J Hydrogen Energy 34:7460–7474. doi:10.1016/j.ijhydene.2009.05.062

    Article  Google Scholar 

  88. Guo XM, Trably E, Latrille E, Carre`re H, Steyer JP (2010) Hydrogen production from agricultural waste by dark fermentation: A review. Int J Hydrogen Energy 35:10660–10673. doi:10.1016/j.ijhydene.2010.03.008

    Article  Google Scholar 

  89. Hallenbeck PC (1983) Immobilized microorganisms for hydrogen and ammonia production. Enzym Microb Tech 5:171–180. doi:10.1016/0141-0229(83)90090-X

    Article  Google Scholar 

  90. Zhang ZP, Show K, Taya JH, Liang DT, Leed DJ (2008) Biohydrogen production with anaerobic fluidized bed reactors—A comparison of biofilm-based and granule-based systems. Int J Hydrogen Energy 33:1559–1564. doi:10.1016/j.ijhydene.2007.09.048

    Article  Google Scholar 

  91. Zhang ZP, Tay JH, Show KY, Liang DT, Lee DJ, Jiang WJ (2007) Biohydrogen production in a granular activated carbon anaerobic fluidized bed reactor. Int J Hydrogen Energy 32(2):185–191. doi:10.1016/j.ijhydene.2006.08.017

    Article  Google Scholar 

  92. Hallenbeck PC, Ghosh D (2009) Advances in fermentative biohydrogen production: the way forward? Trends Biotechnol 27(5):287–297. doi:10.1016/j.tibtech.2009.02.004

    Article  Google Scholar 

  93. Basak N, Das D (2007) The prospect of purple non-sulfur (PNS) photosynthetic bacteria for hydrogen production: the present state of the art. World J Microbiol Biotechnol 23:31–42. doi:10.1007/s11274-006-9190-9

    Article  Google Scholar 

  94. Koku H, Eroglu I, Gunduz U, Yucel M, Turker L (2002) Aspects of the metabolism of hydrogen production by Rhodobacter sphaeroides Int J Hydrogen Energy 27:1315–1329. doi:10.1016/S0360-3199(02)00127-1

  95. Melis A, Melnicki MR (2006) Integrated biological hydrogen production. Int J Hydrogen Energy 31:1563–1573

    Article  Google Scholar 

  96. Jones BL, Monty KJ (1979) Glutamine as a feedback inhibitor of the Rhodopseudmonas sphaeroides nitrogenase system. J Bacteriol 139(3):1007–1013

    Google Scholar 

  97. Gogotov IN (1986) Hydrogenases of phototrophic microorganisms. Biochemie 68:181–187. doi:10.1016/S0300-9084(86)81082-3

    Article  Google Scholar 

  98. Zorin NA (1986) Redox properties and active center of phototrophic bacteria hydrogenases. Biochimie 68:97–101

    Google Scholar 

  99. Ooshima H, Takakuwa S, Katsuda T, Okuda M, Shirasawa T, Azuma M, Kato J (1998) Production of hydrogen by a hydrogenase deficient mutant of Rhodobacter Capsulatus. J Ferment Bioeng 85(5):470–475. doi:10.1016/S0922-338X(98)80064-0

  100. Jahn A, Keuntje B, Dorffler M, Klipp W, Oelze J (1994) Optimizing photoheterotrophic H2 production by Rhodobacter Capsulatus upon interposon mtagenesis in hupL gene. Appl Microbiol Biotechnol 40(5):687–690. doi:10.1007/BF00173330

    Article  Google Scholar 

  101. Kern M, Klipp W, Klemme JH (1994) Increased nitrogenase dependent H2 photoproducion by hup mutants of Rhodospirillum rubrum. Appl Env Microbiol 60(6):1786–1774

    Google Scholar 

  102. Fissler J, Kohring GW, Giffhorn F (1995) Enhanced hydrogen production from aromatic acids by immobilized cells of Rhodopseudomonas palustris. Appl Microbiol Biotechnol 44:43–46. doi:10.1007/BF00164478

    Article  Google Scholar 

  103. Tabita FR (1995) The biochemistry and metabolic regulation of carbon metabolism and CO2 fixation in purple bacteria. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer, Dordrecht, pp 885–914. doi: 10.1007/0-306-47954-0_41

    Google Scholar 

  104. Zhu HG, Wakayama T, Asada Y, Miyake J (2001) Hydrogen production by four cultures with participation by anoxygenic phototrophic bacterium and anaerobic bacterium in the presence of NH4 +. Int J Hydrogen Energy 26:1149–1154. doi:10.1016/S0360-3199(01)00038-6

    Article  Google Scholar 

  105. Hillmer P, Gest H (1977) H2 metabolism in the photosynthetic bacterium Rhodopseudomonas capsulata: H2 production by growing cultures. J Bacteriol 129:724–731

    Google Scholar 

  106. Hillmer P, Gest H (1977) H2 metabolism in the photosynthetic bacterium Rhodopseudomonas capsulata: production and utilization of H2 by resting cells. J Bacteriol 129:732–739

    Google Scholar 

  107. Kim MS, Ahn JH, Yoon YS (2004) Photo-biological hydrogen production by the uptake hydrogenase and PHB synthase deficient mutant of Rhodobacter sphaeroides. In: Miyake J, Igarashi Y, Rogner M (eds) Biohydrogen III. Elsevier Ltd, Oxford, UK, pp 45–55. doi: 10.1016/B978-008044356-0/50004-X

  108. Kondo T, Arakawa M, Wakayama T, Miyake J (2002) Hydrogen production by combining two types of photosynthetic bacteria with different characteristics. Int J Hydrogen Energy 27:1303–1308. doi: 10.1016/S0360-3199(02)00122-2

  109. Kondo T, Wakayama T, Miyake J (2006) Efficient hydrogen production using a multi-layered photobioreactor and a photosynthetic bacterium mutant with reduced pigment. Int J Hydrogen Energy 31:1522–1526. doi:10.1016/j.ijhydene.2006.06.019

    Article  Google Scholar 

  110. Nakada E, Asada Y, Arai T, Miyake J (1995) Light penetration into cell suspensions of photosynthetic bacteria and relation to hydrogen production. J Ferment Bioeng 80:53–57. doi:10.1016/0922-338X(95)98176-L

    Article  Google Scholar 

  111. He DL, Bultel Y, Magnin JP, Willison JC (2006) Kinetic analysis of photosynthetic growth and photohydrogen production of two strains of Rhodobacter capsulatus. Enzyme and Microbial Tech 38:253–259. doi:10.1016/j.enzmictec.2005.06.012

    Article  Google Scholar 

  112. Barbosa MJ, Rocha JMS, Tramper J, Wijffels RH (2001) Acetate as a carbon source for hydrogen production by photosynthetic bacteria. J Biotechnol 85:25–33. doi:10.1016/S0168-1656(00)00368-0

    Article  Google Scholar 

  113. Miyake J, Tomizuka N, Kamibayashi A (1982) Prolonged photo-hydrogen production by Rhodospirillum rubrum. J Ferment Technol 60:199–203

    Google Scholar 

  114. Oh YK, Seol EH, Kim MS, Park S (2004) Photoproduction of hydrogen from acetate by a chemoheterotrophic bacterium Rhodopseudomonas palustris P4. Int J Hydrogen Energy 29:1115–1121. doi:10.1016/j.ijhydene.2003.11.008

    Google Scholar 

  115. Seifert K, Waligorska M, Laniecki M (2010) Hydrogen generation in photobiological process from diary wastewater. Int J Hydrogen Energy 35:9624–9629. doi:10.1016/j.ijhydene.2010.07.015

    Article  Google Scholar 

  116. Kapdan I, Kargi F, Oztekin R, Argun H (2009) Bio-hydrogen production from acid hydrolyzed wheat starch by photo-fermentation using different Rhodobacter sp. Int J Hydrogen Energy 34(5):2201–2207. doi:10.1016/j.ijhydene.2009.01.017

    Article  Google Scholar 

  117. Sabourin-Provost G, Hallenbeck PC (2009) High yield conversion of a crude glycerol fraction from biodiesel production to hydrogen by photofermentation. Biores Tech 100(14):3513–3517. doi:10.1016/j.biortech.2009.03.027

