Skip to main content

Prograde, Peak and Retrograde Metamorphic Fluids and Associated Metasomatism in Upper Amphibolite to Granulite Facies Transition Zones

  • Chapter
  • First Online:
Metasomatism and the Chemical Transformation of Rock

Part of the book series: Lecture Notes in Earth System Sciences ((LNESS))

Abstract

Granulites constitute a major part of the (lower) continental crust, occurring on a regional scale in many metamorphic belts. Their origin is generally discussed in terms of vapour-absent melting and fluid-assisted dehydration. This last model is notably supported by the occurrence of two immiscible free fluids at peak- and retrograde conditions, viz. CO2 and highly saline brines. Evidence includes fluid remnants preserved in mineral inclusions, but also large scale metasomatic effects. The current paper discusses the presence and action of these fluids in granulites, with special attention to amphibolite to granulite facies transition zones (e.g. the Bamble sector, south Norway). Metasomatic effects induced by fluid percolation at different scales and stages include: (1) Control of state variables (H2O activity or O2 fugacity), regional oxidation and so-called ‘granulite facies’ islands. (2) Small scale metasomatism at mineral intergrain boundaries (e.g. K-feldspar microveins and/or myrmekites). (3) Large scale metasomatism at the amphibolite to granulite facies transition zone, evidenced by: (a) Incipient charnockites, (b) Metasomatic redistribution of elements traditionally considered as immobile (e.g. Zr, Th, REE), (c) Peak metamorphic to retrograde bulk chemical processes (scapolitization, albitization), (d) Long distance action of granulite fluids. The importance and widespread occurrence of these effects call for large fluid quantities stored in the lower crust at peak metamorphic conditions, later expelled towards shallower crustal levels during retrogradation. Fluid origin, only briefly discussed in this paper, is complicated, not unique. Some fluids are crustal, either far remnants of sedimentary waters (brines) or linked to metamorphic/melt reactions. But, especially for high-temperature granulites, the greatest amount, notably for CO2, is issued from the upper mantle, which contain also the same fluid remnants as those found in the lower crust.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramov SS, Kurdyukov EB (1997) The origin of charnockite-enderbite complexes by magmatic replacement: geochemical evidence. Geochem Int 35:219–226

    Google Scholar 

  • Ague JJ (2003) Fluid flow in the deep crust. In: Rudnick RL (ed) Treatise on geochemistry, vol 3, The crust. Elsevier, Amsterdam, pp 195–228

    Chapter  Google Scholar 

  • Aitken BG (1983) T-XCO2 stability relations and phase equilibria of a calcic carbonate scapolite. Geochim Cosmochim Acta 47:351–362

    Article  Google Scholar 

  • Amundsen HEF, Griffin WL, O’Reilly SY (1988) The nature of the lithosphere beneath northwestern Spitsbergen: xenolith evidence. In: Kristoffersen Y (ed) Progress in studies of the lithosphere in Norway, vol. 3, Norges Geologiske Undersøkelse Special Publication. Norges Geologiske Undersøkelse, Trondheim pp 58–65

    Google Scholar 

  • Aranovich LY, Shmulovich KI, Fedkin VV (1987) The H2O and CO2 regime in regional metamorphism. Int Geol Rev 29:1379–1401

    Article  Google Scholar 

  • Araujo DP, Griffin WL, O’Reilly SY (2009) Mantle melts, metasomatism and diamond formation: insights from melt inclusions in xenoliths from Diavik, Slave craton. Lithos 112(suppl 2):675–682

    Article  Google Scholar 

  • Baker JH (1985) Rare earth and other trace element mobility accompanying albitization in a Proterozoic granite, W Bergslagen, Sweden. Mineral Mag 49:107–115

    Article  Google Scholar 

  • Ballèvre M, Hensen BJ, Reynard B (1997) Orthopyroxene-andalusite symplectites replacing cordierite in granulites from the Strangways range (Arunta block, central Australia): a new twist to the pressure-temperature history. Geology 25:215–218

    Article  Google Scholar 

  • Baltybaev SK, Levchenkov OA, Glebovitskii VA, Rizvanova NG, Yakubovich OV, Fedoseenko AM (2010) Timing of the regional postmigmatitic K-feldspar mineralization on the base of U-Pb dating of monazite (metamorphic complex of the northern Ladoga region). Doklady Earth Sci 430:186–189

    Article  Google Scholar 

  • Becke F (1908) Ueber Myrmekite. Schweiz Mineral Petrograph Mitt 27:377–390

    Google Scholar 

  • Beloussov VV (1966) Modern concepts of the structure and development of the earth’s crust and the upper mantle of continents. J Geol Soc Lond 122:293–314

    Article  Google Scholar 

  • Bingen B (1989) Geochemistry of Sveconorwegian augen gneisses from SW Norway at the amphibolite-granulite transition. Norsk Geol Tidsskr 69:177–189

    Google Scholar 

  • Bingen B, Demaiffe D, Hertogen J (1996) Redistribution of rare earth elements, thorium, and uranium over accessory minerals in the course of amphibolite to granulite metamorphism: the role of apatite and monazite in orthogneisses from southwestern Norway. Geochim Cosmochim Acta 60:1341–1354

    Article  Google Scholar 

  • Binns RA (1964) Zones of progressive regional metamorphism in the Willyama complex, Broken Hill district, New South Wales. J Geol Soc Aust 11:283–330

    Article  Google Scholar 

  • Bodart DE (1968) On the paragenesis of albitites. Norsk Geol Tidsskr 48:269–280

    Google Scholar 

  • Bohlen SR (1991) On the formation of granulites. J Metamorph Geol 9:223–229

    Article  Google Scholar 

  • Bohlen SR, Mezger K (1989) Origin of granulite terranes and the formation of the lowermost continental crust. Science 244:326–329

    Article  Google Scholar 

  • Bol LCGM, Maijer C, Jansen JBH (1989) Premetamorphic lateritization in Proterozoic metabasites of Rogaland, SW Norway. Contrib Mineral Petrol 103:299–309

    Article  Google Scholar 

  • Bol LCGM, Nijland TG, Sauter PCC, Jansen JBH, Valley JW (1995) Preservation of premetamorphic oxygen and carbon isotopic trends in granulite facies marbles from Rogaland, SW Norway. Am J Sci 295:1179–1219

    Article  Google Scholar 

  • Bolder-Schrijver L, Kriegsman L, Touret JLR (2000) Primary carbonate/CO2 inclusions in sapphirine-bearing granulites from central Sri Lanka. J Metamorph Geol 18:259–269

    Article  Google Scholar 

  • Boles JR (1982) Active albitization of plagioclase, Gulf Coast Tertiary. Am J Sci 282:165–180

    Article  Google Scholar 

  • Boulvais P, Fourcade S, Gruau G, Moine B, Cuney M (1998) Persistence of pre-metamorphic C and O isotopic signatures in marbles subject to Pan-African granulite-facies metamorphism and U-Th mineralization (Tranomaro, southeast Madagascar). Chem Geol 150:247–262

    Article  Google Scholar 

  • Boulvais P, Fourcade S, Moine B, Gruau G, Cuney M (2000) Rare-earth elements distribution in granulite-facies marbles: a witness of fluid-rock interaction. Lithos 53:117–126

    Article  Google Scholar 

  • Boulvais P, Ruffet G, Cornichet J, Mermet M (2007) Cretaceous albitization and dequartzification of Hercynian peraluminous granite in the Salvezines massif (French Pyrénées). Lithos 93:89–106

    Article  Google Scholar 

  • Bowers TS, Helgeson HC (1983) Calculation of the thermodynamic and geochemical consequences of nonideal mixing in the system H2O-CO2-NaCl on phase relations in geologic systems: metamorphic equilibria at high pressures and temperatures. Am Mineral 68:1059–1075

    Google Scholar 

  • Bradshaw JY (1989) Early Cretaceous vein-related garnet granulite in Fiordland, southwest New Zealand: a case for infiltration of mantle-derived CO2-rich fluids. J Geol 97:697–717

    Article  Google Scholar 

  • Broekmans MATM, Nijland TG, Jansen JBH (1994) Are stable isotopic trends in amphibolite to granulite facies transitions metamorphic or diagenetic ? – an answer for the Arendal area (Bamble sector, SE Norway) from Mid-Proterozoic carbon-bearing rocks. Am J Sci 294:1135–1165

    Article  Google Scholar 

  • Brøgger WC (1934) On several Archaean rocks from the south coast of Norway. II the South Norwegian hyperites and their metamorphism, vol 1, Det Norske Videnskaps-Akademi i Oslo Skrifter, Matematisk-Naturvidenskapelig Klasse. I kommisjon hos J. Dybwad, Oslo

    Google Scholar 

  • Brøgger WC, Reusch HH (1875) Vorkommen des Apatit in Norwegen. Z deutsch geol Gesell 27:646–702

    Google Scholar 

  • Brown M, White RW (2008) Processes in granulite metamorphism. J Metamorph Geol 26:121–124

    Article  Google Scholar 

  • Budzyn B, Michalik M, Malata T, Poprawa P (2005) Primary and secondary monazite in a calcitized gneiss clast from Bukowiec (the Silesian unit, western outer Carpathians). Mineral Pol 36:161–165

    Google Scholar 

  • Bugge A (1965) Iakttagelser fra rektangelbladet Kragerö og den store grunnfjellbreksje. vol 229, Norges Geologiske Undersøkelse Bulletin, Norges Geologiske Undersøkelse, Trondheim

