Skip to main content

Metasomatism in Subduction Zones of Subducted Oceanic Slabs, Mantle Wedges, and the Slab-Mantle Interface

  • Chapter
  • First Online:
Metasomatism and the Chemical Transformation of Rock

Part of the book series: Lecture Notes in Earth System Sciences ((LNESS))

Abstract

Physical juxtaposition of chemically disparate rocks, and the mobility of “fluids” at up to tens of kilometer scales, lead to myriad metasomatic effects in subduction zones, with larger scale manifestations including the metasomatism related to mass flux leading to arc magmatism and convergent margin volatiles cycling. Subduction-zone metasomatism is initiated at very shallow levels, as oceanic slabs entering trenches bend and are potentially infiltrated by seawater and as sedimentary sections begin their journey into forearcs resulting in extensive physical compaction, fluid expulsion, and diagenetic alteration. Studies of forearc fluid geochemistry (e.g., in accretionary complexes and, for the Marianas margin, in serpentinite seamounts) track this shallow-level metasomatic alteration, whereas high- and ultrahigh-pressure metamorphic suites provide records of fluid generation and flow, and related metasomatism to depths approaching those beneath volcanic fronts (and, in a smaller number of cases, depths beyond those beneath arcs). Uncertainty remains regarding the geochemical influence of strongly mechanically mixed zones along the slab-mantle interface (i.e., in the “subduction channel”), represented by mélange zones in many metamorphic suites. Experimental studies predict dramatic change in the physicochemical properties, and metasomatic capabilities, of subduction-zone “fluids,” as a function of depth. However, the studies of metamorphic suites have yet to document results of this change and, toward this goal, further work is warranted on UHP suites representing subduction-zone depths of 100 km or greater. Work on higher-P suites is also necessary in order to test the generally accepted hypothesis that subduction-zone metamorphism serves as a geochemical “filter” altering the compositions of deeply subducting rocks that then contribute to arc magmatism and the geochemical heterogeneity of the deeper mantle sampled by ocean-island basalts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abers GA (2000) Hydrated subducted crust at 100–250 km depth. Earth Planet Sci Lett 176:323–330

    Google Scholar 

  • Abers GA (2005) Seismic low-velocity layer at the top of subducting slabs: observations, predictions, and systematics. Phys Earth Planet Inter 149:7–29

    Google Scholar 

  • Abers GA, van Keken PE, Kneller EA, Ferris A, Stachnik JC (2006) The thermal structure of subduction zones constrained by seismic imaging: implications for slab dehydration and wedge flow. Earth Planet Sci Lett 241:387–397

    Google Scholar 

  • Agard P, Monie P, Jolivet L, Goffe B (2002) Exhumation of the Schistes Lustres complex: in situ laser probe 40Ar/39Ar constraints and implications for the Western Alps. J Metamorph Geol 20:599–618

    Google Scholar 

  • Alt JC, Teagle DAH (2003) Hydrothermal alteration of upper oceanic crust formed at a fast-spreading ridge: mineral, chemical, and isotopic evidence from ODP Site 801. Chem Geol 201:191–211

    Google Scholar 

  • Andersen TB, Austrheim H (2006) Fossil earthquakes recorded by pseudotachylytes in mantle peridotite from the Alpine subduction complex of Corsica. Earth Planet Sci Lett 242:58–72

    Google Scholar 

  • Angiboust S, Langdon R, Agard P, Waters D, Chopin C (2011) Eclogitization of the Monviso ophiolite (W. Alps) and implications on subduction dynamics. J Metamorph Geol. doi:10.1111/j.1525-1314.2011.00951.x

  • Arculus RJ, Lapierre H, Jaillard E (1999) Geochemical window into subduction and accretion processes: Raspas metamorphic complex, Ecuador. Geology 27:547–550

    Google Scholar 

  • Austrheim H, Prestvik T (2008) Rodingitization and hydration of the oceanic lithosphere as developed in the Leka ophiolite, north-central Norway. Lithos 104:177–198

    Google Scholar 

  • Ayers JC, Watson EB (1991) Solubility of apatite, monazite, zircon, and rutile in supercritical aqueous fluids with implications for subduction zone geochemistry. Philos Trans Roy Soc Lond 335:365–375

    Google Scholar 

  • Bach W, Peucker-Ehrenbrink B, Hart SR, Blusztajn JS (2003) Geochemistry of hydrothermally altered oceanic crust: DSDP/ODP Hole 504B – implications for seawater-crust exchange budgets and Sr- and Pb-isotopic evolution of the mantle. Geochem Geophys Geosyst 4(8904). doi:10.1029/2002GC000419

  • Barton MD, Bebout GE, Sorensen SS (1988) Isotopic constraints on the geochemical evolution of an ultramafic subduction zone melange: Catalina Schist terrane, California (abstr.). EOS Trans Am Geophys Un 68:1525

    Google Scholar 

  • Barton MD, Ilchik RP, Marikos MA (1991) Metasomatism. Mineral. Soc., Am Rev Mineral Geochem 26: 321–349

    Google Scholar 

  • Bebout GE (1989) Geological and geochemical investigations of fluid flow and mass transfer during subduction-zone metamorphism. Ph.D. thesis, University of California, Los Angeles, 370pp

    Google Scholar 

  • Bebout GE (1991a) Geometry and mechanisms of fluid flow at 15 to 45 kilometer depths in an early Cretaceous accretionary complex. Geophys Res Lett 18:923–926

    Google Scholar 

  • Bebout GE (1991b) Field-based evidence for devolatilization in subduction zones: implications for arc magmatism. Science 251:413–416

    Google Scholar 

  • Bebout GE (1997) Nitrogen isotope tracers of high-temperature fluid-rock interactions: case study of the Catalina Schist, California. Earth Planet Sci Lett 151:77–90

    Google Scholar 

  • Bebout GE (2007a) Metamorphic chemical geodynamics in subduction zones. Earth Planet Sci Lett 260:373–393

    Google Scholar 

  • Bebout GE (2007b) Trace element and isotopic fluxes/subducted slab. In: Turekian KK, Holland HD, Rudnick R (eds) Treat Geochem. Elsevier, pp 1–50, online only

    Google Scholar 

  • Bebout GE, Agard P, Kobayashi K, Moriguti T, Nakamura E (2011) Devolatilization history and trace element mobility in deeply subducted sedimentary rocks: SIMS evidence from Western Alps HP/UHP suites (abstract). In: Proceedings of the Fall Meeting, American Geophysical Union, San Francisco

    Google Scholar 

  • Bebout GE, Anderson LD, Agard P, Bastoni C, Sills G, Damon A (2010) Extents of decarbonation in HP/UHP Western Alps metacarbonates and implications for subduction zone carbon cycling (abstract). In: Proceedings of the Fall Meeting, American. Geophysical Union, San Francisco

    Google Scholar 

  • Bebout GE, Barton MD (1989) Fluid flow and metasomatism in a subduction zone hydrothermal system: Catalina Schist Terrane, California. Geology 17:976–980

    Google Scholar 

  • Bebout GE, Barton MD (1993) Metasomatism during subduction: products and possible paths in the Catalina Schist, California. Chem Geol 108:61–92

    Google Scholar 

  • Bebout GE, Barton MD (2002) Tectonic and metasomatic mixing in a high-T, subduction-zone mélange – insights into the geochemical evolution of the slab-mantle interface. Chem Geol 187:79–106

    Google Scholar 

  • Bebout GE, Bebout AE, Graham CM (2007) Cycling of B, Li, and LILE (K, Cs, Rb, Ba, Sr) into subduction zones: SIMS evidence from micas in high-P/T metasedimentary rocks. Chem Geol 239:284–304

    Google Scholar 

  • Bebout GE, Ryan JG, Leeman WP (1993) B-Be systematics in subduction-related metamorphic rocks: characterization of the subducted component. Geochim Cosmochim Acta 57:2227–2237

    Google Scholar 

  • Bebout GE, Ryan JG, Leeman WP, Bebout AE (1999) Fractionation of trace elements during subduction-zone metamorphism: impact of convergent margin thermal evolution. Earth Planet Sci Lett 171:63–81

    Google Scholar 

  • Becker H, Carlson RW, Jochum KP (2002) Trace element fractionation during dehydration of eclogites from high-pressure terranes and the implications for element fluxes in subduction zones. Chem Geol 163:65–99

    Google Scholar 

  • Beinlich A, Austrheim H, Glodny J, Erambert M, Andersen TB (2010a) CO2 sequestration and extreme Mg depletion in serpentinized peridotite clasts from the Devonian Solund basin, SW-Norway. Geochim Cosmochim Acta 74:6935–6964

    Google Scholar 

  • Beinlich A, Klemd R, John R, Gao J (2010b) Trace-element mobilization during Ca-metasomatism along a major fluid conduit: eclogitization of blueschist as a consequence of fluid-rock interaction. Geochim Cosmochim Acta 74:1892–1922

    Google Scholar 

  • Ben Othman D, White WM, Patchett J (1989) The geochemistry of marine sediments, island arc magma genesis, and crust-mantle recycling. Earth Planet Sci Lett 94:1–21

    Google Scholar 

  • Benton LD, Ryan JG, Tera F (2001) Boron isotope systematics of slab fluids as inferred from a serpentinite seamount, Mariana forearc. Earth Planet Sci Lett 187:273–282

    Google Scholar 

  • Benton LD, Ryan JG, Savov IP (2004) Lithium abundance and isotope systematics of forearc serpentinites, Conical Seamount, Mariana forearc: insights into the mechanics of slab-mantle exchange during subduction. Geochem Geophys Geosyst 5(8):Q08J12. doi:10.1029/2004GC000708

    Google Scholar 

  • Boles JR, Ramseyer K (1988) Albitization of plagioclase and vitrinite reflectance as paleothermal indicators, San Joakin Basin. In: Studies of the geology of the San Joakin Basin. Soc. Econ. Paleo. Min, Los Angeles, pp 129–139

    Google Scholar 

  • Breeding CM, Ague JJ (2002) Slab-derived fluids and quartz-vein formation in an accretionary prism, Otago Schist, New Zealand. Geology 30:499–502

    Google Scholar 

  • Breeding CM, Ague JJ, Brocker M (2004) Fluid-metasedimentary interactions in subduction zone mélange: implications for the chemical composition of arc magmas. Geology 32:1041–1044

    Google Scholar 

  • Brenan JM, Shaw HF, Ryerson FJ (1995a) Experimental evidence for the origin of lead enrichment in convergent margin magmas. Nature 378:54–56

    Google Scholar 

  • Brenan JM, Shaw HF, Ryerson FJ, Phinney DL (1995b) Mineral-aqueous fluid partitioning of trace elements at 900°C and 2.0 GPa: constraints on the trace element geochemistry of mantle and deep crustal fluids. Geochim Cosmochim Acta 59:3331–3350

    Google Scholar 

  • Brenan JM, Shaw HF, Phinney DL, Ryerson FJ (1994) Rutile-aqueous fluid partitioning of Nb, Ta, Hf, Zr, U, and Th: implications for high field strength element depletions in island-arc basalts. Earth Planet Sci Lett 128:327–339

    Google Scholar 

  • Brenan JM, Ryerson FJ, Shaw HF (1998) The role of aqueous fluids in the slab-to-mantle transfer of boron, beryllium, and lithium during subduction; experiments and models. Geochim Cosmochim Acta 62:3337–3347

    Google Scholar 

  • Brown KM, Saffer DM, Bekins BA (2001) Smectite diagenesis, pore-water freshening, and fluid flow at the toe of the Nankai wedge. Earth Planet Sci Lett 194:97–109

    Google Scholar 

  • Bulle F, Bröcker M, Gärtner C, Keasling A (2010) Geochemistry and geochronology of HP mélanges from Tinos and Andros, Cycladic blueschist belt, Greece. Lithos 117:68–81

    Google Scholar 

  • Busigny V, Cartigny P, Philippot P, Ader M, Javoy M (2003) Massive recycling of nitrogen and other fluid-mobile elements (K, Rb, Cs, H) in a cold slab environment: evidence from HP to UHP oceanic metasediments of the Schistes Lustres nappe (western Alps, Europe). Earth Planet Sci Lett 215:27–42

    Google Scholar 

  • Carr MJ, Feigenson MD, Patino LC, Walker JA (2003) Volcanism and geochemistry in Central America: progress and problems. In: Eiler J (ed) Inside the subduction factory, vol 138, Geophysical monograph. American Geophysical Union, Washington, DC, pp 153–174

    Google Scholar 

  • Castro A, Gerya T, Garcia-Casco A, Fernandez C, Diaz-Alvarado J, Moreno-Ventas I, Low I (2010) Melting relations of MORB-sediment mélanges in underplated mantle wedge plumes: implications for the origin of Cordilleran-type batholiths. J Petrol 51(6):1267–1295

    Google Scholar 

  • Chalot-Prat F (2005) An undeformed ophiolite in the Alps: field and geochemical evidence for a link between volcanism and shallow plate processes. In: Natland GR, Presnall DC, Anderson DL (eds) Plates, plumes, and paradigms, vol 388, Geological Society of America Special Papers. Geological Society of America, Boulder, pp 751–780

    Google Scholar 

  • Chalot-Prat F, Ganne J, Lombard A (2003) No significant element transfer from the oceanic plate to the mantle wedge during subduction and exhumation of the Tethys lithosphere (Western Alps). Lithos 69:69–103

    Google Scholar 

  • Chauvel C, Goldstein SL, Hofmann AW (1995) Hydration and dehydration of oceanic crust controls Pb evolution in the mantle. Chem Geol 126:65–75

    Google Scholar 

  • Clift PD, Vannucchi P, Morgan JP (2009) Crustal redistribution, crust-mantle recycling and Phanerozoic evolution. Earth Sci Rev 97:80–104

    Google Scholar 

  • de Leeuw GAM, Hilton DR, Fischer TP, Walker JA (2007) The He-CO2 isotope and relative abundance characteristics of geothermal fluids in El Salvador and Honduras: new constraints on volatile mass balance of the Central American volcanic arc. Earth Planet Sci Lett 258:132–146

    Google Scholar 

  • Deschamps F, Guillot S, Godard M, Chauvel C, Andreani M, Hattori K (2010) In situ characterization of serpentinites from forearc mantle wedges: timing of serpentinization and behavior of fluid-mobile elements in subduction zones. Chem Geol 269:262–277

    Google Scholar 

  • Dumitru TA (1991) Effects of subduction parameters on geothermal gradients in forearcs, with an application to Franciscan subduction in California. J Geophys Res 96(B2):621–641

    Google Scholar 

  • Eiler JM, Carr MJ, Reagan M, Stolper E (2005) Oxygen isotope constraints on the sources of Central American arc lavas. Geochem Geophys Geosyst 6(2005):Q07007. doi:10.1029/2004GC000804

    Google Scholar 

  • Eisele J, Sharma M, Galer SJG, Blichert-Toft J, Devey CW, Hofmann AW (2002) The role of sediment recycling in EM-1 inferred from Os, Pb, Hf, Nd, Sr isotope and trace element systematics of the Pitcairn hotspot. Earth Planet Sci Lett 196:197–212

    Google Scholar 

  • Elderfield H, Kastner M, Martin JB (1990) Compositions and sources of fluids in sediments of the Peru subduction zone. J Geophys Res 95:8819–8827

    Google Scholar 

  • Elliott T (2003) Tracers of the slab. In: Eiler J (ed) Inside the subduction factory, vol 138, Geophysical monograph. American Geophysical Union, Washington, DC, pp 23–45

    Google Scholar 

  • Fisher DM (1996) Fabrics and veins in the forearc: a record of cyclic fluid flow at depths of <15 km. In: Bebout GE, Scholl DW, Kirby SH, Platt JP (eds) Subduction: top to bottom, vol 96, Geophysical Monograph. American Geophysical Union, Washington, DC, pp 75–89

    Google Scholar 

  • Franz L, Romer RL, Klemd R, Schmid R, Oberhansli R, Wagner T, Shuwen D (2001) Eclogite-facies quartz veins within metabasites of the Dabie Shan (eastern China): pressure-temperature-time-deformation path, composition of the fluid phase and fluid flow during exhumation of high-pressure rocks. Contrib Mineral Petrol 141:322–346

    Google Scholar 

  • Frezzotti M, Selverstone J, Sharp ZD, Compagnoni R (2011) Carbonate dissolution during subduction revealed by diamond-bearing rocks from the Alps. Nat Geosci. doi:10.1038/NGEO1246

  • Fu B, Zheng Y-F, Touret JLR (2002) Petrological, isotopic and fluid inclusion studies of eclogites from Sujiahe, NW Dabie Shan (China). Chem Geol 187:107–128

    Google Scholar 

  • Fukao Y, Hori S, Ukawa M (1983) A seismological constraint on the depth of basalt-eclogite transition in a subducting oecanic crust. Nature 303:413–415

    Google Scholar 

  • Fyfe WS, Kerrich R (1985) Fluids and thrusting. Chem Geol 49:353–362

    Google Scholar 

  • Gao J, Klemd R (2001) Primary fluids entrapped at blueschist to eclogite transition: evidence from the Tianshan meta-subduction complex in northwestern China. Contrib Mineral Petrol 142:1–14

    Google Scholar 

  • Garcia-Casco A, Lazaro C, Rojas-Agramonte Y, Kroner A, Torres-Roldan RL, Nunez K, Neubauer F, Millan G, Blanco-Quintero I (2008) Partial melting and counterclockwise P-T path of subducted oceanic crust (Sierra del Convento Melange, Cuba). J Petrol 49:129–161. doi:10.1093/petrology/egm074

    Google Scholar 

  • George R, Turner S, Morris M, Plank T, Hawkesworth C, Ryan J (2005) Pressure-temperature-time paths of sediment recycling beneath the Tonga-Kermadec arc. Earth Planet Sci Lett 233:195–211

    Google Scholar 

  • Getty SR, Selverstone J (1994) Stable isotopic and trace element evidence for restricted fluid migration in 2 GPa eclogites. J Metamorph Geol 12:747–760

    Google Scholar 

  • Giaramita MJ, Sorensen SS (1994) Primary fluids in low-temperature eclogites: evidence from two subduction complexes (Dominican Republic, and California, USA). Contrib Mineral Petrol 117:279–292

    Google Scholar 

  • Gill JB (1981) Orogenic andesites and plate tectonics. Springer, Berlin, p 390

    Google Scholar 

  • Godon A, Jendrzejewski N, Castrec-Rouelle Dia A, Pineau F, Boulegue J, Javoy M (2004) Origin and evolution of fluids from mud volcanoes in the Barbados accretionary complex. Geochim Cosmochim Acta 68:2153–2165

    Google Scholar 

  • Gorman PJ, Kerrick DM, Connolly JAD (2006) Modeling open system metamorphic decarbonation of subducting slabs. Geochem Geophys Geosyst 7(4):Q04007. doi:10.1029/2005GC001125

    Google Scholar 

  • Grove M, Bebout GE (1995) Cretaceous tectonic evolution of coastal southern California: insights from the Catalina Schist. Tectonics 14:1290–1308

    Google Scholar 

  • Grove M, Bebout GE, Jacobson CE, Barth AP, Kimbrough DL, King RL, Zou H, Lovera OM, Mahoney BJ, Gehrels GE (2008) The Catalina Schist: evidence for mid-Cretaceous subduction erosion of southwestern North America. In: Draut AE, Clift PD, Scholl DW (eds) Formation and applications of the sedimentary record in arc collision zones, vol 436, Geological Society of America Special paper. Geological Society of America, Boulder, pp 335–361

    Google Scholar 

  • Hacker BR (2006) Pressures and temperatures of ultrahigh-pressure metamorphism: implications for UHP tectonics and H2O in subducting slabs. Int Geol Rev 48:1053–1066

    Google Scholar 

  • Hacker BR (2008) H2O subduction beyond arcs. Geochem Geophys Geosyst 9(3):Q03001. doi:10.1029/2007GC001707

    Google Scholar 

  • Hacker BR, Abers GA, Peacock SM (2003a) Subduction factory 1. Theoretical mineralogy, densities, seismic wave speeds, and H2O contents. J Geophys Res 108(B1):2029. doi:10.1029/2001JB001127

    Google Scholar 

  • Hacker BR, Luffi P, Lutkov V, Minaev V, Ratschbacher L, Plank T, Ducea M, Patino-Douce A, McWilliams M, Metcalf J (2005) Near-ultrahigh pressure processing of continental crust: miocene crustal xenoliths from the Pamir. J Petrol 46:1661–1687

    Google Scholar 

  • Hacker BR, Peacock SM, Abers GA, Holloway SD (2003b) Subduction factory 2. Are intermediate-depth earthquakes in subducting slabs linked to metamorphic dehydration reactions? J Geophys Res 108(B1):2030. doi:10.1029/2001JB001129

    Google Scholar 

  • Hart SR, Staudigel H (1989) Isotopic characterization and identification of recycled components. In: Hart SR, Gulen L (eds) Crust/mantle recycling at convergence zones, NATO (N. Atlantic Treaty Org.), ASI (Adv. Stud. Inst.) Ser., Kluwer, pp 15–28

    Google Scholar 

  • Hauri EH, Hart SR (2003) Re-Os isotope systematics of HIMU and EMII oceanic island basalts from the South Pacific Ocean. Earth Planet Sci Lett 114:353–371

    Google Scholar 

  • Helffrich GR (1996) Subducted lithospheric velocity structure: observations and mineralogical inferences. In: Bebout GE, Scholl DW, Kirby SH, Platt JP (eds) Subduction: top to bottom, vol 96, Geophysical monograph. American Geophysical Union, Washington, Dc, pp 215–222

    Google Scholar 

  • Helffrich G, Abers GA (1997) Slab low-velocity layer in the eastern Aleutian subduction zone. Geophys J Int 130:640–648

    Google Scholar 

  • Helffrich GR, Stein S, Wood BJ (1989) Subduction zone thermal structure and mineralogy and their relationship to seismic wave reflections and conversions at the slab/mantle interface. J Geophys Res 94:753–763

    Google Scholar 

  • Hermann J, Spandler CJ (2008) Sediment melts at sub-arc depths: an experimental study. J Petrol 49:717–740

    Google Scholar 

  • Hermann J, Spandler C, Hack A, Korsakov AV (2006) Aqueous fluids and hydrous melts in high-pressure and ultra-high pressure rocks: implications for element transfer in subduction zones. Lithos 92:399–417

    Google Scholar 

  • Hilton DR, Fischer TP, Marty B (2002) Noble gases and volatile recycling at subduction zones. In: Porcelli D et al (eds) Noble Gases in geochemistry and cosmochemistry, vol 47, Reviews in mineralogy and geocheminstry. Mineralogical Society of America, Washington, DC, pp 319–370

    Google Scholar 

  • Hori S, Inoue H, Fukao Y, Ukawa M (1985) Seismic detection of the untransformed “basaltic” oceanic crust subducting into the mantle. Geophys J Roy Astr Soc 83:169–197

    Google Scholar 

  • Hofmann AW (1988) Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth Planet Sci Lett 90:297–314

    Google Scholar 

  • Hofmann AW (2003) Sampling mantle heterogeneity through oceanic basalts: isotopes and trace elements. Treat Geochem 2:61–101

    Google Scholar 

  • Hulme SM, Wheat CG, Fryer P, Mottl MJ (2010) Pore water chemistry of the Mariana serpentinite mud volcanoes: a window to the seismogenic zone. Geochem Geophys Geosyst 11:Q01X09. doi:10.1029/2009GC002674

    Google Scholar 

  • Hyndman RD, Peacock SM (2003) Serpentinization of the forearc mantle. Earth Planet Sci Lett 212:417–432

    Google Scholar 

  • Jarrard RD (2003) Subduction fluxes of water, carbon dioxide, chlorine, and potassium. Geochem Geophys Geosyst 5. doi:10.1029/2002GC000392

  • John T, Gussone NC, Beinlich A, Halama R, Bebout GE, Podladchikov YY, Magna T (2010) Pulse-like channelled long-distance fluid flow in subducting slabs. In: Abstracts for AGU Fall Meeting, San Francisco

    Google Scholar 

  • John T, Schenk V (2003) Partial eclogitisation of gabbroic rocks in a late Precambrian subduction zone (Zambia): progade metamorphism triggered by fluid infiltration. Contrib Mineral Petrol 146:174–191. doi:10.1007/s00410-003-0492-8

    Google Scholar 

  • John T, Schenk V (2006) Interrelations between intermediate-depth earthquakes and fluid flow within subducting oceanic plates: constraints from eclogite facies pseudotachylytes. Geology 34(7):557–560

    Google Scholar 

  • John T, Scherer EE, Haase K, Schenk V (2004) Trace element fractionation during fluid-induced eclogitization in a subducting slab: trace element and Lu-Hf-Sm-Nd isotope systematics. Earth Planet Sci Lett 227:441–456

    Google Scholar 

  • Johnson MC, Plank T (1999) Dehydration and melting experiments constrain the fate of subducted sediments. Geochem Geophys Geosyst 1 (Art. no. 1999GC000014)

    Google Scholar 

  • Kastner M, Elderfield H, Martin JB (1991) Fluids in convergent margins: what do we know about their composition, origin, role in diagenesis and importance for oceanic chemical fluxes? Philos Trans R Soc Lond 335:243–259

    Google Scholar 

  • Kay SM, Godoy E, Kurtz A (2005) Episodic arc migration, crustal thickening, subduction erosion, and magmatism in the south-central Andes. Geol Soc Am Bull 117:67–88

    Google Scholar 

  • Kelemen PB, Rilling JL, Parmentier EM, Mehl L, Hacker BR (2003) Thermal structure due to solidstate flow in the mantle wedge. In: Eiler J (ed) Inside the subduction factory, vol 138, Geophysical monograph. American Geophysical Union, Washington, DC, pp 293–311

    Google Scholar 

  • Kelley KA, Plank T, Farr L, Ludden J, Staudigel H (2005) Subduction cycling of U, Th, and Pb. Earth Planet Sci Lett 234:369–383

    Google Scholar 

  • Kelley KA, Plank T, Ludden J, Staudigel H (2003) The composition of altered oceanic crust and ODP Sites 801 and 1149. Geochem Geophys Geosyst 4:8910. doi:10.1029/2002GC000435

    Google Scholar 

  • Keppler H (1996) Constraints from partitioning experiments on the composition of subduction-zone fluids. Nature 380:237–240

    Google Scholar 

  • Kerrick DM, Connolly JAD (2001) Metamorphic devolatilization of subducted marine sediments and the transport of volatiles into the Earth’s mantle. Nature 411:293–296

    Google Scholar 

  • Kessel R, Schmidt MW, Ulmer P, Pettke T (2005a) Trace element signature of subduction-zone fluids, melts and supercritical fluids at 120–180 km depths. Nature 437(29):724–727

    Google Scholar 

  • Kessel R, Ulmer P, Pettke T, Schmidt MW, Thompson AB (2005b) The water-basalt system at 4 to 6 GPa: phase relations and second critical endpoint in a K-free eclogite at 700 to 1400°C. Earth Planet Sci Lett 237:873–892

    Google Scholar 

  • Kincaid C, Sacks IS (1997) Thermal and dynamical evolution of the upper mantle in subduction zones. J Geophys Res 102:12295–12315

    Google Scholar 

  • King RL, Bebout GE, Grove M, Moriguti T, Nakamura E (2007) Boron and lead isotope signatures of subduction-zone melange formation: hybridization and fractionation along the slab-mantle interface beneath volcanic fronts. Chem Geol. doi:10.1016/j.chemgeo.2007.01.009

  • King RL, Bebout GE, Kobayashi K, Nakamura E, van der Klauw SNGC (2004) Ultrahigh-pressure metabasaltic garnets as probes into deep subduction-zone chemical cycling. Geochem Geophys Geosyst 5:Q12J14. doi:10.1029/2004GC000746

    Google Scholar 

  • King RL, Bebout GE, Moriguti T, Nakamura E (2006) Elemental mixing systematics and Sr-Nd isotope geochemistry of mélange formation: obstacles to identification of fluid sources to arc volcanics. Earth Planet Sci Lett 246:288–304

    Google Scholar 

  • Kirby S, Engdahl ER, Denlinger R (1996) Intraslab earthquakes and arc volcanism: dual expressions of crustal and upper mantle metamorphism in subducting slabs. In: Bebout GE, Scholl DW, Kirby SH, Platt JP (eds) Subduction: top to bottom, vol 96, Geophysical monograph. American Geophysical Union, Washington, DC, pp 195–214

    Google Scholar 

  • Kvenvolden KA (1993) Gas hydrates – geological perspective and global change. Rev Geophys 31(2):173–187

    Google Scholar 

  • Li L, Bebout GE (2005) Carbon and nitrogen geochemistry of sediments in the Central American convergent margin: insights regarding paleoproductivity and carbon and nitrogen subduction fluxes. J Geophys Res 110:B11202. doi:10.1029/2004JB003276

    Google Scholar 

  • Maekawa H, Shozui M, Ishii T, Fryer P, Pearce JA (1993) Blueschist metamorphism in an active subduction zone. Nature 364:520–523

    Google Scholar 

  • Malaspina N, Hermann J, Scambelluri M (2009) Fluid/mineral interaction in UHP garnet peridotite. Lithos 107(1–2):38–52

    Google Scholar 

  • Manning CE (1994) The solubility of quartz in H2O in the lower crust and upper mantle. Geochim Cosmochim Acta 58:4831–4839

    Google Scholar 

  • Manning CE (1998) Fluid composition at the blueschist-eclogite transition in the model system Na2O-MgO-Al2O3-SiO2-H2O-HCl. Schweiz Miner Petrog 78:225–242

    Google Scholar 

  • Manning CE (2004) The chemistry of subduction-zone fluids. Earth Planet Sci Lett 223:1–16

    Google Scholar 

  • Manning CE, Antignano A, Lin HA (2010) Premelting polymerization of crustal and mantle fluids, as indicated by the solubility of albite + paragonite + quartz in H2O at 1 GPa and 350–620°C. Earth Planet Sci Lett 292:325–336

    Google Scholar 

  • Marocchi M, Hermann J, Tropper P, Bargossi GM, Mair V (2010) Amphibole and phlogopite in “hybrid” metasomatic bands monitor trace element transfer at the interface between felsic and ultramafic rocks (Eastern Alps, Italy). Lithos 117:135–148

    Google Scholar 

  • Martin H (1986) Effect of steeper Archean geothermal gradient on geochemistry of subduction-zone magmas. Geology 14:753–756

    Google Scholar 

  • Massone H-J, Kopp J (2005) A low-variance mineral assemblage with talc and phengite in an eclogite from the Saxonian Erzgebirge, Central Europe, and its P-T evolution. J Petrol 46:355–375

    Google Scholar 

  • Marschall HR (2005) Lithium, beryllium, and boron in high-pressure metamorphic rocks from Syrox (Greece). Ph.D. dissertation, Universitat Heidelberg, p 411

    Google Scholar 

  • Matsuzawa T, Umino N, Hasegawa A, Takagi A (1986) Upper mantle velocity structure estimated from PS-converted wave beneath the north-eastern Japan Arc. Geophys J Roy Astr Soc 86:767–787

    Google Scholar 

  • McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120:223–253

    Google Scholar 

  • Miller DM, Goldstein SL, Langmuir CH (1994) Cerium/lead and lead isotope ratios in arc magmas and the enrichment of lead in the continents. Nature 368:514–520

    Google Scholar 

  • Miller DP, Marschall HR, Schumacher JC (2009) Metasomatic formation and petrology of blueschist-facies hybrid rocks from Syros (Greece): implications for reactions at the slab-mantle interface. Lithos 107:53–67

    Google Scholar 

  • Moore DE, Liou JG, King B-K (1981) Chemical modifications accompanying blueschist facies metamorphism of Franciscan conglomerates, Diablo Range, California. Chem Geol 33:237–263

    Google Scholar 

  • Moore GF, Taira A, Klaus A et al (2001) New insights into deformation and fluid flow processes in the Nankai Trough accretionary prism: results of Ocean Drilling Program Let 190. Geochem Geophys Geosyst 2, 25 Oct 2001, 2001GC0000166

    Google Scholar 

  • Moore JC, Vrolijk P (1992) Fluids in accretionary prisms. Rev Geophys 30:113–135

    Google Scholar 

  • Morad S (1988) Albitized microcline grains of post-depositional and probable detrital origins in Brottom Formation sandstones (Upper Proterozoic), Sparagmite Region of southern Norway. Geol Mag 125:229–239

    Google Scholar 

  • Morris JD, Ryan JG (2003) Subduction zone processes and implications for changing composition of the upper and lower mantle. Treat Geochem 2:451–470

    Google Scholar 

  • Mottl MJ, Wheat CG, Fryer P, Gharib J, Martin JB (2004) Chemistry of springs across the Mariana forearc shows progressive devolatilization of the subducting slab. Geochim Cosmochim Acta 68:4915–4933

    Google Scholar 

  • Nadeau S, Philippot P, Pineau F (1993) Fluid inclusion and mineral isotopic compositions (H-C-O) in eclogitic rocks as tracers of local fluid migration during high-pressure metamorphism. Earth Planet Sci Lett 114:431–448

    Google Scholar 

  • Nelson BK (1995) Fluid flow in subduction zones: evidence from Nd- and Sr-isotope variations in metabasalts of the Franciscan Complex, California. Contrib Mineral Petrol 119:246–262

    Google Scholar 

  • Nesbitt HW, Young GM (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299:715–717

    Google Scholar 

  • Newton RC, Manning CE (2008) Thermodynamics of SiO2-H2O fluid near the upper critical end point from quartz solubility measurements at 10 kbar. Earth Planet Sci Lett 274:241–249

    Google Scholar 

  • Peacock SM (1992) Blueschist-facies metamorphism, shear heating, and P–T–t paths in subduction shear zones. J Geophys Res 97:17693–17707

    Google Scholar 

  • Peacock SM et al (1996) Thermal and petrologic structure of subduction zones. In: Bebout GE (ed) Subduction: top to bottom, vol 96, Geophysical monograph. American Geophysical Union, Washington, DC, pp 119–133

    Google Scholar 

  • Peacock SM et al (2003) Thermal structure and metamorphic evolution of subducting slabs. In: Eiler J (ed) Inside the subduction factory, vol 138, Geophysical monograph. American Geophysical Union, Washington, DC, pp 7–22

    Google Scholar 

  • Peacock SM (2009) Thermal and metamorphic environment of subduction zone episodic tremor and slip. J Geophys Res 114:B00A07. doi:10.1029/2008JB005978

    Google Scholar 

  • Peacock SM, Hyndman RD (1999) Hydrous minerals in the mantle wedge and the maximum depth of subduction zone earthquakes. Geophys Res Lett 26:2517–2520

    Google Scholar 

  • Peacock SM, van Keken PE, Holloway SD, Hacker BR, Abers GA, Fergason RL (2005) Thermal structure of the Costa Rica-Nicaragua subduction zone. Phys Earth Planet Int 149:187–200

    Google Scholar 

  • Pearce JA, Peate DW (1995) Tectonic implications of the composition of volcanic arc magmas. Annu Rev Earth Planet Sci 23:251–285

    Google Scholar 

  • Penniston-Dorland SC, Bebout GE, van Pogge van Strandmann PAE, Elliott T, Sorensen SS (2011) Lithium and its isotopes as tracers of subduction zone fluids and metasomatic processes: evidence from the Catalina Schist, California, USA. Geochim Cosmochim Acta. doi:10.1016/j.gca.2011.10.038

  • Penniston-Dorland SC, Sorensen SS, Ash RD, Khadke SV (2010) Lithium isotopes as a tracer of fluids in a subduction zone mélange: Franciscan Complex, CA. Earth Planet Sci Lett 292:181–190

    Google Scholar 

  • Philippot P, Selverstone J (1991) Trace-element-rich brines in eclogitic veins: implications for fluid compositions and transport during subduction. Contrib Mineral Petrol 106:417–430

    Google Scholar 

  • Plank T (2005) Constraints from thorium/lanthanum on sediment recycling at subduction zones and the evolution of the continents. J Petrol 46:921–944

    Google Scholar 

  • Plank T, Balzer V, Carr M (2002) Nicaraguan volcanoes record paleoceano-graphic changes accompanying closure of the Panama gateway. Geology 30:1087–1090

    Google Scholar 

  • Plank T, Cooper LB, Manning CE (2009) Emerging geothermometers for estimating slab surface temperatures. Nat Geosci 2. doi:10.1038/NGEO614

  • Plank T, Langmuir CH (1988) An evaluation of the global variations in the major element chemistry of arc basalts. Earth Planet Sci Lett 90:349–370

    Google Scholar 

  • Plank T, Langmuir CH (1998) The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem Geol 145:325–394

    Google Scholar 

  • Putnis A, John T (2010) Replacement processes in the Earth’s crust. Elements 6:159–164

    Google Scholar 

  • Ranero CR, Villasenor A, Phipps Morgan J, Weinrebe W (2005) Relationship between bend-faulting at trenches and intermediate-depth seismicity. Geochem Geophys Geosyst 6(12):Q12002. doi:10.1029/2005GC000997

    Google Scholar 

  • Rea DK, Ruff LJ (1996) Composition and mass flux of sedimentary materials entering the World’s subduction zones: implications for global sediment budgets, great earthquakes, and volcanism. Earth Planet Sci Lett 140:1–12

    Google Scholar 

  • Rondenay S, Abers GA, van Keken PE (2008) Seismic imaging of subduction zone metamorphism. Geology 36:275–278

    Google Scholar 

  • Rupke LH, Morgan JP, Hort M, Connolly JAD (2002) Are the regional differences in Central American arc lavas due to differing basaltic versus peridotitic slab sources of fluids? Geology 30:1035–1038

    Google Scholar 

  • Rupke LH, Morgan JP, Hort M, Connolly JAD (2004) Serpentine and the subduction zone water cycle. Earth Planet Sci Lett 223:17–34

    Google Scholar 

  • Ryan J, Morris J, Bebout G, Leeman B, Tera F (1996) Describing chemical fluxes in subduction zones: insights from “depth-profiling” studies of arc and forearc rocks. In: Bebout GE, Scholl DW, Kirby SH, Platt JP (eds) Subduction: top to bottom, vol 96, Geophysical monograph. American Geophysical Union, Washington, DC, pp 263–268

    Google Scholar 

  • Sadofsky SJ, Bebout GE (2003) Record of forearc devolatilization in low-T, high-P/T metasedimentary suites: significance for models of convergent margin chemical cycling. Geochem Geophys Geosyst 4(4):9003. doi:10.1029/2002GC000412

  • Sadofsky SJ, Bebout GE (2004) Field and isotopic evidence for fluid mobility in the Franciscan Complex: forearc paleohydrogeology to depths of 30 km. Int Geol Rev 46:1053–1088

    Google Scholar 

  • Saha A, Basu AR, Wakabayashi J, Wortman GL (2005) Geochemical evidence for a subducted infant arc in Franciscan high-grade-metamorphic tectonic blocks. Geol Soc Am Bull 117:1318–1335

    Google Scholar 

  • Sakakibara M, Umeki M, Cartwright I (2007) Isotopic evidence for channeled fluid flow in low-grade metamorphosed Jurassic accretionary complex in the Northern Chichibu belt, western Shikoku. Jpn J Metamorph Geol 25:383–400

    Google Scholar 

  • Sample JC, Reid MR (1998) Contrasting hydrogeologic regimes along strike-slip and thrust faults in the Oregon convergent margin: evidence from the chemistry of syntectonic carbonate cements and veins. Geol Soc Am Bull 110:48–59

    Google Scholar 

  • Sapienza GT, Scambelluri M, Braga R (2009) Dolomite-bearing orogenic garnet peridotites witness fluid-mediated carbon recycling in a mantle wedge (Ulten Zone, Eastern Alps, Italy). Contrib Mineral Petrol 158:401–420

    Google Scholar 

  • Savov IP, Ryan JG, D’Antonio M, Kelley K, Mattie P (2005) Geochemistry of serpentinized peridotites from the Mariana forearc Conical Seamount, ODP Leg 125: implications for the elemental recycling at subduction zones. Geochem Geophys Geosyst 6(4):Q04J15. doi:10.1029/2004GC000777

    Google Scholar 

  • Scambelluri M, Bottazzi P, Trommsdorff V, Vannucci R, Hermann J, Gomez-Pugnaire MT, Lopez-Sanchez Vizcaıno V (2002) Incompatible element-rich fluids released by antigorite breakdown in deeply subducted mantle. Earth Planet Sci Lett 192:457–470

    Google Scholar 

  • Scambelluri M, Fiebig J, Malaspina N, Muntener O, Pettke T (2004a) Serpentinite subduction: implications for fluid processes and trace-element recycling. Int Geol Rev 46:595–613

    Google Scholar 

  • Scambelluri M, Hermann J, Morten L, Rampone E (2006) Melt- versus fluid-induced metasomatism in spinel to garnet wedge peridotites (Ulten Zone, Eastern Italian Alps): clues from trace element and Li abundances. Contrib Mineral Petrol. doi:10.1007/s00410-006-0064-9

  • Scambelluri M, Muntener O, Ottolini L, Pettke T, Vannucci R (2004b) The fate of B, Cl, and Li in the subducted oceanic mantle and in the antigorite breakdown fluids. Earth Planet Sci Lett 222:217–234

    Google Scholar 

  • Scambelluri M, Philippot P (2001) Deep fluids in subduction zones. Lithos 55:213–227

    Google Scholar 

  • Scambelluri M, Philippot P, Pennacchioni G (1998) Salt-rich aqueous fluids formed during eclogitization of metabasites in the Alpine continental crust (Austroalpine Mt. Emilius unit, Italian western Alps). Lithos 43:151–161

    Google Scholar 

  • Scambelluri M, Van Roermund HLM, Pettke T (2010) Mantle wedge peridotites: fossil reservoirs of deep subduction zone processes: inferences from high and ultrahigh-pressure rocks from Bardana (Western Norway) and Ulten (Italian Alps). Lithos 120:186–201

    Google Scholar 

  • Schmidt MW, Poli S (2003) Generation of mobile components during subduction of oceanic crust. Treat Geochem 3:567–591

    Google Scholar 

  • Schmidt MW, Vielzeuf D, Auzanneau E (2004) Melting and dissolution of subducting crust at high pressures: the key role of white mica. Earth Planet Sci Lett 228:65–84

    Google Scholar 

  • Scholl DW, von Huene R (2009) Crustal recycling at modern subduction zones applied to the past–issues of growth and preservation of continental basement, mantle geochemistry, and supercontinent reconstruction. In: Hatcher RD Jr, Carlson MP, McBride JH, Martinez Catalan JR (eds) The 4D framework of continental crust, Geological Society of America, Special Paper 327:371–404

    Google Scholar 

  • Shaw AM, Hilton DR, Fischer TP, Walker JA, Alvarado GE (2003) Contrasting He–C relationships in Nicaragua and Costa Rica: insights into C cycling through subduction zones. Earth Planet Sci Lett 214:499–513

    Google Scholar 

  • Shen, B, Jacobsen B, Lee C-YA, Yin Q-Z, Morton DM (2009) The Mg isotopic systematics of granitoids in continental arcs and implications for the role of chemical weathering in crust formation. Proc Nat Acad Sci, 106(49):29652–20657

    Google Scholar 

  • Solomon EA, Kastner M, Robertson G (2006) Barium cycling at the Costa Rica convergent margin. In: Morris JM, Villinger HW, Klaus A (eds) Proceedings of ODP scientific results 205:1–21. Online: http://www-odp.tamu.edu/publications/205_SR/210/210.htm. doi:10.2973/odp.proc.sr.205.210.2006

  • Sorensen SS, Barton MD (1987) Metasomatism and partial melting in a subduction complex, Catalina Schist, southern California. Geology 15:115–118

    Google Scholar 

  • Sorensen SS, Grossman JN (1989) Enrichment of trace elements in garnet amphibolites from a paleo-subduction zone: Catalina Schist, southern California. Geochim Cosmochim Acta 53:3155–3178

    Google Scholar 

  • Sorensen SS, Grossman JN, Perfit MR (1997) Phengite-hosted LILE-enrichment in eclogite and related rocks: implications for fluid-mediated mass transfer in subduction zones and arc magma genesis. J Petrol 38:3–34

    Google Scholar 

  • Sorensen SS, Sisson VB, Harlow GE, Ave Lallement HG (2010) Element residence and transport during subduction-zone metasomatism: evidence from a jadeitite-serpentinite contact. Guatemala Int Geol Rev 52(9):899–940

    Google Scholar 

  • Sorensen SS, Sisson VB, Ave Lallement HG (2005) Geochemical evidence for possible trench provenance and fluid-rock histories, Cordillera de la Costa eclogite belt, Venezuela. In: Ave Lallement HG, Sisson VB (eds) Carribean-South American plate interactions, Venezuela. Geological Society of America, Special Paper 394:173–192

    Google Scholar 

  • Spandler C, Hermann J, Arculus R, Mavrogenes J (2003) Redistribution of trace elements during prograde metamorphism from lawsonite blueschist to eclogite facies; implications for deep subduction processes. Contrib Mineral Petrol. doi:10.1007/s00410-003-495-5, online article

  • Spandler C, Hermann J, Arculus R, Mavrogenes J (2004) Geochemical heterogeneity and elemental mobility in deeply subducted oceanic crust; insights from high-pressure mafic rocks from New Caledonia. Chem Geol 206:21–42

    Google Scholar 

  • Spandler C, Hermann J, Faure K, Mavrogenes JA, Arculus RJ (2008) The importance of talc and chlorite “hybrid” rocks for volatile recycling through subduction zones; evidence from the high-pressure subduction mélange of New Caledonia. Contrib Mineral Petrol 155:181–198

    Google Scholar 

  • Spandler C, Mavrogenes J, Hermann J (2007) Experimental constraints on element mobility from subducted sediments using high-P synthetic fluid/melt inclusions. Chem Geol 239:228–249

    Google Scholar 

  • Staudigel H (2003) Hydrothermal alteration processes in the oceanic crust. Treat Geochem 3:511–535

    Google Scholar 

  • Staudigel H, Plank T, White WM, Schminke H-U (1996) Geochemical fluxes during seafloor alteration of the upper oceanic crust: DSDP sites 417 and 418. In: Bebout GE, Scholl DW, Kirby SH, Platt JP (eds) Subduction: top to bottom, vol 96, Geophysical monograph. American Geophysical Union, Washington, DC, pp 19–38

    Google Scholar 

  • Stern RJ (1991) Role of subduction erosion in the generation of Andean magmas. Geology 19:78–81

    Google Scholar 

  • Stern RJ (2002) Subduction zones. Rev Geophys 40(4):1012. doi:10.1029/2001RG000108

    Google Scholar 

  • Stracke A, Bizimis M, Salters VJM (2003) Recycling oceanic crust: quantitative constraints. Geochem Geophys Geosyst 4:8003. doi:10.1029/2001GC000223

    Google Scholar 

  • Stracke A, Hofmann AW, Hart SR (2005) FOZO, HIMU, and the rest of the mantle zoo. Geochem Geophys Geosyst 6:Q05007. doi:10.1029/2004GC000824

    Google Scholar 

  • Straub SM, Layne GD (2008) Decoupling of fluids and fluid-mobile elements during shallow subduction: evidence from halogen-rich andesite melt inclusions from the Izu arc volcanic front. Geochem Geophys Geosyst 4(7):9003. doi:10.1029/2002GC000349

    Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the ocean basins, vol 42, Geological Society Special publications. Geological Society, London, pp 313–345

    Google Scholar 

  • Syracuse EM, van Keken PE, Abers GA (2010) The global range of subduction zone thermal models. Phys Earth Planet In 183:73–90

    Google Scholar 

  • Tenore-Nortrup J, Bebout GE (1993) Metasomatism of gabbroic and dioritic cobbles in blueschist facies metaconglomerates: sources and sinks for high-P/T metamorphic fluids (abstract). EOS Transactions, American Geophysical Union 74: 331

    Google Scholar 

  • Tropper P, Manning CE (2004) Paragonite stability at 700°C in the presence of H2O-NaCl fluids: constraints on H2O activity and implications for high pressure metamorphism. Contrib Mineral Petrol 147:740–749

    Google Scholar 

  • Tropper P, Manning CE (2005) Very low solubility of rutile in H2O at high pressure and temperature, and its implications for Ti mobility in subduction zones. Am Mineral 90:502–505

    Google Scholar 

  • van Keken PE (2003) The structure and dynamics of the mantle wedge. Earth Planet Sci Lett 215:323–338

    Google Scholar 

  • van Keken PE, Hacker BR, Syracuse EM, Abers GA (2011) Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide. J Geophys Res 116. doi:10.1029/2010JB007922

  • van Keken PE, Kiefer B, Peacock SM (2002) High-resolution models of subduction zones: implications for mineral dehydration reactions and the transport of water into the deep mantle. Geochem Geophys Geosyst 3:1056. doi:10.1029/2001GC000256

    Google Scholar 

  • Vielzeuf D, Schmidt MW (2001) Melting relations in hydrous systems revisited: application to metapelites, metagreywackes and metabasalts. Contrib Mineral Petrol 141:251–267

    Google Scholar 

  • von Huene R, Scholl DW (1991) Observations at convergent margins concerning sediment subduction, subduction erosion, and the growth of continental crust. Rev Geophys 29(3):279–316

    Google Scholar 

  • Vrolijk P (1987) Paleohydrogeology and fluid evolution of the Kodiak accretionary complex. Alaska. Ph.D. thesis, University of California, Santa Cruz

    Google Scholar 

  • Vrolijk P (1990) On the mechanical role of smectite in subduction zones. Geology 18:703–707

    Google Scholar 

  • Vrolijk P, Chambers SR, Gieskes JM, O’Neil JR (1990) 13. Stable isotope ratios of interstitial fluids from the northern Barbados accretionary prism, ODP Leg 110. In: Moore JC, Mascle A et al (eds) Proceedings of ODP scientific results 110, pp 189–205. Available online at: http://www-odp.tamu.edu/publications/110_SR/110TOC.HTM. doi:10.2973/odp.proc.sr.110.137.1990

  • Wada I, Wang K (2009) Common depth of slab-mantle decoupling: reconciling diversity and uniformity of subduction zones. Geochem Geophys Geosyst 10:Q10009. doi:10.1029/2009GC002570

    Google Scholar 

  • Weaver BL (1991) The origin of ocean island basalt end-member compositions: trace element and isotopic constraints. Earth Planet Sci Lett 104:381–397

    Google Scholar 

  • Widmer T, Thompson AB (2001) Local origin of high pressure vein material in eclogite facies rocks of the Zermatt-Saas zone, Switzerland. Am J Sci 301:627–656

    Google Scholar 

  • You C-F, Castillo PR, Gieskes JM, Chan LH, Spivack AJ (1996) Trace element behavior in hydrothermal experiments: implications for fluid processes at shallow depths in subduction zones. Earth Planet Sci Lett 140:41–52

    Google Scholar 

  • You C-F, Gieskes JM, Lee T, Yui T-F, Chen H-W (2004) Geochemistry of mud volcano fluids in the Taiwan accretionary prism. Appl Geochem 19:695–707

    Google Scholar 

  • Zack T, Foley SF, Rivers T (2002) Equilibrium and disequilibrium trace element partitioning in hydrous eclogites (Trescolmen, Central Alps). J Petrol 43:1947–1974

    Google Scholar 

  • Zack T, Rivers T, Foley SF (2001) Cs-Rb-Ba systematics in phengite and amphibole: an assessment of fluid mobility at 2.0 GPa in eclogites from Trescolmen, Central Alps. Contrib Mineral Petrol 140:651–669

    Google Scholar 

  • Zack T, Tomascak PB, Rudnick RL, Dalpe C, McDonough WF (2003) Extremely light Li in orogenic eclogites: the role of isotope fractionation during dehydration in subducted oceanic crust. Earth Planet Sci Lett 208:279–290

    Google Scholar 

  • Zheng Y, Kastner, M (1997) 12. Pore-fluid trace metal concentrations: implications for fluid-rock interactions in the Barbados accretionary prism. In: Shipley TH, Ogawa Y, Blum P, Bahr JM (eds) Proceedings of the Ocean Drilling Program Scientific Results 156:163–170. Available online at: http://www-odp.tamu.edu/publications/156_SR/156TOC.HTM. doi:10.2973/odp.proc.sr.156.021.1997

  • Zheng Y-F, Fu B, Gong B, Li L (2003) Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu orogen in China: implications for geodynamics and fluid regime. Earth Sci Rev 62:105–161

    Google Scholar 

  • Zheng Y-F, Xia Q-X, Chen R-X, Gao X-Y (2011) Partial melting, fluid supercriticality and element mobility in ultrahigh-pressure metamorphic rocks during continental collision. Earth Sci Rev 107:342–374

    Google Scholar 

Download references

Acknowledgements

Most of the author’s research presented in this chapter was funded by the National Science Foundation, recently by NSF grants EAR-0711355 and EAR-1119264. The author also acknowledges collaborations and discussions with Eizo Nakamura and other colleagues at the Pheasant Memorial Laboratory, Institute for Study of the Earth’s Interior (ISEI; Okayama University, Misasa, Japan), and financial support from the ISEI and the Japanese government (most recently, the COE-21 program). This chapter benefited greatly from constructive reviews by Marco Scambelluri and Reiner Klemd and assistance from the book editors D. Harlov and H. Austrheim.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gray E. Bebout .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Bebout, G.E. (2013). Metasomatism in Subduction Zones of Subducted Oceanic Slabs, Mantle Wedges, and the Slab-Mantle Interface. In: Metasomatism and the Chemical Transformation of Rock. Lecture Notes in Earth System Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28394-9_9

Download citation

Publish with us

Policies and ethics