    Article  Google Scholar 

  118. Eroglu E, Gunduz U, Yucel M, Turker L, Eroglu I (2004) Photobiological hydrogen production from olive mill wastewater as sole substrate sources. Int J Hydrogen Energy 29:163–171. doi:10.1016/S0360-3199(03)00110-1

    Article  Google Scholar 

  119. Özgür E, Uyar B, Öztürk Y, Yücel M, Gündüz U, Eroglu I (2010) Biohydrogen production by Rhodobacter capsulatus on acetate at fluctuating temperatures. Resour Conserv Recy 54:310–314. doi:10.1016/j.resconrec.2009.06.002

    Article  Google Scholar 

  120. Eroglu I, Aslan K, Gunduz U, Yucel M, Turker L (1999) Substrate consumption rate for hydrogen production by Rhodobacter sphaeroides in a column photobioreactor. J Biotechnol 70:103–113. doi: 10.1016/S0168-1656(99)00064-4

    Google Scholar 

  121. Sasikala K, Ramana ChV, Rao PR (1995) Regulation of simultaneous hydrogen photoproduction during growth by pH and glutamate in Rhodobacter sphaeroides O.U.001. Int J Hydrogen Energy 20:123–126. doi:10.1016/0360-3199(94)E0009-N

    Article  Google Scholar 

  122. Fascetti E, D’addario E, Todini O, Robertiello A (1998) Photosynthetic hydrogen evolution with volatile organic acids derived from the fermentation of source selected municipal solid wastes. Int J Hydrogen Energy 23:753–760. doi: 10.1016/S0360-3199(97)00123-7

    Google Scholar 

  123. El-Shistawy RMA, Kawasaki S, Morimoto M (1998) Cylindrical type induced and diffused bioreactors: a novel photobioreactor for large scale H2 production. In: Zaborsky OR (ed) Biohydrogen. Plenum Press, New York. doi: 10.1007/978-0-585-35132-2_43

    Google Scholar 

  124. Eroglu I, Aslan K, Gunduz U, Yucel M, Turker L (1998) Continuous hydrogen production by Rhodobacter sphaeroides O.U. 001. In: Zaborsky OR (ed) Biohydrogen. Plenum press, London, pp 143–151. ISBN 0-306-46057-2

    Google Scholar 

  125. Ghasem N, Syahidah K, Ismail K, Younesi H, Mohamed AR, Kamaruddin AH (2004) Hydrogen as clean fuel via continuous fermentation by anaerobic photosynthetic bacteria, Rhodospirillum rubrum. Afr J Biotechnol 3:503–507

    Google Scholar 

  126. Tsygankov AA, Fedorov AS, Laurinavichene TV, Gogotov IN, Rao KK, Hall DO (1998) Actual and potential rates of hydrogen photoproduction by continuous culture of the Purple non-sulphur bacterium Rhodobacter capsulatus. Appl Microbiol Biotechnol 49:102–107. doi:10.1007/s002530051144

    Article  Google Scholar 

  127. Fissler J, Schirra C, Kohring GW, Giffhorn F (1994) Hydrogen production from aromatic acids by Rhodopseudomonas Palustris. Appl Microbiol Biotechnol 41:395–399. doi:10.1007/BF01982526

    Article  Google Scholar 

  128. Wang YZ, Liao Q, Zhu X, Tian X, Zhang C (2010) Characteristics of hydrogen production and substrate consumption of Rhodopseudomonas palustris CQK in an immobilized cell photobioreactor. Biores Technol 101:4034–4041. doi:10.1016/j.biortech.2010.01.045

    Article  Google Scholar 

  129. Tian X, Liao Q, Zhu X, Wang YZ, Zhang P, Li J, Wang H (2010) Characteristics of a biofilm photobioreactor as applied to photo-hydrogen production. Biores Technol 101:977–983. doi:10.1016/j.biortech.2009.09.007

    Article  Google Scholar 

  130. Liao Q, Wang YJ, Wang YZ, Zhu X, Tian X, Li J (2010) Formation and hydrogen production of photosynthetic bacterial biofilm under various illumination conditions. Biores Technol 101:5315–5324. doi:10.1016/j.biortech.2010.02.019