    Google Scholar 

  • Bugge C (1922) Statens apatitdrift i rationeringstiden, vol 110, Norges Geologiske Undersøkelse Bulletin, Norges Geologiske Undersøkelse, Trondheim

    Google Scholar 

  • Bugge JAW (1945) The geological importance of diffusion in the solid state. vol 13, Norske Videnskaps-Akademi i Oslo Skrifter, Matematisk-Naturvidenskapelig Klasse, Det Norske Videnskaps-Akademi, Oslo

    Google Scholar 

  • Bugge JAW (1978) Kongsberg – Bamble complex. In: Bowie SHO, Kvalheim A, Haslam MW (eds) Mineral deposits of Europe, vol 1, Northwest Europe. Institution of Mining and Metallurgy and Mineralogical Society, London, pp 213–217

    Google Scholar 

  • Burgess R, Cartigny P, Harrison D, Hobson E, Harris J (2009) Volatile composition of microinclusions in diamonds from the Panda kimberlite, Canada: implications for chemical and isotopic heterogeneity in the mantle. Geochim Cosmochim Acta 73:1779–1794

    Article  Google Scholar 

  • Cabella R, Luccheti G, Marescotti P (2001) Authigenic monazite and xenotime from pelitic metacherts in pumpellyite-actinolite-facies conditions, Sestri-Voltaggio zone, central Liguria, Italy. Can Mineral 39:717–727

    Article  Google Scholar 

  • Cameron EM (1988) Archean gold: relation to granulite formation and redox zoning in the crust. Geology 16:109–112

    Article  Google Scholar 

  • Cameron EM (1989a) Derivation of gold by oxidative metamorphism of a deep ductile shear zone. Part 1. Conceptual model. J Geochem Explor 31:135–147

    Article  Google Scholar 

  • Cameron EM (1989b) Derivation of gold by oxidative metamorphism of a deep ductile shear zone. Part 2. Evidence from the Bamble belt, south Norway. J Geochem Explor 31:149–169

    Article  Google Scholar 

  • Cameron EM (1994) Depletion of gold and LILE in the lower crust: Lewisian complex, Scotland. J Geol Soc Lond 151:747–775

    Article  Google Scholar 

  • Cameron EM, Hattori K (1994) Highly oxidized deep metamorphic zones: occurrence and origin. Mineral Mag 58A:142–143

    Article  Google Scholar 

  • Cathelineau M (1985) Épisénitisation ou déquartzification hydrothermale: une typologie basée sur les successions minérales et sur le comportement différentiel de Si, Na et K. Comptes Rendus de l’Académie des Sciences Paris, série II 300:677–680

    Google Scholar 

  • Cathelineau M (1986) The hydrothermal alkali metasomatism effects on granitic rocks: quartz dissolution and related subsolidus changes. J Petrol 27:945–965

    Article  Google Scholar 

  • Chamberlain CP, Rumble D III (1989) The influence of fluids on the thermal history of a metamorphic terrain: new Hampshire, USA. In: Daly JS, Cliff RA, Yardley BWD (eds) Evolution of metamorphic belts, vol 43, Geological Society Special Publication. Blackwell Science, Oxford, pp 203–213

    Google Scholar 

  • Chi G, Dube B, Williamson K, Williams-Jones AE (2006) Formation of the campbell-red lake gold deposit by H2O-poor, CO2-dominated fluids. Miner Deposita 40:726–741

    Article  Google Scholar 

  • Clemens JD (2006) Melting of the continental crust: fluid regimes, melting reactions and source-rock fertility. In: Brown M, Rushmer T (eds) Evolution and differentiation of the continental crust. Cambridge University Press, Cambridge, pp 297–331

    Google Scholar 

  • Coolen JJMMM (1980) Chemical petrology of the Furua granulite complex, southern Tanzania. Ph.D. thesis, GUA Papers of Geology vol 13, GUA Papers of Geology, Free University, Amsterdam

    Google Scholar 

  • Coolen JJMMM (1982) Carbonic fluid inclusions in granulites from Tanzania: a comparison of geobarometric methods based on fluid density and mineral chemistry. Chem Geol 37:59–77

    Article  Google Scholar 

  • Cuney M, Coulibaly Y, Boiron MC (2007) High-density early CO2 fluids in the ultrahigh temperature granulites of Ihouhaouene (In Ouzzal, Algeria). Lithos 96:402–414

    Article  Google Scholar 

  • Cuney M, Kyzer K (2009) Recent and not-so-recent developments in uranium deposits and implication for exploration. Mineralogical Association of Canada Short Course Series vol 39, Mineralogical Association of Canada Short Course Series, Mineralogical Association of Canada, Ottawa

    Google Scholar 

  • Dahanayake K, Ranasinghe AP (1981) Source rocks of gem minerals. a case study from Sri Lanka. Miner Deposita 16:103–111

    Article  Google Scholar 

  • Dahlgren S, Bogoch R, Magaritz M, Michard A (1993) Hydrothermal dolomite marbles associated with charnockitic magmatism in Proterozoic Bamble shear belt, south Norway. Contrib Mineral Petrol 113:394–409

    Article  Google Scholar 

  • Dam BP (1995) Geodynamics in the Bamble area during Gothian- and Sveconorwegian times, vol 117, Geologica Ultraiectina, Utrecht University, Utrecht

    Google Scholar 

  • Della Giustina MES, Pimental MM, Ferreira Filho CF, Maia de Hollanda MHB (2010) Dating coeval mafic magmatism and ultrahigh-temperature metamorphism in the Anápolis-Itauçu Complex, central Brazil. In: Della Giustina MES (ed) Geocronologia e significado tectônico de rochas máficas de alto grau metamórfico da Faixa Brasília. Ph.D. thesis, Universidade de Brasília, Brasília, pp 18–56

    Google Scholar 

  • De Haas GJLM, Nijland TG, Valbracht PJ, Maijer C, Verschure R, Andersen T (2002) Magmatic versus metamorphic origin of olivine-plagioclase coronas. Contrib Mineral Petrol 143:537–550

    Article  Google Scholar 

  • Dunai TJ, Touret JLR (1993) A noble-gas study of a granulite sample from the Nilgiri Hills, southern India: implications for granulite formation. Earth Planet Sci Lett 119:271–281

    Article  Google Scholar 

  • Eggenkamp HGM, Schuiling RD (1995) δ37Cl variations in selected minerals: a possible tool for exploration. J Geochem Explor 55:249–255

    Article  Google Scholar 

  • Eggler DH, Kadik AA (1979) The system NaAlSi3O8-H2O-CO2 to 20 kbars pressure: 1. Compositional and thermodynamic relations of liquids and vapors coexisting with albite. Am Mineral 64:1036–1048

    Google Scholar 

  • Eisenlohr BN, Groves D, Partington GA (1989) Crustal-scale shear zones and their significance to Archaean gold mineralization in western Australia. Miner Deposita 24:1–8

    Article  Google Scholar 

  • Elliott RB (1966) The association of amphibolite and albitite, Kragerö, south Norway. Geol Mag 103:1–7

    Article  Google Scholar 

  • Engel AEJ, Engel CG (1958) Progressive metamorphism and granitization of the major paragneiss, northwest Adirondack Mountains, New York. I. Bull Geol Soc Am 69:1369–1414

    Article  Google Scholar 

  • Engel AEJ, Engel CG (1960) Progressive metamorphism and granitization of the major paragneiss, northwest Adirondack Mountains, New York. II. Bull Geol Soc Am 71:1–58

    Article  Google Scholar 

  • Engvik AK, Austrheim H (2010) Formation of sapphirine and corundum in scapolitised and Mg-metasomatised gabbro. Terra Nova 22:166–171

    Article  Google Scholar 

  • Engvik AK, Golla-Schindler U, Berndt J, Austrheim H, Putnis A (2009) Intragranular replacement of chlorapatite by hydroxy-fluor-apatite during metasomatism. Lithos 112:236–246

    Article  Google Scholar 

  • Engvik AK, Mezger K, Wortelkamp S, Bast R, Corfu F, Korneliussen A, Ihlen P, Bingen B, Austrheim H (2011) Metasomatism of gabbro-mineral replacement and element mobilization during the Sveconorwegian metamorphic event. J Metamorph Geol 29:399–423

    Article  Google Scholar 

  • Engvik AK, Putnis A, Fitzgerald JD, Austrheim H (2008) Albitization of granitic rocks: the mechanism of replacement of oligoclase by albite. Can Mineral 46:1401–1415

    Article  Google Scholar 

  • Eskola P (1914) On the petrology of the Orijärvi region in southwestern Finland, vol 40, Commision Géologique de Finlande Bulletin, ommision GÕologique de Finlande, Helsinki

    Google Scholar 

  • Etheridge MA, Wall VJ, Vernon RH (1983) The role of the fluid phase during regional metamorphism and deformation. J Metamorph Geol 1:205–226

    Article  Google Scholar 

  • Evans J, Zalasiewicz J (1996) U-Pb, Pb-Pb and Sm-Nd dating of authigenic monazite: implications for the diagenetic evolution of the Welsh basin. Earth Planet Sci Lett 144:421–433

    Article  Google Scholar 

  • Farquhar J, Chacko T (1991) Isotopic evidence for involvement of CO2-bearing magmas in granulite formation. Nature 354:60–63

    Article  Google Scholar 

  • Field D, Drury SA, Cooper DC (1980) Rare-earth and LIL element fractionation in high grade charnockitic gneisses, south Norway. Lithos 13:281–289

    Article  Google Scholar 

  • Fonarev VI, Santosh M, Filimorov MB, Vasiukova OV (2001) Pressure-temperature fluid history and exhumation path of a Gondwana fragment: Trivandrum granulite block, southern India. Gondwana Res 4:615–616

