Skip to main content

Electrons in a Periodic Crystal

  • Chapter
  • First Online:
Book cover Semiconductor Optics

Part of the book series: Graduate Texts in Physics ((GTP))

  • 6859 Accesses

Abstract

The band structure model for (crystalline) solids was developed starting from the late 1920s of the last century. A few of the early references are. Starting from the mid 1950s, more elaborate theories have been created, band structure calculations started and localization effects in disordered systems came into focus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    To make life a bit more complex we mention, that there are some exotic (as least form the point of view of a simple-minded semiconductor scientist) transition metal compounds and rare earth oxides, which have partly occupied atomic d- or f- levels. Nevertheless these materials are insulators.

References

  1. F. Bloch, Z. Physik 52 555 (1928); ibid. 59 208 (1930)

    Google Scholar 

  2. A. Sommerfeld, Z. Physik 47 1 (1928)

    ADS  MATH  Google Scholar 

  3. A.H. Wilson, Proc. Royal Soc. London Series A 133(822), 458 (1931). This is an early example for the use of the term “semi-conductor” and gives a good list of references from the time, when the basics of electronic properties of solids in general and of semiconductors have been developped

    Google Scholar 

  4. H. Fröhlich, Elektronentheorie der Metalle (Springer, Heidelberg, 1936); The Theory of Dielectrics (Clarendon, Oxford, 1950)

    Google Scholar 

  5. F.C. von der Lage, H.A. Bethe, Phys. Rev. 71, 612 (1947)

    ADS  MATH  Google Scholar 

  6. E.O. Kane, J. Phys. Chem. Solid 1, 249 (1957)

    ADS  Google Scholar 

  7. P.W. Anderson, Phys. Rev. 109, 1492 (1958)

    ADS  Google Scholar 

  8. W.A. Weyl, Colored Glasses (Dawsonof Pall Mall, london, 1959)

    Google Scholar 

  9. W. Sack, Glas-Emaiile-Keramo-Technik 13(4), 126 (1962)

    Google Scholar 

  10. M. Cardona, J. Phys. Chem. Solid 24, 1543 (1963); Phys. Rev. 129, 69 (1963)

    Google Scholar 

  11. G. Bret, F. Gires, Appl. Phys. Lett. 4, 175 (1964)

    ADS  Google Scholar 

  12. K. Shindo, A. Morita, H. Kamimura, J. Phys. Soc. Japan 20, 2054 (1965)

    ADS  Google Scholar 

  13. Y. Varshni, Physica 34, 149 (1967)

    ADS  Google Scholar 

  14. U. Rössler, Phys. Rev. 184, 733 (1969)

    ADS  Google Scholar 

  15. O. Madelung, Grundlagen der Halbleiterphysik. Heidelberger Taschenbücher, vol 71 (Springer, Berlin, 1970)

    Google Scholar 

  16. R.V. Baltz, U. Birkholz, Festkörp./Adv. Solid State Phys. XII, 233 (1972)

    Google Scholar 

  17. J. Stuke, W. Brenig (eds.), Amorphous and Liquid Semiconductors (Taylor and Francis, London, 1974 and 1990)

    Google Scholar 

  18. H. Fock, B. Kramer, H. Büttner, Phys. Status Solidi B 67 199 (1975); ibid. 72 155 (1975)

    Google Scholar 

  19. M.L. Cohen, J.R. Chelikowsky, Phys. Rev. B 14, 556 (1976)

    ADS  Google Scholar 

  20. J. Pollmann, H. Büttner, Phys. Rev. B 16, 4480 (1977)

    ADS  Google Scholar 

  21. S.D. Baranovskii, A.L. Efros, Sov. Phys. Semicond. 12, 1328 (1978)

    Google Scholar 

  22. N.F. Mott, E.A. Davies, Electronic Processes in Non-Crystalline Materials, 2nd edn. (Clarendon, Oxford, 1979)

    Google Scholar 

  23. H.R. Trebin, Phys. Status Solidi (b) 92, 601 (1979)

    Google Scholar 

  24. J.M. Ziman, Models of Disorder (Cambridge University Press, Cambridge, 1979)

    Google Scholar 

  25. J.J. LePore, J. Appl. Phys. 51, 6441 (1980)

    ADS  Google Scholar 

  26. M. Matsuura, H. Büttner, Solid State Commun. 36, 81 (1980)

    ADS  Google Scholar 

  27. B. Pertzsch, U. Rössler, Phys. Status Solidi (b) 101, 197 (1980)

    Google Scholar 

  28. G. Blattner et al., Phys. Rev. B 25, 7413 (1982)

    ADS  Google Scholar 

  29. This topic can be nicely followed since 1990 in the Proceeding of the International Conferences on II–VI compounds, published so far in J. Crystal Growth 59 (1982); 72 (1985); 86 (1988); 101 (1990); 117 (1992); 138 (1994); 159 (1996); 184/185 (1998); 214/215 (2000); in Phys. Stat. Sol b 229 (2002); Phys. Status Solidi C 1(4) (2004); ibid. B 241(2004); Phys. Stat. Sol, B 243(4) (2006); ibid. C 3(4) (2006); J. Korean phys. Soc 53 (2008); Phys. Status Solidi B 247(6) (2010); ibid. C 7(6) (2010)

    Google Scholar 

  30. R.K. Jain, R.C. Lind, JOSA B 73, 647 (1983)

    ADS  Google Scholar 

  31. R. Zallen, Physics of Amorphous Solids (Wiley, New York, 1983)

    Google Scholar 

  32. G. Bauer et al. (eds.), Springer Series in Solid State Physics, vols 53, 67, 97, 111 (Springer, Heidelberg, 1984 and seqq.)

    Google Scholar 

  33. G. Bergmann, Physics Reports 107, 1 (1984)

    ADS  Google Scholar 

  34. U. Ekenberg, M. Altarelli, Phys. Rev. B 30, 3569 (1984)

    ADS  Google Scholar 

  35. W. Heywang, Amorphe and Polykristalline Halbleiter (Springer, Berlin, 1984)

    Google Scholar 

  36. R.C. Miller, D.A. Kleinman, A.C. Gossard, Phys. Rev. B 29, 7085 (1984); ibid. 32, 5443 (1985)

    Google Scholar 

  37. R.C. Miller et al., Phys. Rev. B 29, 3740 (1984)

    ADS  Google Scholar 

  38. B.I. Shklovskii, A.L. Efros, Electronic Properties of Doped Semiconductors. Springer Series in Solid-State Sciences, vol 45 (Springer, Berlin/Heidelberg, 1984)

    Google Scholar 

  39. J.D. Jonnopoulos (ed.), The Physics of Hydrogenated Amorphous Silicon (Springer, Berlin, 1984)

    Google Scholar 

  40. M.P. Albada, A. Lagendijk, Phys. Rev. Lett. 55, 2692 (1985)

    ADS  Google Scholar 

  41. G. Duggan, H.I. Ralph, K.J. Moor, Phys. Rev. B 32, 8395 (1985)

    ADS  Google Scholar 

  42. B. Kramer, G. Bergmann, Y. Bruynserade (eds.), Localization, Interaction and Transport Phenomena. Springer Series in Solid-State Sciences, vol 61 (Springer, Berlin/Heidelberg, 1985)

    Google Scholar 

  43. M.H. Meyandier et al., Phys. Rev. B 31, 5539 (1985)

    ADS  Google Scholar 

  44. W. Pötz, D.K.Frey, Phys. Rev. B 32, 3863 (1985)

    ADS  Google Scholar 

  45. F.M. Peters, J.D. Devreese, Phys. Rev. B 31, 4890 (1985)

    ADS  Google Scholar 

  46. D. Stauffer, Introduction to Percolation Theory (Taylor and Francis, London, 1985)

    MATH  Google Scholar 

  47. P.E. Wolf, G. Maret, Phys. Rev. Lett. 55, 26969 (1985)

    Google Scholar 

  48. M.O. Watanabe et al., J. Appl. Phys. 57, 5340 (1985)

    ADS  Google Scholar 

  49. E. Akkermans, P.W. Wolf, R. Maynard, Phys. Rev. Lett. 56, 1471 (1986)

    ADS  Google Scholar 

  50. G. Bastard, J.A. Brum, IEEE J. QE-22, 1625 (1986)

    Google Scholar 

  51. G.H. Döhler, IEEE J. QE-22, 1682 (1986)

    Google Scholar 

  52. R.L. Green, K. Bajaj, Phys. Rev. B 34 951 (1986)

    ADS  Google Scholar 

  53. H. Kroemer, Surf. Sci. 174, 299 (1986)

    ADS  Google Scholar 

  54. D.M. Finlayson (ed.), Localization and Interaction (SUSSP, Edinburgh, 1986)

    Google Scholar 

  55. J. Menéndez et al., Phys. Rev. B 33, 8863 (1986)

    ADS  Google Scholar 

  56. M. Stephen, Phys. Rev. Lett. 56, 1809 (1986)

    ADS  Google Scholar 

  57. J.S. Blakemore, Semiconductor Statistics (Dover Publication, Dover, 1987)

    Google Scholar 

  58. M. Cardona, N.E. Christensen, Phys. Rev. B 35, 6182 (1987); J. Vac. Sci. Technol. B 6, 1285 (1988)

    Google Scholar 

  59. E.E. Mendez, K.v. Klitzing (eds.), Physics and Applications of Quantum Wells and Superlattices. NATO ASI Series, vol 170 (Plenum, New York, 1987)

    Google Scholar 

  60. C. Weisbuch, in Semiconductors and Semimetals, vol 24 (Academic Press, London, 1987)

    Google Scholar 

  61. M.L. Cohen, J.R. Chelikowsky, Electronic Structure and Optical Properties of Semiconductors. Springer Series Solid-State Sciences, vol 75 (Springer, Berlin, 1988)

    Google Scholar 

  62. Ch. Flytzains, D. Ricard, Ph. Roussignol, NATO ASI Ser. B 194, 181 (1988)

    Google Scholar 

  63. T.C. McGill, C.M. Sotomayor Torres, W. Gebhardt (eds.), Growth and Optical Properties of Wide-Gap II–VI Low Dimensional Semiconductors. NATO ASI Series B, vol 200 (Plenum, New York, 1988)

    Google Scholar 

  64. C.Y. Fong, I.P. Batra, S. Ciraci (eds.), Properties of Impurity States in Superlattice Semiconductors. NATO ASI Series B, vol 183 (Plenum, New York, 1988)

    Google Scholar 

  65. U. Rössler, F. Malcher, A. Ziegler, in NATO ASI series B, vol 183 (Plenum, New York, 1988), p. 219

    Google Scholar 

  66. W. Walukiewizc, Phys. Rev. B 37, 4760 (1988)

    ADS  Google Scholar 

  67. R.M. Cohen, Z.M. Fang, J. Appl. Phys. 65, 612 (1989)

    ADS  Google Scholar 

  68. A. Henglein, Chem. Rev. 89, 1861 (1989)

    Google Scholar 

  69. C. Klingshirn, in Spectroscopy of Solid-State Laser Type Materials (1985). Ettrore Majorana International Science Series, vol. 30 (Plenum Press, New York, 1987), p. 111

    Google Scholar 

  70. N. Peyghambarian et al., IEEE J. QE-25, 2516 (1989)

    Google Scholar 

  71. M.G. Bawendi, M.L. Steigerwald, L.E. Brus, Annu. Rev. Phys. Chem. 41, 477 (1990)

    ADS  Google Scholar 

  72. U. Merkt, Festkörp./Adv. Solid State Phys. 30, 77 (1990)

    Google Scholar 

  73. S.H. Park et al., J. Opt. Soc. Am. B 7, 2097 (1990)

    ADS  Google Scholar 

  74. J.-P. Reithmaier et al., Appl. Phys. Lett. 56, 536 (1990)

    ADS  Google Scholar 

  75. L.E. Brus, Appl. Phys. A 53, 465 (1991)

    ADS  Google Scholar 

  76. W. Schröter (ed.), Electronic Structure and Properties of Semiconductors. Materials Science and Technology, vol 4 (VCH, Weinheim, 1991)

    Google Scholar 

  77. A.I. Ekimov, Phys. Scr. T 39, 217 (1991)

    ADS  Google Scholar 

  78. A.A. Klochikhin, S.G. Ogloblin, Sov. Phys. JETP 73, 1122 (1991)

    Google Scholar 

  79. U. Becker et al., J. Crystal Growth 125, 384 (1992)

    ADS  Google Scholar 

  80. A.L. Efros, Phys. Rev. B 46, 7448 (1992)

    ADS  Google Scholar 

  81. M. Guzzi et al., Phys. Rev. B 45, 10951 (1992)

    ADS  Google Scholar 

  82. F. Henneberger et al., Adv. Solid State Phys./ Festkörp. 32, 279 (1992)

    Google Scholar 

  83. S. Malzer et al., Phys. Status Solidi (b) 173, 459 (1992)

    Google Scholar 

  84. S. Permogorov, A. Reznitsky, J. Lumin. 52, 201 (1992)

    Google Scholar 

  85. R. Cingolani, R. Rinaldi, Rivista del Nuovo Cimento 16, 1 (1993)

    Google Scholar 

  86. M. Grün et al., Opt. Mater. 2, 163 (1993); J. Crystal Growth 141, 68 (1994)

    Google Scholar 

  87. F. Daiminger et al., in Proceedings of the 21th ICPS, Beijing, 1992, ed. by P. Jiang, H.-Z. Zeng (World Scientific, Singapore, 1993), p. 1293

    Google Scholar 

  88. A.I. Ekimov et al., J. Opt. Soc. Am. B 10, 100 (1993)

    ADS  Google Scholar 

  89. P. Fulde, Electron Correlations in Molecules and Solids. Springer Series in Solid State Science, vol 100, 2nd, edn. (Springer, Berlin, 1993)

    Google Scholar 

  90. A.C. Hewson, The Kondo Problem to Heavy Fermions. Cambridge Studies in Magnetism (Cambridge University Press, Cambridge, 1993)

    Google Scholar 

  91. A.A. Klochikhin et al., Phys. Rev. B 48, 3100 (1993)

    ADS  Google Scholar 

  92. C.B. Murray, D.J. Norris, M.G. Bawendi, J. Am. Chem. Soc. 115, 8706 (1993)

    Google Scholar 

  93. U. Merkt et al., Physica B 189, 165 (1993)

    ADS  Google Scholar 

  94. K. Ploog, R. Nötzel, O. Brandt, in Proceedings of the 21th ICPS, Beijing, 1992, ed. by P. Jiang, H.-Z. Zeng (World Scientific, Singapore, 1993) p. 1297

    Google Scholar 

  95. M.A. Reed, Scientific American, 268, 118 (1993)

    ADS  Google Scholar 

  96. T. Taguchi, Y. Kawakami, Y. Yamada, Physica B 191, 23 (1993)

    ADS  Google Scholar 

  97. U. Woggon et al., Phys. Rev. B 47, 3684 (1993)

    ADS  Google Scholar 

  98. A.D. Yoffe, Adv. Phys. 42, 173 (1993)

    ADS  Google Scholar 

  99. A. Abounadi et al., Phys. Rev. B 50, 11677 (1994)

    ADS  Google Scholar 

  100. M. Grün et al., J. Crystal Growth 138, 150 (1994)

    ADS  Google Scholar 

  101. M. Illing et al., J. Crystal Growth 138, 638 (1994)

    ADS  Google Scholar 

  102. A.-B. Chen, A. Sher, Semiconductor Alloys (Plenum, New York, 1995)

    Google Scholar 

  103. W. Faschinger, Mater. Sci. Forum 182–184, 29 (1995)

    Google Scholar 

  104. M. Grundmann et al., J. Nonlinear Opt. Phys. Mater. 4, 99 (1995)

    ADS  Google Scholar 

  105. F. Hofmann, D.A. Wharam, Festkörp./Adv. Solid State Phys. 35, 197 (1995)

    Google Scholar 

  106. J. König et al., Festkörp./Adv. Solid State Phys. 35, 215 (1995)

    Google Scholar 

  107. D. Pfannkuche, S.E. Ulloa, Festkörp./Adv. Solid State Phys. 35, 65 (1995)

    Google Scholar 

  108. U. Woggon, S.V. Gaponenko, Phys. Status Solidi (b) 189, 285 (1995)

    Google Scholar 

  109. A.P. Sutton, Elektronische Struktur in Materialien (VCH, Weinheim, 1996)

    Google Scholar 

  110. M. Hetterich et al., Phys. Rev. B 56, 12369 (1997)

    ADS  Google Scholar 

  111. D. Hommel et al., Phys. Status Solidi (b) 202, 835 (1997)

    Google Scholar 

  112. A. Hartmann et al., Appl. Phys. Lett. 71, 1314 (1997)

    ADS  Google Scholar 

  113. T. Pohjola et al., Europhys. Lett. 40, 189 (1997)

    ADS  Google Scholar 

  114. M. Rabe et al., Phys. Status Solidi (b) 202, 817 (1997)

    Google Scholar 

  115. R. Ulbrich, Private Communication (1997)

    Google Scholar 

  116. U. Woggon et al., Appl. Phys. Lett. 71, 377 (1997)

    ADS  Google Scholar 

  117. U. Woggon, Optical Properties of Semiconductor Quantum Dots. Springer Tracts in Modern Physics, vol 136 (Springer, Berlin/New York, 1997)

    Google Scholar 

  118. M. Grün et al., Appl. Phys. Lett. 73, 1343 (1998)

    ADS  Google Scholar 

  119. D. Lüerßen et al., Phys. Rev. B 57, 1631 (1998)

    Google Scholar 

  120. M.V. Artemyev et al., Phys. Rev. B 60, 1504 (1999) and references therein

    Google Scholar 

  121. D. Bimberg, N. Grundmann, N.N. Ledentsov, Quantum Dot Heterostructures (Wiley, Chicester, 1999)

    Google Scholar 

  122. G. Biasiol, E. Kapon, J. Crystal Growth 201/202, 62 (1999)

    Google Scholar 

  123. S.V. Gaponenko et al., IEEE J. Lightwave Techn. 17, 2128 (1999)

    ADS  Google Scholar 

  124. A. Klochikhin et al., Phys. Rev. B 59, 12947 (1999)

    ADS  Google Scholar 

  125. R. Pässler, Phys. Status Solidi B 216, 975 (1999)

    ADS  Google Scholar 

  126. D. ben Avraham, S. Havlin, Diffusion and Reactions in Fractals and Disordered Systems (Cambridge University Press, Cambridge, 2000)

    Google Scholar 

  127. G. Biasiol, K. Leifer, E. Kapon, Phys. Rev. B 61, 7223 (2000)

    ADS  Google Scholar 

  128. E. Kurtz et al., Thin Solid Films 367, 68 (2000); ibid. 412, 89 (2002); J. Crystal Growth 214/215, 712 (2000); Phys. Status Solidi (b) 229, 519 (2001)

    Google Scholar 

  129. H. Kissel et al., Phys. Rev. B 62, 7213 (2000)

    ADS  Google Scholar 

  130. D. Lüerßen, R. Blehetr, H. Kalt, Phys. Rev. B 61, 15812 (2000)

    ADS  Google Scholar 

  131. S. Nakamura, S. Pearton, G. Fasol, The Blue Laser Diode: The Complete Story (Springer, Heidelberg, 2000)

    Google Scholar 

  132. S. Permogorov et al., J. Crystal Growth 215/215, 1158 (2000)

    Google Scholar 

  133. A. Rosenauer et al., Thin Solid Films 357, 18 (2000); Phys. Rev. B 61, 8276 (2000)

    Google Scholar 

  134. C. Skierbiszewski et. al., Appl. Phys. Lett. 76 2409 (2000)

    Google Scholar 

  135. C. Walter, PhD Thesis, Berlin (2000)

    Google Scholar 

  136. M.V. Artemyev et al., Phys. Status Solidi (b) 224, 393 (2001)

    Google Scholar 

  137. Q. Huang et al., J. Crystal Growth 227/228, 117 (2001)

    Google Scholar 

  138. M.H. Huang et al., Science 292, 1897 (2001)

    ADS  Google Scholar 

  139. F. Leiter et al., Physica B 308–310, 908 (2001)

    Google Scholar 

  140. C. Klingshirn (ed.), Landolt-Börnstein, New Series Group III, vol 34C1 (Springer, Heidelberg, 2001)

    Google Scholar 

  141. Z.W. Pan, Z.R. Dai, Z.L. Wang, Science 291, 1947 (2001)

    ADS  Google Scholar 

  142. R.L. Sellin et al., Appl. Phys. Lett. 78, 1207 (2001)

    ADS  Google Scholar 

  143. I. Vurgaftman, J.R. Meyer, L.R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001)

    ADS  Google Scholar 

  144. V.Yu. Davidov et al., Phys. Status Solidi B 234, 787 (2002)

    ADS  Google Scholar 

  145. M. Dressel, G. Grüner, Electrodynamics of Solids (Cambridge Uinversity Press, Cambridge, 2002)

    Google Scholar 

  146. O. Gogolin et al., Solid State Commun. 122, 511 (2002)

    ADS  Google Scholar 

  147. D.M. Hofmann et al., Phys.Rev.Lett. 88, 045504 (2002)

    ADS  Google Scholar 

  148. E. Kapon, in Spectroscopy of Systems with Spatially Confined Structures (2001). NATO Science Series II, vol. 90 (Kluwer, Dordrecht, 2002), p. 243

    Google Scholar 

  149. A. Klochikhin el. al., Phys. Status Solidi b 234 787 (2002); Phys. Rev. B 71 195207 (2005)

    Google Scholar 

  150. R.L. Walter et al., Phys. Rev. B 65, 075207 (2002)

    Google Scholar 

  151. O. Gogolin et al., J. Lumin. 102/103, 414, 451 (2003)

    Google Scholar 

  152. S.N. Khanna, A.W. Castleman, Quantum Phenomena in Clusters and Nanostructures (Springer, Berlin/Heidelberg, 2003)

    Google Scholar 

  153. J.Y. Lao et al., Nano Lett. 3, 235 (2003)

    ADS  Google Scholar 

  154. J. Serrano et al., Phys.Rev.Lett. 90, 55510 (2003)

    ADS  Google Scholar 

  155. A. Tsukazaki, Appl. Phys. Lett. 83, 278 (2003)

    Google Scholar 

  156. B.P. Zhang et al., Appl. Phys. Lett. 83, 1635 (2003)

    ADS  Google Scholar 

  157. B. Arnaudov et al., Phys. Rev. B 69, 115216 (2004)

    ADS  Google Scholar 

  158. A. Klochikhin et al., Phys. Rev. B 69, 085308 (2004)

    ADS  Google Scholar 

  159. J. Lao et al., Appl. Phys. A 78, 539 (2004)

    ADS  Google Scholar 

  160. V.A. Scubin, N.N. Ledentsov, D. Bimberg, Epitaxy of Nanostructures (Springer, Heidelberg, 2004)

    Google Scholar 

  161. T.Y, Tan, N. Li, U. Gösele, Appl. Phys. A 78, 519 (2004)

    Google Scholar 

  162. B.P. Zhang et al., Appl. Phys. Lett. 84, 4098 (2004); J. Appl. Phys. 96, 340 (2004)

    Google Scholar 

  163. S.C. Erwin, Nature 436(July issue), 91 (2005)

    Google Scholar 

  164. K.C. Agarwal, Ph. D. Thesis, Karlsruhe (2006); Cuvillier Verlag, Göttingen (2006); Phys. Rev. B 73, 045211 (2006)

    Google Scholar 

  165. B. Daniel, PhD Thesis, Cuviier Verlag, Göttingen (2006)

    Google Scholar 

  166. R. Hauschild et al., Phys. Status Solidi C 3, 976 (2006)

    ADS  Google Scholar 

  167. P. Erhart et al., Phys. Rev. B 75, 153205 (2007)

    ADS  Google Scholar 

  168. M. Hetterich, Habilitation Thesis, Karlsruhe (2007)

    Google Scholar 

  169. C. Klingshirn, Phys. Status Solidi B 244, 3027 (2007)

    ADS  Google Scholar 

  170. E. Kasper, C. Klingshirn (eds.), Landolt- Börnstein, New Series, Group III, vol 34C3 (Springer, Heidelberg, 2007)

    Google Scholar 

  171. C. Neumann et al., Phys. Status Solidi B 244, 1451 (2007)

    ADS  Google Scholar 

  172. A. Zunger, Nano Lett. 7, 2129 (2007)

    ADS  Google Scholar 

  173. M. Lorenz et al., Phys. Status Solidi C 5, 3280 (2008)

    MathSciNet  ADS  Google Scholar 

  174. K.-I. Lee et al., Phys. Status Solidi C 5, 3344 (2008)

    ADS  Google Scholar 

  175. Th. Seyller et al., Phys. Status Solidi B 245, 1436 (2008)

    ADS  Google Scholar 

  176. F. Bechstedt, F. Fuchs, G. Kresse, Phys. Status Solidi B 246, 1877 (2009)

    ADS  Google Scholar 

  177. J.l. Lyons, A. Janotti, C.G. Van der Walle, Appl. Phys. Lett. 95, 252105 (2009)

    Google Scholar 

  178. M.D. McCluskey, S.J. Jokela, J. Appl. Phys. 106, 071101 (2009)

    ADS  Google Scholar 

  179. A.H.C. Neto, Physics 2, 30 (2009)

    Google Scholar 

  180. M. Willander et al., Nanotechnology 20, 332001 (2009)

    Google Scholar 

  181. M. Grundmann (ed.), Architecture of nano- and microdimensional building blocks. Phys. Status Solidi B 247, 1275–1392 (2010)

    Google Scholar 

  182. S. Fündling et al., Phys. Status Solidi B 247, 2315 (2010)

    ADS  Google Scholar 

  183. D. Gerthsen et al., J. Phys. Conf. Series 209, 012006 (2010)

    ADS  Google Scholar 

  184. C. Klingshirn et al., Phys. Status Solidi B 247, 1424 (2010)

    ADS  Google Scholar 

  185. C. Klingshirn, B.K. Meyer, A. Waag, A. Hoffmann, J. Geurts, Zinc Oxide: From Fundamental Properties towards Novel Applications. Springer Series in Materials Science, vol 120 (Springer, Berlin/Heidelberg, 2010)

    Google Scholar 

  186. C.-K. Kuo, M.H. Huang, Nano 5, 106 (2010)

    MathSciNet  Google Scholar 

  187. M. Lorenz et al., Phys. Status Solidi B 247, 1265 (2010)

    ADS  Google Scholar 

  188. A.M. Smith, A.S. Nie, Accounts Chem. Res. 43, 190 (2010)

    Google Scholar 

  189. C. Klingshirn (ed.), Landolt- Börnstein, New Series, Group III, vol 34A (Springer, Heidelberg in preparation for 2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Klingshirn, C.F. (2012). Electrons in a Periodic Crystal. In: Semiconductor Optics. Graduate Texts in Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28362-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28362-8_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28361-1

  • Online ISBN: 978-3-642-28362-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics