Skip to main content
Book cover

Nevogenesis pp 117–126Cite as

Nevus Senescence: An Update

  • Chapter
  • First Online:
  • 554 Accesses

Abstract

Nevi and melanomas share the many of the same growth-promoting mutations. However, benign nevi eventually undergo growth arrest and stabilize while melanomas grow relentlessly. The difference in their long-term growth potential can in part be attributed to activation of cellular senescence pathways. The primary mediator of senescence in nevi appears to be p16. Redundant, secondary senescence systems are also present and include the p14-p53-p21 pathway, the IGFBP7 pathway, the FBXO31 pathway, and the PI3K-mediated stress-induced endoplasmic reticulum unfolded protein response. It is evident that these senescence pathways result in an irreversible arrest in most instances; however, they can clearly be overcome in melanoma. Circumvention of these pathways is most frequently associated with gene deletion or transcriptional repression. Reactivation of senescence mechanisms could serve to inhibit melanoma tumor progression.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ross AL, Sanchez MI, Grichnik JM. Nevus senescence. ISRN Dermatol. 2011;2011:642157.

    PubMed  Google Scholar 

  2. Zeff RA, Freitag A, Grin CM, Grant-Kels JM. The immune response in halo nevi. J Am Acad Dermatol. 1997;37(4):620–4.

    Article  PubMed  CAS  Google Scholar 

  3. Kageshita T, Inoue Y, Ono T. Spontaneous regression of congenital melanocytic nevi without evidence of the halo phenomenon. Dermatology. 2003;207(2):193–5.

    Article  PubMed  Google Scholar 

  4. Lee HJ, Ha SJ, Lee SJ, Kim JW. Melanocytic nevus with pregnancy-related changes in size accompanied by apoptosis of nevus cells: a case report. J Am Acad Dermatol. 2000;42(5 Pt 2):936–8.

    Article  PubMed  CAS  Google Scholar 

  5. Banky JP, Kelly JW, English DR, Yeatman JM, Dowling JP. Incidence of new and changed nevi and melanomas detected using baseline images and dermoscopy in patients at high risk for melanoma. Arch Dermatol. 2005;141(8):998–1006.

    Article  PubMed  Google Scholar 

  6. Medrano EE, Yang F, Boissy R, et al. Terminal differentiation and senescence in the human melanocyte: repression of tyrosine-phosphorylation of the extracellular signal-regulated kinase 2 selectively defines the two phenotypes. Mol Biol Cell. 1994;5(4):497–509.

    PubMed  CAS  Google Scholar 

  7. Dimri GP, Lee X, Basile G, et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA. 1995;92(20):9363–7.

    Article  PubMed  CAS  Google Scholar 

  8. Haddad MM, Xu W, Schwahn DJ, Liao F, Medrano EE. Activation of a cAMP pathway and induction of melanogenesis correlate with association of p16(INK4) and p27(KIP1) to CDKs, loss of E2F-binding activity, and premature senescence of human melanocytes. Exp Cell Res. 1999;253(2):561–72.

    Article  PubMed  CAS  Google Scholar 

  9. Shay JW, Wright WE. Senescence and immortalization: role of telomeres and telomerase. Carcinogenesis. 2005;26(5):867–74.

    Article  PubMed  CAS  Google Scholar 

  10. Bandyopadhyay D, Curry JL, Lin Q, et al. Dynamic assembly of chromatin complexes during cellular senescence: implications for the growth arrest of human melanocytic nevi. Aging Cell. 2007;6(4):577–91.

    Article  PubMed  CAS  Google Scholar 

  11. Dimri GP, Hara E, Campisi J. Regulation of two E2F-related genes in presenescent and senescent human fibroblasts. J Biol Chem. 1994;269(23):16180–6.

    PubMed  CAS  Google Scholar 

  12. Dimri GP, Testori A, Acosta M, Campisi J. Replicative senescence, aging and growth-regulatory transcription factors. Biol Signals. 1996;5(3):154–62.