    Article  Google Scholar 

  131. Tsygankov AA, Hirata Y, Miyake M, Asada Y, Miyake J (1994) Photobioreactor with photosynthetic bacteria immobilized on porous glass for hydrogen photoproduction. J Ferment Bioeng 77:575–578. doi:10.1016/0922-338X(94)90134-1

    Article  Google Scholar 

  132. Ozgur E, Mars AE, Peksel B, Louwerse A, Yucel M, Gunduz U, Claassen PAM, Eroglu I (2010) Biohydrogen production from beet molasses bu sequential dark and photofermentation. Int J Hydrogen Energy 35:511–517. doi:10.1016/j.ijhydene.2009.10.094

    Article  Google Scholar 

  133. Su H, Cheng J, Zhou J, Song W, Cen K (2009) Improving hydrogen production from cassava starch by combination of dark and photo fermentation. Int J Hydrogen Energy 34:1780–1786. doi:10.1016/j.ijhydene.2008.12.045

    Article  Google Scholar 

  134. Alalayah WM, Kalil MS, Kadhum AH, Jahim JM, Jaapar SZS, Alauj NM (2009) Bio-hydrogen production using a two-stage fermentation process. Pakistan J Bio Sci 12(22):1462–1467. doi:10.3923/pjbs.2009.1462.1467

    Article  Google Scholar 

  135. Alalayah WM, Kalil MS, Kadhum AH, Jahim JM, Alauj NM (2009) Effect of environmental parameters on hydrogen production using C. saccharoperbutylacetonicum N1–4 (ATTC 13564). Am J Environ Sci 5:80–86. doi:10.1016/j.ijhydene.2008.09.066

    Article  Google Scholar 

  136. Tao Y, Chen Y, Wu Y, He Y, Zhou Z (2007) High hydrogen yield from a two-step process of dark and photo-fermentation of sucrose. Int J Hydrogen Energy 32:200–206. doi:10.1016/j.ijhydene.2006.06.034

    Article  Google Scholar 

  137. Argun H, Kargi F, Kapdan IK (2009) Hydrogen production by combined dark and light fermentation of ground wheat solution. Int J Hydrogen Energy 34:4304–4311

    Google Scholar 

  138. Ozmihci S, Kargi F (2010) Bio-hydrogen production by photo-fermentation of dark fermentation effluent with intermittent feeding and effluent removal. Int J Hydrogen Energy 35:6674–6680. doi:10.1016/j.ijhydene.2010.04.090

    Article  Google Scholar 

  139. Yang H, Guo L, Liu F (2010) Enhanced bio-hydrogen production from corncob by a two-step process: Dark- and photo-fermentation. Biores Technol 101(6):2049–2052. doi:10.1016/j.biortech.2009.10.078

    Article  Google Scholar 

  140. Eroglu E, Eroglu I, Gunduz U, Turker L, Yucel M (2006) Biological hydrogen production from olive mill wastewater with two-stage processes. Int J Hydrogen Energy 31:1527–1535. doi:10.1016/j.ijhydene.2006.06.020

    Article  Google Scholar 

  141. Laurinavichene TV, Belokopytov BF, Laurinavichius KS, Tekucheva DN, Seibert M, Tsygankov AA (2010) Towards the integration of dark and photofermentative waste treatment 3. Potato as substrate for sequential dark fermentation and light driven H2 production. Int J Hydrogen Energy 35:8536–8543. doi:10.1016/j.ijhydene.2010.02.063

    Article  Google Scholar 

Download references

Acknowledgments

Biofuels research in the laboratory of PCH is supported by FQRNT (Le Fonds québécois de la recherche sur la nature et les technologies), Tugba Keskin thanks the TUBITAK DB-2214 (Turkey) for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick C. Hallenbeck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Keskin, T., Hallenbeck, P.C. (2012). Enhancement of Biohydrogen Production by Two-Stage Systems: Dark and Photofermentation. In: Baskar, C., Baskar, S., Dhillon, R. (eds) Biomass Conversion. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28418-2_10

Download citation

Publish with us

Policies and ethics