    Article  Google Scholar 

  • Fonteilles M (1970) Géologie des terrains métamorphiques et granitiques du Massif de l’Agly (Pyrénées Orientales). Bulletin B R G M Sect IV 3:21–72

    Google Scholar 

  • Force ER (1991) Geology of titanium-mineral deposits, vol 259, Geological society of america special paper. Geological Society of America, Boulder

    Google Scholar 

  • Franz L, Harlov DE (1998) High grade K-feldspar veining in granulites from the Ivrea-Verbano zone, northern Italy: fluid flow in the lower crust and implications for granulite facies genesis. J Geol 106:455–472

    Article  Google Scholar 

  • Friend CRL (1981) Charnockite and granite formation and influx of CO2 at Kabbaldurga. Nature 294:550–552

    Article  Google Scholar 

  • Frietsch R, Tuisku P, Martinsson O, Perdahl JA (1997) Early Proterozoic Cu-(Au) and Fe ore deposits associated with regional Na-Cl metasomatism in northern Fennoscandia. Ore Geol Rev 12:1–34

    Article  Google Scholar 

  • Frost BR (1991) Introduction to oxygen fugacity and its petrologic importance. In: Lindsley DH (ed) Oxide minerals: petrologic and magnetic significance, vol 25, Reviews in mineralogy. Mineralogical Society of America, Washington, DC, pp 1–9

    Google Scholar 

  • Frost BR, Frost CD (1987) CO2, melts and granulite metamorphism. Nature 327:503–506

    Article  Google Scholar 

  • Frost BR, Frost CD (2008) On charnockites. Gondwana Res 13:30–44

    Article  Google Scholar 

  • Frost BR, Frost CD, Touret JLR (1989) Magmas as a source of heat and fluids in granulite metamorphism. In: Bridgwater D (ed) Fluid movements-element transport and the composition of the deep crust. Kluwer, Dordrecht, pp 1–18

    Chapter  Google Scholar 

  • Frost BR, Touret J (1989) Magmatic CO2 and saline melts from the Sybille monzosyenite, Laramie anorthosite complex, Wyoming. Contrib Mineral Petrol 103:178–186

    Article  Google Scholar 

  • Fyfe WS (1973) The granulite facies, partial melting and the Archean crust. Philos Trans R Soc Lond A273:457–461

    Google Scholar 

  • Fyfe WS, Prince NJ, Thompson AB (1978) Fluids in the Earth’s crust. Elsevier, Amsterdam

    Google Scholar 

  • Girault JP (1952) Kornerupine from Lac Ste-Marie, Quebec, Canada. Am Mineral 37:531–541

    Google Scholar 

  • Gibert F, Guillaume D, Laporte D (1998) Importance of fluid immiscibility in the H2O-NaCl-CO2 system and selective CO2 entrapment in granulites: experimental phase diagram at 5–7 kbar, 900°C and wetting textures. Eur J Mineral 10:1109–1123

    Google Scholar 

  • Godard G, Smith D (1999) Preiswerkite and Na-(Mg, Fe)-margarite in eclogites. Contrib Mineral Petrol 136:20–32

    Article  Google Scholar 

  • Goldschmidt VM (1922) On the metasomatic processes in silicate rocks. Econ Geol 17:105–123

    Article  Google Scholar 

  • Goldsmith JR (1976) Scapolites, granulites, and volatiles in the lower crust. Geol Soc Am Bull 87:161–168

    Article  Google Scholar 

  • Green JC (1956) Geology of the Storkollen-Blankenberg area, Kragerö, Norway. Nor Geol Tidsskr 36:89–140

    Google Scholar 

  • Grew ES, Chernosky JH, Werding G, Abraham K, Marquez N, Hinthorne JR (1990) Chemistry of kornerupine and associated minerals, wet chemical, ion microprobe, and X-ray study emphasizing Li, Be, B, and F contents. J Petrol 31:1025–1070

    Article  Google Scholar 

  • Guillot S, Le Fort P, Pecher A, Roy Barman M, Apphrahamian J (1995) Contact metamorphism and depth of emplacement of the Manaslu granite (central Nepal): implications for Himalayan orogenesis. Tectonophysics 241:99–119

    Article  Google Scholar 

  • Guzmics T, Mitchell R, Szabó C, Berkesi M, Milke R, Abart R (2011) Carbonatite melt inclusions in coexisting magnetite, apatite and monticellite in Kerimasi calciocarbonatite, Tanzania: melt inclusions and petrogenesis. Contrib Mineral Petrol 161:177–196

    Article  Google Scholar 

  • Hålenius U, Smellie JAT (1983) Mineralisations of the Arjeplog-Arvidsjaur-Sorsele uranium province: mineralogical studies of selected uranium occurrences. N Jahrb Mineral Abh 147:229–252

    Google Scholar 

  • Hansen EC, Harlov DE (2007) Whole rock, phosphate, and silicate compositions across an amphibolite- to granulite-facies transition, Tamil Nadu, India. J Petrol 48:1641–1680

    Article  Google Scholar 

  • Hansen EC, Janardhan AS, Newton RC, Prame WKBN, Ravindra Kumar GR (1987) Arrested charnockite formation in southern India and Sri Lanka. Contrib Mineral Petrol 96:225–244

    Article  Google Scholar 

  • Hansen EC, Newton RC, Janardhan AS (1984) Fluid inclusions in rocks from amphibolite-facies gneiss to charnockite progression in southern Karnataka, India: direct evidence concerning the fluids of granulite metamorphism. J Metamorph Geol 2:249–264

    Article  Google Scholar 

  • Hansen EC, Newton RC, Janardhan AS, Lindenberg S (1995) Differentiation of late Archean crust in the eastern Dharwar craton, south India. J Geol 103:629–651

    Article  Google Scholar 

  • Harley SL (1989) The origin of granulites: a metamorphic perspective. Geol Mag 126:215–247

    Article  Google Scholar 

  • Harley SL (1993) Proterozoic granulite terranes. In: Condie KC (ed) Proterozoic crustal growth. Elsevier, Amsterdam, pp 301–359

    Google Scholar 

  • Harley SL (2008) Refining the P-T records of UHT crustal metamorphism. J Metamorph Geol 26:125–154

    Article  Google Scholar 

  • Harley SL, Santosh M (1995) Wollastonite at Nuliyam, Kerala, southern India: a reassessment of CO2-infiltration and charnockite formation at a classic locality. Contrib Mineral Petrol 120:83–94

    Article  Google Scholar 

  • Harlov DE (1992) Comparative oxygen barometry in granulites, Bamble sector, SE Norway. J Geol 100:447–464

    Article  Google Scholar 

  • Harlov DE (2000) Titaniferous magnetite-ilmenite thermometry/titaniferous magnetite-ilmenite-orthopyroxene-quartz oxygen barometry in orthopyroxene-bearing granulite facies gneisses, Bamble sector, SE Norway: implications for the role of high grade CO2-rich fluids during granulite genesis. Contrib Mineral Petrol 139:180–197

    Article  Google Scholar 

  • Harlov DE, Dunkley D (2010) Experimental high-grade alteration of zircon using akali- and Ca-bearing solutions: resetting geochronometer during metasomatism. AGU Fall meeting, San Francisco, abstract V41D-2301

    Google Scholar 

  • Harlov DE, Förster HJ (2002) High-grade fluid metasomatism on both a local and a regional scale: the Seward peninsula, Alaska, and the Val Strona di Omegna, Ivrea-Verbano zone, northern Italy. Part I: petrography and silicate mineral chemistry. J Petrol 43:769–799

    Article  Google Scholar 

  • Harlov DE, Förster HJ (2003) Fluid-induced nucleation of (Y + REE)-phosphate minerals within apatite: nature and experiment. Part II. Fluorapatite. Am Mineral 88:1209–1229

    Google Scholar 

  • Harlov D, Förster HJ, Nijland TG (2002) Fluid-induced nucleation of (Y + REE)-phosphate minerals within apatite: nature and experiment. Part I. Chlorapatite. Am Mineral 87:245–261

    Google Scholar 

  • Harlov DE, Hansen EC (2005) Oxide and sulphide isograds along a late Archean, deep-crustal profile in Tamil Nadu, south India. J Metamorph Geol 23:241–259

    Article  Google Scholar 

  • Harlov DE, Hansen EC, Bigler C (1998) Petrologic evidence for K-feldspar metasomatism in granulite facies rocks. Chem Geol 151:373–386

    Article  Google Scholar 

  • Harlov DE, Hetherington CJ (2010) Partial high-grade alteration of monazite using alkali-bearing fluids: experiment and nature. Am Mineral 95:1105–1108

    Article  Google Scholar 

  • Harlov DE, Johansson L, Van den Kerkhof A, Förster HJ (2006) The role of advective fluid flow and diffusion during localized, solid-state dehydration: Söndrum Stenhuggeriet, Halmstad, SW Sweden. J Petrol 47:3–33

    Article  Google Scholar 

  • Harlov DE, Newton RC, Hansen EC, Janardhan AS (1997) Oxide and sulphide minerals in highly oxidized, Rb-depleted, Archaean granulites of the Shevaroy Hills massif, south India: oxidation states and the role of metamorphic fluids. J Metamorph Geol 15:701–717

    Article  Google Scholar 

  • Harlov DE, Wirth R (2000) K-feldspar-quartz and K-feldspar-plagioclase phase boundary interactions in garnet-orthopyroxene gneisses from the Val Strona di Omegna, Ivrea-Verbano zone, northern Italy: a case for high grade emplacement under relatively dry conditions. Contrib Mineral Petrol 140:148–162