    Article  PubMed  CAS  Google Scholar 

  13. Takahashi Y, Rayman JB, Dynlacht BD. Analysis of promoter binding by the E2F and pRB families in vivo: distinct E2F proteins mediate activation and repression. Genes Dev. 2000;14(7):804–16.

    PubMed  CAS  Google Scholar 

  14. Narita M, Nunez S, Heard E, et al. Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell. 2003;113(6):703–16.

    Article  PubMed  CAS  Google Scholar 

  15. Dimauro T, David G. Chromatin modifications: the driving force of senescence and aging? Aging (Albany NY). 2009;1(2):182–90.

    CAS  Google Scholar 

  16. Blackburn EH, Greider CW, Henderson E, et al. Recognition and elongation of telomeres by telomerase. Genome. 1989;31(2):553–60.

    Article  PubMed  CAS  Google Scholar 

  17. Harley CB. Telomere loss: mitotic clock or genetic time bomb? Mutat Res. 1991;256(2–6):271–82.

    PubMed  CAS  Google Scholar 

  18. Bandyopadhyay D, Timchenko N, Suwa T, et al. The human melanocyte: a model system to study the complexity of cellular aging and transformation in non-fibroblastic cells. Exp Gerontol. 2001;36(8):1265–75.

    Article  PubMed  CAS  Google Scholar 

  19. Glaessl A, Bosserhoff AK, Buettner R, et al. Increase in telomerase activity during progression of melanocytic cells from melanocytic naevi to malignant melanomas. Arch Dermatol Res. 1999;291(2–3):81–7.

    Article  PubMed  CAS  Google Scholar 

  20. Bataille V, Kato BS, Falchi M, et al. Nevus size and number are associated with telomere length and represent potential markers of a decreased senescence in vivo. Cancer Epidemiol Biomarkers Prev. 2007;16(7):1499–502.

    Article  PubMed  CAS  Google Scholar 

  21. Alarcon-Vargas D, Ronai Z. p53-Mdm2 – the affair that never ends. Carcinogenesis. 2002;23(4):541–7.

    Article  PubMed  CAS  Google Scholar 

  22. Wright WE, Shay JW. Historical claims and current interpretations of replicative aging. Nat Biotechnol. 2002;20(7):682–8.

    Article  PubMed  CAS  Google Scholar 

  23. de Lange T. Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev. 2005;19(18):2100–10.

    Article  PubMed  Google Scholar 

  24. von Zglinicki T, Saretzki G, Ladhoff J, d’Adda di Fagagna F, Jackson SP. Human cell senescence as a DNA damage response. Mech Ageing Dev. 2005;126(1):111–7.

    Article  Google Scholar 

  25. Stein GH, Drullinger LF, Soulard A, Dulic V. Differential roles for cyclin-dependent kinase inhibitors p21 and p16 in the mechanisms of senescence and differentiation in human fibroblasts. Mol Cell Biol. 1999;19(3):2109–17.

    PubMed  CAS  Google Scholar 

  26. Beausejour CM, Krtolica A, Galimi F, et al. Reversal of human cellular senescence: roles of the p53 and p16 pathways. EMBO J. 2003;22(16):4212–22.

    Article  PubMed  CAS  Google Scholar 

  27. Jacobs JJ, de Lange T. Significant role for p16INK4a in p53-independent telomere-directed senescence. Curr Biol. 2004;14(24):2302–8.

    Article  PubMed  CAS  Google Scholar 

  28. Bond J, Jones C, Haughton M, et al. Direct evidence from siRNA-directed “knock down” that p16(INK4a) is required for human fibroblast senescence and for limiting ras-induced epithelial cell proliferation. Exp Cell Res. 2004;292(1):151–6.

    Article  PubMed  CAS  Google Scholar 

  29. Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell. 1997;88(5):593–602.

    Article  PubMed  CAS  Google Scholar 

  30. Kiyono T, Foster SA, Koop JI, et al. Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells. Nature. 1998;396(6706):84–8.

    Article  PubMed  CAS  Google Scholar 

  31. Serrano M, Lee H, Chin L, et al. Role of the INK4a locus in tumor suppression and cell mortality. Cell. 1996;85(1):27–37.

    Article  PubMed  CAS  Google Scholar 

  32. Dimri GP, Itahana K, Acosta M, Campisi J. Regulation of a senescence checkpoint response by the E2F1 transcription factor and p14(ARF) tumor suppressor. Mol Cell Biol. 2000;20(1):273–85.

    Article  PubMed  CAS  Google Scholar 

  33. Haferkamp S, Tran SL, Becker TM. The relative contributions of the p53 and pRb pathways in oncogene-induced melanocyte senescence. Aging (Albany NY). 2009;1(6):542–56.

    CAS  Google Scholar 

  34. Collado M, Serrano M. The power and the promise of oncogene-induced senescence markers. Nat Rev Cancer. 2006;6(6):472–6.

    Article  PubMed  CAS  Google Scholar 

  35. Ramirez RD, Morales CP, Herbert BS, et al. Putative telomere-independent mechanisms of replicative aging reflect inadequate growth conditions. Genes Dev. 2001;15(4):398–403.

    Article  PubMed  CAS  Google Scholar 

  36. Kim WY, Sharpless NE. The regulation of INK4/ARF in cancer and aging. Cell. 2006;127(2):265–75.

    Article  PubMed  CAS  Google Scholar 

  37. Ross AL, Sanchez MI, Grichnik JM. Molecular nevogenesis. Dermatol Res Pract. 2011;2011:9.

    Google Scholar 

  38. Michaloglou C, Vredeveld LC, Soengas MS, et al. BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature. 2005;436(7051):720–4.

    Article  PubMed  CAS  Google Scholar 

  39. Venesio T, Chiorino G, Balsamo A, et al. In melanocytic lesions the fraction of BRAF V600E alleles is associated with sun exposure but unrelated to ERK phosphorylation. Mod Pathol. 2008;21(6):716–26.

    Article  PubMed  CAS  Google Scholar 

  40. Dhomen N, Reis-Filho JS, da Rocha Dias S, et al. Oncogenic Braf induces melanocyte senescence and melanoma in mice. Cancer Cell. 2009;15(4):294–303.

    Article  PubMed  CAS  Google Scholar 

  41. Wajapeyee N, Serra RW, Zhu X, Mahalingam M, Green MR. Oncogenic BRAF induces senescence and apoptosis through pathways mediated by the secreted protein IGFBP7. Cell. 2008;132(3):363–74.

    Article  PubMed  CAS  Google Scholar 

  42. Uribe P, Andrade L, Gonzalez S. Lack of association between BRAF mutation and MAPK ERK activation in melanocytic nevi. J Invest Dermatol. 2006;126(1):161–6.

    Article  PubMed  CAS  Google Scholar 

  43. Di Micco R, Fumagalli M, Cicalese A, et al. Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature. 2006;444(7119):638–42.

    Article  PubMed  Google Scholar 

  44. Mallette FA, Gaumont-Leclerc MF, Ferbeyre G. The DNA damage signaling pathway is a critical mediator of oncogene-induced senescence. Genes Dev. 2007;21(1):43–8.

    Article  PubMed  CAS  Google Scholar 

  45. Santra MK, Wajapeyee N, Green MR. F-box protein FBXO31 mediates cyclin D1 degradation to induce G1 arrest after DNA damage. Nature. 2009;459(7247):722–5.

    Article  PubMed  CAS  Google Scholar 

  46. Denoyelle C, Abou-Rjaily G, Bezrookove V, et al. Anti-oncogenic role of the endoplasmic reticulum differentially activated by mutations in the MAPK pathway. Nat Cell Biol. 2006;8(10):1053–63.

    Article  PubMed  CAS  Google Scholar 

  47. Yan J, Roy S, Apolloni A, Lane A, Hancock JF. Ras isoforms vary in their ability to activate Raf-1 and phosphoinositide 3-kinase. J Biol Chem. 1998;273(37):24052–6.