    Article  Google Scholar 

  • Harlov DE, Wirth R, Förster HJ (2005) An experimental study of dissolution-reprecipitation in fluorapatite: fluid infiltration and the formation of monazite. Contrib Mineral Petrol 150:268–286

    Article  Google Scholar 

  • Harlov DE, Wirth R, Hetherington C (2011) Fluid-mediated partial alteration of monazite: the role of coupled dissolution-reprecipitation during apparent solid-state element mass transfer. Contrib Mineral Petrol 162:329–348

    Article  Google Scholar 

  • Hayden LA, Manning CE (2011) Rutile solubility in supercritical NaAlSi3O8-H2O fluids. Chem Geol 284:74–81

    Article  Google Scholar 

  • Heier KS (1965) Metamorphism and the chemical differentiation of the crust. GFF 87:249–256

    Google Scholar 

  • Heier KS (1973) Geochemistry of granulite facies rocks and problems of their origin. Philos Trans R Soc Lond A273:429–442

    Google Scholar 

  • Hellman PL, Smith RE, Henderson P (1979) The mobility of the rare earth elements: evidence and implications from selected terrains effected by burial metamorphism. Contrib Mineral Petrol 71:23–44

    Article  Google Scholar 

  • Hinchey AM, Carr SD (2007) Protolith composition of cordierite-gedrite basement rocks and garnet amphibolite of the Bearpaw Lake area of the Thor-Odin dome, Monashee complex, British Columbia, Canada. Can Mineral 45:607–629

    Article  Google Scholar 

  • Hoefs J, Coolen JJM, Touret J (1981) The sulfur and carbon isotope composition of scapolite-rich granulites from southern Tanzania. Contrib Mineral Petrol 78:332–336

    Article  Google Scholar 

  • Hoeve J (1974) Soda metasomatism and radioactive mineralization in the Västervik area, southeastern Sweden. Ph.D. thesis, Free University, Amsterdam

    Google Scholar 

  • Holland TH (1900) The charnockite series, a group of Archean hypersthenic rocks in peninsular India. vol 28, Memoir of the Geological Survey of India, Geological Survey of India, Kolkata, pp 192-249

    Google Scholar 

  • Holness MB (1992) Equilibrium dihedral angles in the system quartz-CO2-H2O-NaCl at 800°C and 1–15 kb – The effects of pressure and fluid composition on the permeability of quartzites. Earth Planet Sci Lett 114:171–184

    Article  Google Scholar 

  • Huizenga JM (2005) COH, an excel spreadsheet for composition calculations in the C-O-H fluid system. Comput Geosci 31:797–800

    Article  Google Scholar 

  • Huizenga JM, Touret JLR (2012) Granulites, CO2 and graphite. Gondwana Research, submitted

    Google Scholar 

  • Humphries S (1984) The mobility of the rare earth elements in the crust. In: Henderson P (ed) Rare earth geochemistry. Elsevier, Amsterdam, pp 317–342

    Google Scholar 

  • Izraeli ES, Harris JW, Navon O (2001) Brine inclusions in diamonds; a new upper mantle fluid. Earth Planet Sci Lett 187:323–332

    Article  Google Scholar 

  • Janardhan AS, Newton RC, Hansen EC (1982) The transformation of amphibolite facies gneiss to charnockite in southern Karnataka and northern Tamil Nadu, India. Contrib Mineral Petrol 79:130–149

    Article  Google Scholar 

  • Janardhan AS, Newton RC, Smith JV (1979) Ancient crustal metamorphism at low PH2O: charnockite formation at Kabbaldurga, south India. Nature 278:511–514

    Article  Google Scholar 

  • Joesten R (1986) The role of magmatic reaction, diffusion and annealing in the evolution of coronitic microstructure in troctolitic gabbro from Risör, Norway. Mineral Mag 50:441–467

    Article  Google Scholar 

  • Johnson EL (1991) Experimentally determined limits for H2O-CO2-NaCl immiscibility in granulites. Geology 19:925–928

    Article  Google Scholar 

  • Jøsang O (1966) Geologiske og petrografiske undersøkelser i Modumfeltet, vol 235, Norges Geologiske Undersøkelse Bulletin, Norges Geologiske Undersøkelse, Trondheim

    Google Scholar 

  • Judd JW (1889) On the processes by which a plagioclase feldspar is converted into scapolite. Mineral Mag 8:186–198

    Article  Google Scholar 

  • Kadik AA, Lukanin OA, Lebedev YB, Korovushkina EY (1972) Solubility of H2O and CO2 in granite and basalts at high pressures. Geochem Int 9:1041–1050

    Google Scholar 

  • Katz MB (1987) Graphite deposits of Sri Lanka: a consequence of granulite facies metamorphism. Miner Deposita 22:18–25

    Article  Google Scholar 

  • Kelsey DE (2008) On ultra-high temperature crustal metamorphism. Gondwana Res 13:1–29

    Article  Google Scholar 

  • Kilpatrick JA, Ellis DJ (1992) C-type magmas: igneous charnockites and their extrusive equivalents. Trans R Soc Edin Earth Sci 83:155–164

    Article  Google Scholar 

  • Klein-BenDavid O, Izraeli ES, Hauri E, Navon O (2004) Mantle fluid evolution – a tale of one diamond. Lithos 77:243–253

    Article  Google Scholar 

  • Klimov LV, Ravich MG, Solovjev DS (1964) East Antarctic charnockites. In: Proceedings of the 22nd international geological congress, vol 13, Proceedings of the 22nd international geological congress, New Delhi, pp 79–85

    Google Scholar 

  • Knudsen TL, Andersen T (1999) Petrology and geochemistry of the Tromøy gneiss complex, south Norway, an alleged exampled of Proterozoic depleted lower continental crust. J Petrol 40:909–933

    Article  Google Scholar 

  • Knudsen TL, Lidwin A (1996) Magmatic CO2, brine and nitrogen inclusions in Sveconorwegian enderbitic dehydration veins and a gabbro from the Bamble sector, southern Norway. Eur J Mineral 8:1041–1064

    Google Scholar 

  • Korneliussen A, Dormann P, Erambert M, Furuhaug L, Mathiesen CO (1992) Rutilforekomster tilknyttet eklogitt-bergarter på Vestlandet of metasomatiske omvandlede bergarter of metasedimenter i Bamble-Arendal regionen. report 92.234, Norges Geologiske Undersøkelse, Trondheim

    Google Scholar 

  • Kontak DJ, Morteani G (1983) On the geochemical fractionation of rare earth elements during the formation of Ca-minerals and its application to problems of the genesis of ore deposits. In: Augustithis SS (ed) Trace elements in petrogenesis: the significance of trace elements in solving petrogenetic problems and controversies. Theophrastus Publications S.A, Athens, pp 147–791

    Google Scholar 

  • Korzhinskii DS (1940) Factors in mineral equilibria and mineralogical depth facies. Trudy Akademii Nauk SSSR, Moscow

    Google Scholar 

  • Korzhinskii DS (1959) Physicochemical basis of the analysis of the paragenesis of minerals. Consultant Bureau, New York

    Google Scholar 

  • Korzhinskii DS (1962) The role of alkalinity in the formation of charnockitic gneisses. In: Precambrian geology and petrology: general and regional problems. vol 5. Trudy Vostochono-Sibirskogo Geologicheskogo Institute, Geological Series Izd-vo Akademii nauk SSSR, Moskva, pp 50–61

    Google Scholar 

  • Korzhinskii DS (1968) The theory of metasomatic zoning. Miner Deposita 3:222–231

    Article  Google Scholar 

  • Kovacs I, Szabó C (2005) Petrology and geochemistry of granulite xenoliths beneath the Nógrád-Gömör volcanic field, Carpathian-Pannonian region (N-Hungary S-Slovakia). Mineral Petrol 85:269–290

    Article  Google Scholar 

  • Kullerud K (1996) Chlorine-rich amphiboles: interplay between amphibole composition and an evolving fluid. Eur J Mineral 8:355–370

    Google Scholar 

  • Lacroix A (1893) Les enclaves des roches volcaniques. Ann Acad Mâcon 10:17–697

    Google Scholar 

  • Lacroix A (1910) Sur l’existence à la Côte d’Ivoire d’une série pétrographique comparable à celle de la charnockite. CR Acad Sci II 150:18–22

    Google Scholar 

  • Lacroix A (1920) Les roches éruptive du Crétacé pyrénéen et la nomenclature des roches éruptives modifiées. CR Acad Sci II 170:690–695

    Google Scholar 

  • Lamb W, Valley JW (1984) Metamorphism of reduced granulites in low-CO2 vapour-free environment. Nature 312:56–58

    Article  Google Scholar 

  • Lamb WM, Valley JW, Brown PE (1987) Post-metamorphic CO2-rich inclusions in granulites. Contrib Mineral Petrol 96:485–494

    Article  Google Scholar 

  • Le Breton N, Thompson AB (1988) Fluid-absent (dehydration) melting of biotites in metapelites in the early stages of crustal anatexis. Contrib Mineral Petrol 99:226–237

    Article  Google Scholar 

  • Lemmlein GG (1951) The fissure-healing process in crystals and changes in cavity shape in secondary liquid inclusions. Dokl Akad Nauk SSSR 1(78):685–688 (in Russian)

    Google Scholar 

  • Lieftink DJ, Nijland TG, Maijer C (1993) Cl-rich scapolite from Ødegårdens Verk, Bamble, Norway. Nor Geol Tidsskr 73:55–57

    Google Scholar 

  • Lieftink DJ, Nijland TG, Maijer C (1994) The behavior of rare-earth elements in high temperature Cl-bearing aqueous fluids: results from the Ødegårdens Verk natural laboratory. Can Mineral 32:149–158

    Google Scholar 

  • Lobato LM, Forman JMA, Fyfe WS, Kerrich R, Barnett RL (1983) Uranium enrichment in Archaean crustal basement associated with overthrusting. Nature 303:235–237

    Article  Google Scholar 

  • Lovering JF, White AJR (1964) The significance of primary scapolite in granulitic inclusions from deep-seated pipes. J Petrol 5:195–218

    Article  Google Scholar 

  • Lovering JF, White AJR (1969) Granulitic and eclogitic inclusions from basic pipes at Delegate, Australia. Contrib Mineral Petrol 21:9–52

    Article  Google Scholar 

  • Luke FJ, Pasteris JD, Wopenka B, Rodas M, Barrenechea JF (1998) Natural fluid-deposited graphite: mineralogical characteristics and mechanisms of formation. Am J Sci 298:471–498

    Article  Google Scholar 

  • Mark G, Foster DRW (2000) Magmatic-hydrothermal albite-actinolite-apatite-rich rocks from the Cloncurry district, NW Queensland, Australia. Lithos 51:223–245

    Article  Google Scholar 

  • Markl G, Ferry J, Bucher K (1998) Formation of saline brines and salt in the lower crust by hydration reactions in partially retrogressed granulites from the Lofoten islands, Norway. Am J Sci 298:705–757

    Article  Google Scholar 

  • Michard A, Albarède F (1986) The REE content of some hydrothermal fluids. Chem Geol 55:51–60

    Article  Google Scholar 

  • Mishraa B, Saravanana CS, Bhattacharyaa A, Goona S, Mahatoa S, Bernhard HJ (2007) Implications of super dense carbonic and hypersaline fluid inclusions in granites from the Ranchi area, Chottanagpur gneissic complex, Eastern India. Gondwana Res 11:504–515

    Article  Google Scholar 

  • Moecher DP (1993) Scapolite phase equilibria and carbon isotopes – constraints on the nature and distribution of CO2 in the lower continental crust. Chem Geol 108:163–174

    Article  Google Scholar 

  • Moecher DP, Essene EJ (1990) Scapolite phase equilibria: additional constraints on the role of CO2 in granulite genesis. In: Vielzeuf D, Vidal P (eds) Granulites and crustal evolution. Kluwer, Dordrecht, pp 385–396

    Chapter  Google Scholar 

  • Moecher DP, Essene EJ (1992) Calculation of CO2 activities using scapolite phase equilibria: constraints on the presence and composition of a fluid phase during high-grade metamorphism. Contrib Mineral Petrol 108:219–240

    Article  Google Scholar 

  • Mohan A, Singh PK, Sachan HK (2003) High-density carbonic fluid inclusions in charnockites from eastern Ghats, India: petrologic implications. J Asian Earth Sci 22:101–113

    Article  Google Scholar 

  • Moine B, De la Roche H, Touret J (1972) Structures géochimique et zonéographie métamorphique dans le Précambrien catazonal du sud de la Norvège. Sci Terre 17:131–164

    Google Scholar 

  • Moine B, Rakotondratsima C, Cuney M (1985) Les pyroxénites à uranothorianite de sud-est de Madagascar: conditions physico-chimiques de la métasomatose. Bull Minéral 108:325–340

    Google Scholar 

  • Montanini A, Harlov D (2006) Petrology and mineralogy of granulite-facies mafic xenoliths (Sardinia, Italy): evidence for KCl metasomatism in the lower crust. Lithos 92:588–608

    Article  Google Scholar 

  • Morshuis J (1991) Albietpegmatieten in Bamble (zuid-Noorwegen). Unpublished M.Sc. thesis, Utrecht University, Utrecht

    Google Scholar 

  • Munz IA (1990) Whiteschists and orthoamphibole-cordierite rocks and the P-T-t path of the Modum complex, south Norway. Lithos 24:181–200

    Article  Google Scholar 

  • Munz IA, Wayne D, Austrheim H (1994) Retrograde fluid infiltration in the high-grade Modum complex, south Norway: evidence for age, source and REE mobility. Contrib Mineral Petrol 116:32–46

    Article  Google Scholar 

  • Munz IA, Yardley BWD, Banks DA, Wayne D (1995) Deep penetration of sedimentary fluids in basement rocks from southern Norway: evidence from hydrocarbon and brine inclusions in quartz veins. Geochim Cosmochim Acta 59:239–254

    Article  Google Scholar 

  • Naumann CF (1826) Lehrbuch der mineralogie. Engelman, Leipzig

    Google Scholar 

  • Newton RC (1989) Metamorphic fluids in the deep crust. Annu Rev Earth Planet Sci 17:385–412

    Article  Google Scholar 

  • Newton RC (1990) Fluids and shear zones in the deep crust. Tectonophysics 182:21–37

    Article  Google Scholar 

  • Newton RC (1992a) An overview of charnockite. Precambrian Res 55:399–405

    Article  Google Scholar 

  • Newton RC (1992b) Charnockitic alteration: evidence for CO2 infiltration in granulite facies metamorphism. J Metamorph Geol 10:383–400

    Article  Google Scholar 

  • Newton RC, Aranovich LY, Hansen EC, Vandenheuvel BA (1998) Hypersaline fluids in precambrian deep-crustal metamorphism. Precambrian Res 91:41–63

    Article  Google Scholar 

  • Newton RC, Manning CE (2002) Experimental determination of calcite solubility in H2O-NaCl solutions at deep crust/upper mantle pressures and temperatures: implications for metasomatic processes in shear zones. Am Mineral 87:1401–1409

    Google Scholar 

  • Newton RC, Manning CE (2005) Solubility of anhydrite, CaSO4, in NaCl-H2O solutions at high pressures and temperatures: applications to fluid-rock interaction. J Petrol 46:701–716

    Article  Google Scholar 

  • Newton RC, Manning CE (2006) Solubilities of corundum, wollastonite quartz in H2O-NaCl solutions at 800°C and 10 kbar: interaction of simple minerals with brines at high pressure and temperature. Geochim Cosmochim Acta 70:5571–5582

    Article  Google Scholar 

  • Newton RC, Manning CE (2007) Solubility of grossular, Ca3Al2Si3O12, in H2O-NaCl solutions at 800°C and 10 kbar, and the stability of garnet in the system CaSiO3-Al2O3-H2O-NaCl. Geochim Cosmochim Acta 71:5191–5202

    Article  Google Scholar 

  • Newton RC, Manning CE (2008) Solubility of corundum in the system Al2O3-SiO2-H2O-NaCl at 800°C and 10 kbar. Chem Geol 249:250–261

    Article  Google Scholar 

  • Newton RC, Manning CE (2010) Role of saline fluids in deep-crustal and upper-mantle metasomatism: insights from experimental studies. Geofluids 10:58–72

    Google Scholar 

  • Newton RC, Smith JV, Windley BF (1980) Carbonic metamorphism, granulites and crustal growth. Nature 288:45–50

    Article  Google Scholar 

  • Nijland TG, Maijer C (1991) Primary sedimentary structures and infiltration metamorphism in the Håvatn-Bårlindåsen-Tellaugstjern area, Froland. In: Abstract of the 2nd SNF Excursion, Bamble

    Google Scholar 

  • Nijland TG, Maijer C (1993) The regional amphibolite to granulite facies transition at Arendal, Norway: evidence for a thermal dome. N Jahrb Mineral Abh. 165:191–221

    Google Scholar 

  • Nijland TG, Maijer C, Senior A, Verschure RH (1993) Primary sedimentary structures and composition of the high-grade metamorphic Nidelva quartzite complex (Bamble, Norway), and the origin of nodular gneisses. In: Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen 96:217–232

    Google Scholar 

  • Nijland TG, Touret JLR (2000) Brine control of ‘apparent’ metamorphic grade: a case from the Ubergsmoen augen gneiss, south Norway. In: Volume of abstracts, 24th nordic geological winter Meeting, Trondheim, pp 126–127

    Google Scholar 

  • Nijland TG, Touret JLR (2001) Replacement of graphic pegmatite by graphic albite-actinolite-clinopyroxene intergrowths (Mjåvatn, southern Norway). Eur J Mineral 13:41–50

    Article  Google Scholar 

  • Nijland TG, Touret JLR, Visser D (1998) Anomalously low temperature orthopyroxene, spinel and sapphirine occurrences in metasediments from the Bamble amphibolite to granulite facies transition zone (South Norway): possible evidence for localized action of saline fluids. J Geology 106:575–590

    Article  Google Scholar 

  • Nixon PH (1987) Mantle xenoliths. Wiley, New York

    Google Scholar 

  • Novgorodov PG (1977) On the solubility of quartz in H2O + CO2 and H2O + NaCl at 700 °C and 1.5 kb pressure. Geochem Int 14:191–193

    Google Scholar 

  • Nuutilainen J (1968) On the geology of the Misi ore province, northern Finland, vol 96, Annales Academia Scientiae Fennicae, series A III. Suomalainen tiedeakatemie, Helsinki

    Google Scholar 

  • Oen IS (1968) Magnesium-metasomatism in basic hornfelses near Farminhao, Viseu district (northern Portugal). Chem Geol 3:249–279

    Article  Google Scholar 

  • Oliver NHS (1995) Hydrothermal history of the Mary Kathleen fold belt, Mt. Isa block, Queensland. Aust J Earth Sci 42:267–280

    Article  Google Scholar 

  • Oliver NHS, Bons PD (2001) Mechanism of fluid flow and fluid-rock interaction in fossil metamorphic hydrothermal systems inferred from vein-wallrock patterns, geometry and microstructure. Geofluids 1:137–162

    Article  Google Scholar 

  • Oliver NHS, Rawling TJ, Cartwright I, Pearson PJ (1994) High temperature fluid-rock interaction and scapolitization in a large extension-related hydrothermal system, Mary Kathleen, Australia. J Petrol 35:1455–1491

    Article  Google Scholar 

  • Oliver NHS, Valenta RK, Wall VJ (1990) The effect of heterogeneous stress and strain on metamorphic fluid flow, Mary, Kathleen, Australia, and a model for large-scale fluid circulation. J Metamorph Geol 8:311–331

    Article  Google Scholar 

  • Oliver N, Wall V (1987) Metamorphic plumbing system in Proterozoic calc-silicates, Queensland, Australia. Geology 15:793–796

    Article  Google Scholar 

  • O’Nions RK, Oxburgh ER (1988) Helium, volatile fluxes and the development of continental crust. Earth Planet Sci Lett 90:331–347

    Article  Google Scholar 

  • Owen JV, Greenough JD (1995) Petrology of cordierite + gedrite-bearing sodic granulite from the Grenvillian Long Range inlier, New Foundland. Can J Earth Sci 32:1035–1045

    Article  Google Scholar 

  • Owen JV, Longstaffe FJ, Greenough JD (2003) Petrology of sapphirine granulite and associated sodic gneisses from the Indian head range, Newfoundland. Lithos 68:91–114

    Article  Google Scholar 

  • Paquette JL, Nédélec A, Moine B, Rakotondrazafy M (1994) U-Pb single zircon Pb evaporation, and Sm-Nd isotopic study of a granulite domain in SE Madagascar. J Geol 102:523–538

    Article  Google Scholar 

  • Parfenova OV, Guseva EV (2000) Feldspars of enderbite-charnockite complexes as indicators of alkalinity during the charnockitization of schists. Geochem Int 38:856–866

    Google Scholar 

  • Park AF, Dash B (1984) Charnockite and related neosome development in the eastern Ghats, Orissa, India: petrographic evidence. Trans R Soc Edin Earth Sci 75:341–352

    Article  Google Scholar 

  • Parras K (1958) On the charnockites in the light of a highly metamorphic rock complex in southwestern Finland. Bulletin de la Commission Géoloqiue de Finlande, vol 181, Commision Géologique du Finlande Bulletin, Commision Géologique du Finlande, Helsinki

    Google Scholar 

  • Perchuk LL, Aranovich LY, Podlesskii KK, Lavrenteva IV, Gerasimov VY, Fedkin VV, Kitsul VI, Karsakov LP, Berdnikov NV (1985) Precambrian granulites of the Aldan shield, eastern Siberia, USSR. J Metamorph Geol 3:265–310

    Article  Google Scholar 

  • Perchuk LL, Gerya TV (1992) The fluid regime of metamorphism and the charnockite reaction in granulites: a review. Int Geol Rev 34:1–58

    Article  Google Scholar 

  • Perchuk LL, Gerya TV (1993) Fluid control of charnockitization. Chem Geol 108:175–186

    Article  Google Scholar 

  • Perchuk LL, Gerya TV (1995) Evidence for potassium mobility in the charnockitization of gneisses. Dokl Rossiiskoi Akad Nauk 331:86–91

    Google Scholar 

  • Perchuk LL, Safonov OG, Gerya TV, Fu B, Harlov DE (2000) Mobility of components in metasomatic transformation and partial melting of gneisses: an example from Sri Lanka. Contrib Mineral Petrol 140:212–232

    Article  Google Scholar 

  • Petersson J, Eliasson T (1997) Mineral evolution and element mobility during episyenitization (dequartzification) and albitization in the postkinematic Bohus granite, southwest Sweden. Lithos 42:123–146

    Article  Google Scholar 

  • Phillips GN (1980) Water activity changes across an amphibolite-granulite facies transition, Broken Hill, Australia. Contrib Mineral Petrol 75:377–386

    Article  Google Scholar 

  • Pichamuthu CS (1953) The charnockite problem. Mysore Geologists’ Association, Bangalore

    Google Scholar 

  • Pichamuthu CS (1960) Charnockite in the making. Nature 188:135–136

    Article  Google Scholar 

  • Pichamuthu CS (1961) Transformation of peninsular gneisses into charnockites in Mysore state. J Geol Soc India 2:46–49

    Google Scholar 

  • Pili E, Sheppard SMF, Lardeaux JM (1999) Fluid-rock interaction in the granulites of Madagascar and lithospheric-scale transfer of fluids. Gondwana Res 2:341–350

    Article  Google Scholar 

  • Pili E, Sheppard SMF, Lardeaux JM, Martelat JE, Nicollet C (1997) Fluid flow vs. scale of shear zones in the lower continental crust and the granulite paradox. Geology 25:15–18

    Article  Google Scholar 

  • Pineau F, Javoy M, Behar F, Touret JLR (1981) La géochimie isotopique du faciès granulite du Bamble (Norvège) et l’origine des fluides carbonés dans la croûte profonde. Bull Minéral 104:630–641

    Google Scholar 

  • Podlesskii KK, Kurdyukov YB (1992) The association sapphirine + quartz in the Chogar and Sharyzhalgay complexes, east Siberia. Int Geol Rev 34:611–616

    Article  Google Scholar 

  • Porto da Silveira CL, Schorscher HD, Mickeley N (1991) The geochemistry of albitization and related uranium mineralization, Espinhares, Paraiba (P), Brazil. J Geochem Explor 40:329–347

    Article  Google Scholar 

  • Poty B, Leroy J, Cathelineau M, Cuney M, Friedrich M, Lespinasse M, Turpin L (1986) Uranium deposits spatially related to granites in the french part of the hercynian orogen. In: Fuchs HD (ed) Vein type uranium deposits. IAEA, Vienna, TEC-DOC 361 pp 215–246

    Google Scholar 

  • Putnis A (2002) Mineral replacement reactions: from macroscopic observations to microscopic mechanisms. Mineral Mag 66:689–708

    Article  Google Scholar 

  • Putnis A (2009) Mineral replacement reactions. Thermodynamics and kinetics of water-rock interaction. vol 70, Reviews in mineralogy and geochemistry, Mineralogical Society of America, Washington, DC, pp. 87-124

    Article  Google Scholar 

  • Putnis A, Austrheim H (2010) Fluid-induced processes: metasomatism and metamorphism. Geofluids 10:254–269

    Google Scholar 

  • Quensel P (1952) The charnockite series of the Varberg district on the south-western coast of Sweden. Ark Mineral Geol 1:227–332

    Google Scholar 

  • Raith M, Srikantappa C (1993) Arrested charnockite formation at Kottavattam, southern India. J Metamorph Geol 11:815–832

    Article  Google Scholar 

  • Rakotondrazafy AFM, Moine B, Cuney M (1996) Mode of formation of hibonite (CaAl12O19) within the U-Th skarns from the granulites of SE Madagascar. Contrib Mineral Petrol 123:190–201

    Article  Google Scholar 

  • Ramambazafy A, Moine B, Rakotondrazafy M, Cuney M (1998) Signification des fluides carboniques dans les granulites et skarns du Sud-Est de Madagascar. CR Acad Sci IIa 327:743–748

    Google Scholar 

  • Ramberg H (1951) Remarks on the average chemical composition of granulite and amphibilite-to-epidote amphibolite facies gneisses in west Greenland. Medd Dan Geol Foren 12:27–34

    Google Scholar 

  • Ramberg H (1952) The origin of metamorphic and metasomatic rocks. University of Chicago Press, Chicago

    Google Scholar 

  • Read HH (1957) The granite controversy. Thomas Murby, London

    Google Scholar 

  • Rehtijärvi P, Saastamoinen J (1985) Tectonized actinolite-albite rocks from the Outokumpu district, Finland: field and geochemical evidence for mafic extrusive origin. Bull Geol Soc Finland 57:47–54

    Google Scholar 

  • Reinhardt J (1987) Cordierite-anthophyllite rocks from north-west Queensland, Australia: metamorphosed magnesian pelites. J Metamorph Geol 5:451–472

    Article  Google Scholar 

  • Respaut JP, Cathelineau M, Lancelot JR (1991) Multistage evolution of the Pierres-Plantées uranium ore deposit (Margeride, France): evidence from mineralogy and U-Pb systematics. Eur J Mineral 3:85–103

    Google Scholar 

  • Rigby MJ, Droop GTR (2011) Fluid-absent melting versus CO2 streaming during the formation of metapelitic granulites: a review of insights from the cordierite fluid monitor. In: Van Reenen DD, Kramers JD, McCourt S, Perchuk LL (eds) Origin and evolution of Precambrian high-grade gneiss terranes, with special emphasis of Limpopo complex of southern Africa, vol 207, Geological Society of America Memoir. Geological Society of America, Boulder, pp 39–60

    Chapter  Google Scholar 

  • Rinne F (1928) La science des roches. 3rd French edition, 8th German edition: (trans: Bertrand L). J. Lamarre, Paris, 616 pp

    Google Scholar 

  • Robinson P, Jaffe HW (1969) Aluminous enclaves in gedrite-cordierite gneiss from southwestern New Hampshire. Am J Sci 267:389–421

    Article  Google Scholar 

  • Rollinson HR, Tarney J (2005) Adakites – the key to understanding LILE depletion in granulites. Lithos 79:61–81

    Article  Google Scholar 

  • Rötzler J (1992) Zur petrogenese im sächsischen Granulitgebirge. Geotektonische Forschungen 72:1–114

    Google Scholar 

  • Rudnick R, Fountain DM (1995) Nature and composition of the continental crust: a lower crustal perspective. Rev Geophys 33:267–309

    Article  Google Scholar 

  • Rudnick RL, McLennan SM, Taylor SR (1985) Large ion lithophile elements in rocks from high pressure granulite-facies terrains. Geochim Cosmochim Acta 49:1645–1655

    Article  Google Scholar 

  • Rumble D III, Chamberlain CP, Zeitler PK, Barreiro B (1989) Hydrothermal graphite veins and Acadian granulite metamorphism, new Hampshire, USA. In: Bridgwater D (ed) Fluid movements – element transport and the composition of the deep crust. Kluwer, Dordrecht, pp 117–119

    Chapter  Google Scholar 

  • Safonov OG (1999) The role of alkalis in the formation of coronitic textures in metamangerites and metaanorthosites from the Adirondack complex, United States. Petrology 7:102–121

    Google Scholar 

  • Santosh M (1992) Carbonic fluids in granulites: cause or consequence ? J Geol Soc India 39:375–399

    Google Scholar 

  • Santosh M, Jackson DH, Harris NBW (1993) The significance of channel and fluid-inclusion CO2 in cordierite: evidence from carbon isotopes. J Petrol 34:233–258

    Article  Google Scholar 

  • Santosh M, Jackson DH, Harris NBW, Mattey DP (1991) Carbonic fluid inclusions in south Indian granulites: evidence for entrapment during charnockite formation. Contrib Mineral Petrol 108:318–330

    Article  Google Scholar 

  • Santosh M, Tagawa M, Taguchi S, Yoshikura S (2003) The Nagercoil granulite block, southern India: petrology, fluid inclusions and exhumation history. J Asian Earth Sci 22:131–155

    Article  Google Scholar 

  • Santosh M, Tanaka K, Yoshimura Y (2005) Carbonic fluid inclusions in ultrahigh-temperature granitoids from Southern India. CR Geosci 337:327–335

    Article  Google Scholar 

  • Santosh M, Tsunogae T (2003) Extremely high-density pure CO2 fluid inclusions in a garnet granulite from southern India. J Geol 111:1–16

    Article  Google Scholar 

  • Schreyer W (1974) Whiteschist, a new type of metamorphic rock formed at high pressures. Geol Rundsch 63:597–609

    Article  Google Scholar 

  • Giustina MESD, Martins Pimentel M, Ferreira Filho CF, Fuck RA, Andrade S (2011) U-Pb-Hf-trace element systematics and geochronology of zircon from a granulite-facies metamorphosed mafic–ultramafic layered complex in central Brazil. Precambrian Res 189:176–192

    Article  Google Scholar 

  • Shmulovich KI, Graham CM (2004) An experimental study of phase equilibria in the systems H2O-CO2-CaCl2 and H2O-CO2-NaCl at high pressures and temperatures (500–800°C, 0.5–0.9 GPa): geological and geophysical applications. Contrib Mineral Petrol 146:450–462

    Article  Google Scholar 

  • Simpson C, Wintsch RP (1989) Evidence for deformation-induced K-feldspar replacement by myrmekite. J Metamorph Geol 7:261–275

    Article  Google Scholar 

  • Słaby E, Martin H, Hamada M, Schmigielski M, Domonik A, Götze J, Hoefs J, Hałas S, Simon K, Devidal JL, Moyen JF, Jayananda M (2011) Evidence in Archaean alkali feldspar megacrysts for high-temperature interaction with mantle fluids. J Petrol (58:67–98)

    Google Scholar 

  • Smith MS, Dymek RF, Schneidermann JS (1992) Implications of trace element geochemistry for the origin of cordierite-orthoamphibole rocks from Orijärvi, SW Finland. J Geol 100:543–559

    Article  Google Scholar 

  • Sørensen BE (2007) Metamorphic refinement of quartz under influence of fluids during exhumation with reference to the metamorphic/metasomatic evolution observed in amphibolites. Ph.D. thesis, NTNU, Trondheim

    Google Scholar 

  • Srikantappa C, Arash Zargar S (2009) First report on the halite-bearing fluid inclusions in the Precambrian granulites around Halaguru, Dharwar craton, India. Indian Mineral 43:77–80

    Google Scholar 

  • Srikantappa C, Malathi MN (2008) Solid inclusions of magmatic halite and CO2-H2O inclusions in closepet granite from Ramanagaram, Dharwar craton, India. Indian Mineral 42:84–98

    Google Scholar 

  • Srikantappa C, Raith M, Touret JLR (1992) Synmetamorphic high-density carbonic fluids in the lower crust: evidence from the Nilgiri granulites, southern India. J Petrol 33:733–760

    Article  Google Scholar 

  • Stanislawska M, Michalik M (2008) Xenotime-(Y) veins in a Neoproterozoic metamudstone (Malopolska block, S Poland). Mineralogia 39:105–113

    Article  Google Scholar 

  • Stähle HJ, Raith M, Hoernes S, Delfs A (1987) Element mobility during incipient granulite formation at Kabbaldurga, southern India. J Petrol 28:803–834

    Article  Google Scholar 

  • St Onge MR, Lucas SB (1995) Large-scale fluid infiltration, metasomatism and re-equilibration of Archaean basement granulites during Palaeoproterozoic thrust belt construction, Ungava orogen, Canada. J Metamorph Geol 13:509–535

    Article  Google Scholar 

  • Sukumaran S, Ravindra Kumar GR (2000) K-feldspar metasomatism in granulite-facies rocks of Palghat region, Kerala: evidence and implications of brines in charnockite-forming metamorphism. Curr Sci 79:1594–1958

    Google Scholar 

  • Ter Haar JH (1988) De sub-solidus geschiedenis van actinoliet uit een actinoliet-amfibool (Alb.-Act.-Qtz.) gesteente van Bamble, SE-Noorwegen. Unpublished M.Sc. thesis, Utrecht University, Utrecht

    Google Scholar 

  • Thompson AB (1982) Dehydration melting of pelitic rocks and the generation of H2O undersaturated granitic liquids. Am J Sci 282:1567–1595

    Article  Google Scholar 

  • Thompson AB (1983) Fluid-absent metamorphism. J Geol Soc Lond 140:533–547

    Article  Google Scholar 

  • Tichomirova M, Whitehouse MJ, Nasdala L (2005) Resorption, growth, solid-state recrystallization and annealing of granulite facies zircon – a case study from the central Erzgebirge, Bohemian massif. Lithos 82:25–50

    Article  Google Scholar 

  • Tilley CE (1937) Anthophyllite-cordierite granulites in the Lizard. Geol Mag 74:300–309

    Article  Google Scholar 

  • Tobi AC, Hermans GAEM, Maijer C, Jansen JBH (1985) Metamorphic zoning in the high-grade Proterozoic of Rogaland-Vest Agder. In: Tobi AC, Touret JLR (eds) The deep Proterozoic crust in the North Atlantic provinces. Reidel, Dordrecht, pp 499–516

    Chapter  Google Scholar 

  • Touret JLR (1966) Sur l’origine supracrustale des gneiss rubanés de Selås (formation de Bamble, Norvège méridionale). CR Acad Sci 262:9–12

    Google Scholar 

  • Touret JLR (1971) Le faciès granulite en Norvège méridionale. II Les inclusions fluides. Lithos 4:423–436

    Article  Google Scholar 

  • Touret JLR (1972) Le faciès granulite en Norvège méridionale et les inclusions fluides: paragneiss et quartzites. Science de la Terre 17:179–193

    Google Scholar 

  • Touret JLR (1973) Minerais de fer-titane, roches plutoniques et zonéographie métamorphique dans le sud de la Norvège. In: Raguin Colloquium E (ed) Les roches plutoniques dans leurs rapports avec les gîtes minéraux. Masson, Paris, pp 249–260

    Google Scholar 

  • Touret JLR (1979) Les roches à tourmaline-cordiérite-disthène de Bjordammen (Norvège méridionale) sont-elles liées a d’anciennes évaporites ? Sci Terre 23:95–97

    Google Scholar 

  • Touret JLR (1985) Fluid regime in southern Norway: the record of fluid inclusions. In: Tobi AC, Touret JLR (eds) The deep Proterozoic crust in the North Atlantic provinces. Reidel, Dordrecht, pp 517–549

    Chapter  Google Scholar 

  • Touret JLR (1996) LILE-depletion in granulites: myth or reality ? In: Demaiffe D (ed) Petrology and geochemistry of magmatic suites of rocks in the continental and oceanic crusts. Université Libre de Bruxelles, Brussels & Royal Museum for Central Africa, Tervuren, pp 53–72

    Google Scholar 

  • Touret JLR (2001) Fluids in metamorphic rocks. Lithos 55:1–25

    Article  Google Scholar 

  • Touret JLR (2009) Mantle to lower-crust fluid/melt transfer through granulite metamorphism. Russ Geol Geophys 50:1–11

    Article  Google Scholar 

  • Touret JLR, Dietvorst P (1983) Fluid inclusions in high-grade anatectic metamorphites. J Geol Soc Lond 140:635–649

    Article  Google Scholar 

  • Touret JLR, Hansteen TH (1988) Geothermobarometry and fluid inclusions in a rock from the DoddaBetta charnockite complex. Rend Soc Ital Mineral Petrol vol 43. pp 65–82

    Google Scholar 

  • Touret JLR, Hartel THD (1990) Synmetamorphic fluid inclusions in granulites. In: Vielzeuf D, Vidal P (eds) Granulites and crustal evolution. Reidel, Dordrecht, pp 397–417

    Chapter  Google Scholar 

  • Touret JLR, Huizenga JM (2011) Fluids in granulites. In: Van Reenen DD, Kramers JD, McCourt S, Perchuk LL (eds) Origin and evolution of Precambrian high-grade gneiss terranes, with special emphasis on the Limpopo complex of southern Africa, vol 207, Geological Society of America Memoir. Geological Society of America, Boulder, pp 25–37

    Chapter  Google Scholar 

  • Touret JLR, Huizenga JM (2012) Fluid-assisted granulite metamorphism: a continental journey. Gondwana Res 21:224–235

    Article  Google Scholar 

  • Tracy RJ, Robinson P (1983) Acadian migmatite types in pelitic rocks of central Massachusetts. In: Atherton MP, Gribble CD (eds) Migmatites, melting and metamorphism. Shiva, Nantwich, pp 163–173

    Google Scholar 

  • Trommsdorff V, Skippen G (1986) Vapour loss (‘boiling’) as a mechanism for fluid evolution in metamorphic rocks. Contrib Mineral Petrol 94:317–322

    Article  Google Scholar 

  • Tropper P, Manning CE, Harlov DE (2011) Solubility of CePO4 monazite and YPO4 xenotime in H2O and H2O-NaCl at 800°C and 1 GPa: implications for REE and Y transport during high-grade metamorphism. Lithos 282:58–66

    Google Scholar 

  • Tsunogae T, Santosh M, Osanai Y, Owada M, Toyoshima T (2002) Very high-density carbonic fluid inclusions in sapphirine-bearing granulites from Tonagh island in the Napier complex, Antarctica: implications for CO2 infiltration during ultrahigh-T (T > 1100°C) metamorphism. Contrib Mineral Petrol 143:279–299

    Article  Google Scholar 

  • Turner FJ, Verhoogen J (1960) Igneous and metamorphic petrology, 2nd edn. McGraw Hill, New York

    Google Scholar 

  • Vallance TG (1967) Mafic rock alteration and isochemical development of some cordierite-anthophyllite rocks. J Petrol 8:84–96

    Article  Google Scholar 

  • VanderAuwera J (1993) Diffusion controlled growth of pyroxene-bearing margins on amphibolite bands in the granulite facies of Rogaland (southwestern Norway): implications for granulite formation. Contrib Mineral Petrol 114:203–220

    Article  Google Scholar 

  • Van den Kerkhof AM, Olsen SN (1990) A natural example of superdense CO2 inclusions: microthermometry and Raman analysis. Geochim Cosmochim Acta 54:895–901

    Article  Google Scholar 

  • Vernon RH (2004) A practical guide to rock microstructures. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Van Reenen DD (1986) Hydration of cordierite and hypersthene and a description of the retrograde orthoamphibole isograd in the Limpopo belt, South Africa. Am Mineral 71:900–915

    Google Scholar 

  • Van Reenen DD, Smit CA, Perchuk LL, Roering C, Boshoff R (2011) Thrust exhumation of the Neoarchean UHT Southern Marginal Zone, Limpopo complex: convergence of decompression-cooling paths in the hanging wall and prograde P-T paths in the footwall. In: Van Reenen DD, Kramers JD, McCourt S, Perchuk LL (eds) Origin and evolution of Precambrian high-grade gneiss terranes, with special emphasis on the Limpopo complex of southern Africa, vol 207, Geological Society of America Memoir. Geological Society of America, Boulder, pp 189–212

    Chapter  Google Scholar 

  • Van Schalkwyk JF, Van Reenen DD (1992) High-temperature hydration of ultramafic granulites from the southern marginal zone of the Limpopo belt by infiltration of CO2-rich fluid. Precambrian Res 55:337–352

    Article  Google Scholar 

  • Vielzeuf D, Pin C (1989) Geodynamic implications of granitic rocks in the Hercynian belt. In: Daly JS, Cliff RA, Yardley BWD (eds) Evolution of metamorphic belts. Geological Society London Special Publication, vol 43, Geological Society London Special publication. Blackwell Science, Oxford, pp. 343–348

    Google Scholar 

  • Vielzeuf D, Clemens JD, Pin C, Moinet E (1990) Granites, granulites, and crustal differentiation. In: Vielzeuf D, Vidal P (eds) Granulites and crustal evolution. Kluwer, Dordrecht, pp 59–83

    Chapter  Google Scholar 

  • Villaseca C, Orejana D, Paterson BA (2007) Zr-LREE rich minerals in residual peraluminous granulites, another factor in the origin of low Zr-LREE granitic melts. Lithos 96:375–386

    Article  Google Scholar 

  • Visser D (1995) Kornerupine in a biotite-spinel-garnet schist near Böylefossbru, Bamble sector, south Norway: implications for early and late metamorphic fluid activity. N Jahrb Mineral Abh. 169:1–34

    Google Scholar 

  • Visser D, Nijland TG, Lieftink DJ, Maijer C (1999) The occurrence of preiswerkite in a tourmaline-biotite-scapolite rock (Blengsvatn, Bamble, Norway). Am Mineral 84:977–982

    Google Scholar 

  • Visser D, Senior A (1990) Aluminous reaction textures in orthoamphibole bearing rocks: the P-T path of the high grade Proterozoic of the Bamble sector, south Norway. J Metamorph Geol 8:231–246

    Article  Google Scholar 

  • Von Knorring O, Kennedy WQ (1958) The mineral paragenesis and metamorphic states of garnet-hornblende-pyroxene-scapolite-gneiss from Ghana (Gold Coast). Mineral Mag 31:846–859

    Article  Google Scholar 

  • Wang RC, Xu SJ, Xu SJ (2000) First occurrence of preiswerkite in the Dabie Shan UHP metamorphic belt. Chinese Sci Bull 45–8:748–750

    Article  Google Scholar 

  • Waters DJ (1988) Partial melting and the formation of granulite facies assemblages in Namaqualand, South Africa. J Metamorph Geol 6:387–404

    Article  Google Scholar 

  • Watson EB, Brenan JM (1987) Fluids in the lithosphere 1. Experimentally determined wetting characteristics of CO2-H2O fluids and their implication for fluid transport, host-rock physical properties and fluid inclusion formation. Earth Planet Sci Lett 85:497–515

    Article  Google Scholar 

  • Watson LT (1912) Krageroite, a rutile-bearing rock from Kragerö, Norway. Am J Sci 24:509–514

    Article  Google Scholar 

  • Wielens JBW (1979) Morphology and U-Pb ages of zircons from the high-grade metamorphic Precambrian in the Sirdal-Ørsdal area, SW Norway. ZWO Laboratory for Isotope Geology, vol 4, Verhandeling ZWO Laboratory for Isotope Geology, ZWO Laboratory for Isotope Geology, Amsterdam

    Google Scholar 

  • Wilkinson JJ, Nolan J, Rankin AH (1996) Silicothermal fluid: a novel medium for mass transport in the lithosphere. Geology 24:1059–1062

    Article  Google Scholar 

  • Yardley BWD (1989) An introduction to metamorphic petrology. Longman, Harlow

    Google Scholar 

  • Yardley BWD (1997) The evolution of fluids through the metamorphic cycle. In: Jamtveit B, Yardley BWD (eds) Fluid flow and transport in rocks. Mechanisms and effects. Chapman & Hall, London, pp 99–121

    Chapter  Google Scholar 

  • Yardley BWD, Graham JT (2002) The origins of salinity in metamorphic fluids. Geofluids 2:249–256

    Article  Google Scholar 

  • Yoshino T, Satish-Kumar M (2001) Origin of scapolite in deep-seated metagabbros of the Kohistan arc, NW Himalayas. Contrib Mineral Petrol 140:511–531

    Article  Google Scholar 

  • Young DA (2002) Norman Levi Bowen (1887–1956) and igneous rock diversity. In: Oldroyd DR (ed) The earth inside and out: some major contributions to geology in the twentieth century, vol 192, Geological Society Special Publication. Geological Society, London, pp 99–111

    Google Scholar 

  • Zaleski I, Pattison DRM (1993) Metasomatism in the generation of granulite veins: mass balance, mass transfer, and reference frames. J Petrol 34:1303–1323

    Article  Google Scholar 

  • Zhang Z, Shen K, Santosh M, Dong X (2011) High density carbonic fluids in a slab window: evidence from the Gangdese charnockite, Lhasa terrane, southern Tibet. J Asian Earth Sci 42:515–524

    Article  Google Scholar 

Download references

Acknowledgements

Successive versions of this paper have benefited from comments and/or discussions and/or (in)formal reviews by H. Austrheim T. Andersen, M. Cuney, D.E. Harlov, W.L. Griffin, R.C. Newton, D. Rumble and O. Safonov, as well as by careful editorial work by the editors of this volume. The senior author wants to acknowledge the constant support and inspiration he has got from Bob Newton during more than 40 years, as well as the technical support of the ENS team (C. Chopin, E. Charon) for a number of microphotographs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. R. Touret .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Touret, J.L.R., Nijland, T.G. (2013). Prograde, Peak and Retrograde Metamorphic Fluids and Associated Metasomatism in Upper Amphibolite to Granulite Facies Transition Zones. In: Metasomatism and the Chemical Transformation of Rock. Lecture Notes in Earth System Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28394-9_11

Download citation

Publish with us

Policies and ethics