    Article  PubMed  CAS  Google Scholar 

  48. Chin L, Pomerantz J, Polsky D, et al. Cooperative effects of INK4a and ras in melanoma susceptibility in vivo. Genes Dev. 1997;11(21):2822–34.

    Article  PubMed  CAS  Google Scholar 

  49. Haferkamp S, Scurr LL, Becker TM, et al. Oncogene-induced senescence does not require the p16(INK4a) or p14ARF melanoma tumor suppressors. J Invest Dermatol. 2009;129(8):1983–91.

    Article  PubMed  CAS  Google Scholar 

  50. Leikam C, Hufnagel A, Schartl M, Meierjohann S. Oncogene activation in melanocytes links reactive oxygen to multinucleated phenotype and senescence. Oncogene. 2008;27(56):7070–82.

    Article  PubMed  CAS  Google Scholar 

  51. Finkel T. Intracellular redox regulation by the family of small GTPases. Antioxid Redox Signal. 2006;8(9–10):1857–63.

    Article  PubMed  CAS  Google Scholar 

  52. Busuttil RA, Rubio M, Dolle ME, Campisi J, Vijg J. Mutant frequencies and spectra depend on growth state and passage number in cells cultured from transgenic lacZ-plasmid reporter mice. DNA Repair (Amst). 2006;5(1):52–60.

    Article  CAS  Google Scholar 

  53. Vijg J, Busuttil RA, Bahar R, Dolle ME. Aging and genome maintenance. Ann N Y Acad Sci. 2005;1055: 35–47.

    Article  PubMed  CAS  Google Scholar 

  54. Gire V, Wynford-Thomas D. Reinitiation of DNA synthesis and cell division in senescent human fibroblasts by microinjection of anti-p53 antibodies. Mol Cell Biol. 1998;18(3):1611–21.

    PubMed  CAS  Google Scholar 

  55. Sage J, Miller AL, Perez-Mancera PA, Wysocki JM, Jacks T. Acute mutation of retinoblastoma gene function is sufficient for cell cycle re-entry. Nature. 2003;424(6945):223–8.

    Article  PubMed  CAS  Google Scholar 

  56. Saab R. Senescence and pre-malignancy: how do tumors progress? Semin Cancer Biol. 2011;21(6):385–91.

    Article  PubMed  CAS  Google Scholar 

  57. Quelle DE, Zindy F, Ashmun RA, Sherr CJ. Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell. 1995;83(6):993–1000.

    Article  PubMed  CAS  Google Scholar 

  58. Rutter JL, Goldstein AM, Davila MR, Tucker MA, Struewing JP. CDKN2A point mutations D153spl(c.457 G  >  T) and IVS2  +  1 G  >  T result in aberrant splice products affecting both p16INK4a and p14ARF. Oncogene. 2003;22(28):4444–8.

    Article  PubMed  CAS  Google Scholar 

  59. Florell SR, Meyer LJ, Boucher KM, et al. Increased melanocytic nevi and nevus density in a G-34T CDKN2A/p16 melanoma-prone pedigree. J Invest Dermatol. 2008;128(8):2122–5.

    PubMed  CAS  Google Scholar 

  60. Florell SR, Meyer LJ, Boucher KM, et al. Longitudinal assessment of the nevus phenotype in a melanoma kindred. J Invest Dermatol. 2004;123(3):576–82.

    Article  PubMed  CAS  Google Scholar 

  61. Florell SR, Meyer LJ, Boucher KM, et al. Nevus distribution in a Utah melanoma kindred with a temperature-sensitive CDKN2A mutation. J Invest Dermatol. 2005;125(6):1310–2.

    Article  PubMed  CAS  Google Scholar 

  62. Karim RZ, Li W, Sanki A, et al. Reduced p16 and increased cyclin D1 and pRb expression are correlated with progression in cutaneous melanocytic tumors. Int J Surg Pathol. 2009;17(5):361–7.

    Article  PubMed  Google Scholar 

  63. Straume O, Sviland L, Akslen LA. Loss of nuclear p16 protein expression correlates with increased tumor cell proliferation (Ki-67) and poor prognosis in patients with vertical growth phase melanoma. Clin Cancer Res. 2000;6(5):1845–53.

    PubMed  CAS  Google Scholar 

  64. Goldstein AM, Chan M, Harland M, et al. High-risk melanoma susceptibility genes and pancreatic cancer, neural system tumors, and uveal melanoma across GenoMEL. Cancer Res. 2006;66(20):9818–28.

    Article  PubMed  CAS  Google Scholar 

  65. Binni F, Antigoni I, De Simone P, et al. Novel and recurrent p14 mutations in Italian familial melanoma. Clin Genet. 2010;77(6):581–6.

    Article  PubMed  CAS  Google Scholar 

  66. Garcia-Casado Z, Nagore E, Fernandez-Serra A, Botella-Estrada R, Lopez-Guerrero JA. A germline mutation of p14/ARF in a melanoma kindred. Melanoma Res. 2009;19(5):335–7.

    Article  PubMed  Google Scholar 

  67. Vidal MJ, Loganzo Jr F, de Oliveira AR, Hayward NK, Albino AP. Mutations and defective expression of the WAF1 p21 tumour-suppressor gene in malignant melanomas. Melanoma Res. 1995;5(4):243–50.

    Article  PubMed  CAS  Google Scholar 

  68. Sparrow LE, Eldon MJ, English DR, Heenan PJ. p16 and p21WAF1 protein expression in melanocytic tumors by immunohistochemistry. Am J Dermatopathol. 1998;20(3):255–61.

    Article  PubMed  CAS  Google Scholar 

  69. Papp T, Jafari M, Schiffmann D. Lack of p53 mutations and loss of heterozygosity in non-cultured human melanocytic lesions. J Cancer Res Clin Oncol. 1996;122(9):541–8.

    Article  PubMed  CAS  Google Scholar 

  70. Zerp SF, van Elsas A, Peltenburg LT, Schrier PI. p53 mutations in human cutaneous melanoma correlate with sun exposure but are not always involved in melanomagenesis. Br J Cancer. 1999;79(5–6):921–6.

    Article  PubMed  CAS  Google Scholar 

  71. Terzian T, Torchia EC, Dai D, et al. p53 prevents progression of nevi to melanoma predominantly through cell cycle regulation. Pigment Cell Melanoma Res. 2010;23(6):781–94.

    Article  PubMed  CAS  Google Scholar 

  72. Bennett DC, Medrano EE. Molecular regulation of melanocyte senescence. Pigment Cell Res. 2002;15(4):242–50.

    Article  PubMed  CAS  Google Scholar 

  73. Peeper DS. Oncogene-induced senescence and melanoma: where do we stand? Pigment Cell Melanoma Res. 2011;24(6):1107–11.

    Article  PubMed  Google Scholar 

  74. Semple TU, Moore GE, Morgan RT, Woods LK, Quinn LA. Multiple cell lines from patients with malignant melanoma: morphology, karyology, and biochemical analysis. J Natl Cancer Inst. 1982;68(3):365–80.

    PubMed  CAS  Google Scholar 

  75. Pope JH, Morrison L, Moss DJ, Parsons PG, Regius Mary S. Human malignant melanoma cell lines. Pathology. 1979;11(2):191–5.

    Article  PubMed  CAS  Google Scholar 

  76. Soo JK, Mackenzie Ross AD, Kallenberg DM, et al. Malignancy without immortality? Cellular immortalization as a possible late event in melanoma progression. Pigment Cell Melanoma Res. 2011;24(3):490–503.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of Interest

DigitalDerm, Inc – major shareholder. Spectral Image, Inc – past grants and consulting. MELA Sciences – past grants and consulting. Genentech – ­consultant. Archives of Dermatology, skINsight – section editor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James M. Grichnik M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer- Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ross, A.L., Sanchez, M.I., Grichnik, J.M. (2012). Nevus Senescence: An Update. In: Marghoob, A. (eds) Nevogenesis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28397-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28397-0_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28396-3

  • Online ISBN: 978-3-642-28397-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics