Skip to main content

CARS Microscopy: Implementation of Nonlinear Vibrational Spectroscopy for Far-Field and Near-Field Imaging

  • Chapter
  • First Online:
  • 3686 Accesses

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 168))

Abstract

Raman microscopy has been attracting researchers in biology and medicine due to its capability of detecting molecular vibrations that provide information of molecular species, structures, conditions, and environments. Raman scattering can be obtained by simply illuminating molecules with monochromatic light, and providing molecular vibration frequency as wavelengths of scattered light. This does not require labeling of target molecules, such as chemical or biological staining with fluorophore, which may modify the condition of living biological specimens.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. P. Anger, P. Bharadwaj, L. Novotny, Enhancement and quenching of single-molecule fluorescence. Phys. Rev. Lett. 96, 113002 (2006)

    Article  ADS  Google Scholar 

  2. C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983)

    Google Scholar 

  3. J.-X. Cheng, L.D. Book, X.S. Xie, Polarization coherent anti-Stokes Raman scattering microscopy. Opt. Lett. 26, 1341–1343 (2001)

    Article  ADS  Google Scholar 

  4. W. Denk, J.H. Strickler, W.W. Webb, Science 248, 73 (1990)

    Article  ADS  Google Scholar 

  5. W. Denk, K.R. Delaney, A. Gelperin, D. Kleinfeld, B.W. Strowbridge, D.W. Tank, R.J. Yuste, Neurosci. Meth. 54, 151 (1994)

    Article  Google Scholar 

  6. N. Dudovich, D. Oron, Y. Silberberg, Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy. Nature 418, 512–514 (2002)

    Article  ADS  Google Scholar 

  7. G.S. Duesberg, I. Loa, M. Burghard, K. Syassen, S. Roth, Polarized Raman spectroscopy on isolated single-wall carbon nanotubes. Phys. Rev. Lett. 85, 5436–5439 (2000)

    Article  ADS  Google Scholar 

  8. M.D. Duncan, J. Reintjes, T.J. Manuccia, Opt. Lett. 7, 350 (1982)

    Article  ADS  Google Scholar 

  9. M.D. Duncan, J. Reintjes, T.J. Manuccia, Opt. Eng. 24, 352 (1984)

    Google Scholar 

  10. M.D. Duncan, Opt. Commun. 50, 307 (1985)

    Article  ADS  Google Scholar 

  11. C.L. Evans, E.O. Potma, X.S. Xie, Coherent anto-Stokes Raman scattering spectral interferometry: determination of the real and imaginary components of nonlinear susceptibility \(\chi \)(3) for vibrational microscopy. Opt. Lett. 29, 2923–2925 (2004)

    Article  ADS  Google Scholar 

  12. C.L. Evans, E.O. Potma, M. Puorishaag, D. Côté, C.P. Lin, X.S. Xie, Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy. Proc. Natl. Aca. Sci. 102, 16807–16812 (2005)

    Article  ADS  Google Scholar 

  13. Y. Fu, H. Wang, T.B. Huff, R. Shi, J.-X. Cheng, Coherent anti-Stokes Raman scattering imaging of myelin degradation reveals a calcium-dependent pathway in Lyso-PtdCho-induced demyelination. J. Neuroscience Research 85, 2870–2881 (2007)

    Article  Google Scholar 

  14. Y. Fu, T.B. Huff, H.-W. Wang, H. Wang, J.-X. Cheng, Ex vivo and in vivo imaging of myelin fibers in mouse brain by coherent anti-Stokes Raman scattering microscopy. Opt. Exp. 16, 19396–19409 (2008)

    Article  ADS  Google Scholar 

  15. K. Fujita, N.I. Smith, Label-free molecular imaging of living cells. Mol. Cells 26, 530–535 (2008)

    Google Scholar 

  16. K. Hamada, K. Fujita, N. Smith, M. Kobayashi, Y. Inouye, S. Kawata, Raman microscopy for dynamic molecular imaging of living cells. J. Biomed. Opt. 13, 044027 (2008)

    Article  ADS  Google Scholar 

  17. M. Hashimoto, T. Araki, Three dimensional coherent and optical transfer functions of coherent anti-strokes Raman scattering microscopy. J. Opt. Soc. Am. A 18, 771–776 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  18. M. Hashimoto, T. Araki, S. Kawata, Molecular vibration imaging in the fingerprint region by use of coherent anti-Stokes Raman scattering microscopy with a collinear configuration. Opt. Lett. 25, 1768 (2000)

    Article  ADS  Google Scholar 

  19. A. Hartschuh, E.J. Sánchez, X.S. Xie, L. Novotny, High-resolution near-field Raman microscopy of single-walled carbon nanotubes. Phys. Rev. Lett. 90, 095503 (2003)

    Article  ADS  Google Scholar 

  20. N. Hayazawa, Y. Inouye, S. Kawata, Evanescent field excitation and measurement of dye fluorescence in a metallic probe near-field scanning optical microscope. J. Microsc. 194, 472–476 (1999)

    Article  Google Scholar 

  21. N. Hayazawa, Y. Inouye, Z. Sekkat, S. Kawata, Metallized tip amplification of near-field Raman scattering. Opt. Commun. 183, 333 (2000)

    Article  ADS  Google Scholar 

  22. N. Hayazawa, Y. Inouye, Z. Sekkat, S. Kawata, Near-field Raman scattering enhanced by a metallized tip. Chem. Phys. Lett. 335, 369–374 (2001)

    Article  ADS  Google Scholar 

  23. N. Hayazawa, T. Yano, H. Watanabe, Y. Inouye, S. Kawata, Detection of an individual single-wall carbon nanotube by tip-enhanced near-field Raman spectrocopy. Chem. Phys. Lett. 376, 174–180 (2003)

    Article  ADS  Google Scholar 

  24. N. Hayazawa, T. Ichimura, M. Hashimoto, Y. Inouye, S. Kawata, Amplification of coherent anti-Stokes Raman scattering by a metallic nano-structure for a high resolution vibration microscopy. J. Appl. Phys. 95, 2676–2681 (2004)

    Article  ADS  Google Scholar 

  25. N. Hayazawa, Y. Saito, S. Kawata, Detection and characterization of longitudinal field for tip-enhanced Raman spectroscopy. Appl. Phys. Lett. 85, 6239–6241 (2004)

    Article  ADS  Google Scholar 

  26. B. Hecht, H. Bielefeldt, Y. Inouye, D.W. Pohl, L. Novotny, Facts and artifacts in near-field optical microscopy. J. Appl. Phys. 81, 2492–2498 (1997)

    Article  ADS  Google Scholar 

  27. Y.-S. Huang, T. Kawashima, M. Yamamoto, H. Hamaguchi, Molecular-level pursuit of yeast mitosis by time- and space-resolved Raman spectroscopy. J. Raman Spectrosc. 34, 1–3 (2003)

    Article  ADS  Google Scholar 

  28. A. Ichihara, T. Tanaami, K. Isozaki, Y. Sugiyama, Y. Kosugi, K. Mikuriya, M. Abe, I. Uemura, High-speed confocal fluorescence microscopy using a nipkow scanner with microlenses for 3-D imaging of single fluorescent molecule in real time. Bioimages 42, 57–62 (1996)

    Google Scholar 

  29. T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, S. Kawata, Tip-enhanced coherent anti-Stokes Raman scattering for vibrational nanoimaging. Phys. Rev. Lett. 92, 220801 (2004)

    Article  ADS  Google Scholar 

  30. Y. Inouye, N. Hayazawa, K. Hayashi, Z. Sekkat, S. Kawata, Near-field scanning optical microscope using a metallized cantilever tip. Proc. SPIE 3791, 40–48 (1999)

    Article  ADS  Google Scholar 

  31. H. Kano, H. Hamaguchi, Supercontinuum dynamically visualizes a dividing single cell. Anal. Chem. 79, 8967–8973 (2007)

    Article  Google Scholar 

  32. T.W. Kee, M.T. Cicerone, Simple approach to one-laser, broadband coherent anti-Stokes Raman scattering microscopy. Opt. Lett. 29, 2701–2703 (2004)

    Article  ADS  Google Scholar 

  33. M. Kerker, D.-S. Wang, H. Chew, Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles: errata. Appl. Opt. 19, 4159–4174 (1980)

    Article  ADS  Google Scholar 

  34. M. Kobayashi, K. Fujita, T. Kaneko, T. Takamatsu, O. Nakamura, S. Kawata, Secondharmonic- generation microscope with a microlens array scanner. Opt. Lett. 27, 1324–1326 (2002)

    Article  ADS  Google Scholar 

  35. F. Lu, W. Zheng, Z. Huang, Phase-controlled polarization coherent anti-Stokes Raman scattering microscopy for high-sensitivity and high-contrast molecular imaging. Opt. Lett. 25, 1907–1909 (2008)

    Google Scholar 

  36. P.D. Maker, R.W. Terhune, Study of optical effects due to an induced polarization third order in the electric field strength. Phys. Rev. 137, A801–A818 (1965)

    Article  ADS  Google Scholar 

  37. H.-J. Manen, Y.M. Kraan, D. Roos, C. Otto, Intracellular chemical imaging of hemecontaining exzymes involved in innate immunity using resonance Raman microscopy. J. Phys. Chem. B 108, 18762–18771 (2004)

    Article  Google Scholar 

  38. H.-J. Manen, Y.M. Kraan, C. Otto, Sinle-cell Raman and fluorescence microscopy reveal the association of lipid bodies with phagosomes in leukocytes. Proc. Natl. Acad. Sci. U. S. A. 102, 10159–10164 (2005)

    Article  Google Scholar 

  39. C. Matthäus, S. Boydston-White, M. Miljkovíc, M. Romeo, M. Diem, Raman and infrared microspectral imaging of mitotic cells. Appl. Spectrosc. 60, 1–8 (2006)

    Article  ADS  Google Scholar 

  40. C. Matthäus, T. Chernenko, J.A. Newmark, C.M. Warner, M. Diem, Label-free detection of mictochondorial distribution in cells by nonresonant Raman microspectroscopy. Biophys. J. 93, 668–673 (2007)

    Article  ADS  Google Scholar 

  41. D. Mehtani, N. Lee, R.D. Hartschuh, A. Kisliuk, M.D. Foster, A.P. Sokolov, J.F. Maguire, Nano-Raman spectroscopy with side-illumination optics. J. Raman Spectrosc. 36, 1068 (2005)

    Article  ADS  Google Scholar 

  42. T. Minamikawa, N. Tanimoto, M. Hashimoto, T. Araki, M. Kobayashi, K. Fujita, S. Kawata, Jitter reduction of two synchronized picosecond mode-locked lasers using balanced crosscorrelator with two-photon detectors. Appl. Phys. Lett. 89, 191101 (2006)

    Article  ADS  Google Scholar 

  43. T. Minamikawa, M. Hashimoto, K. Fujita, S. Kawata, T. Araki, Multi-focus excitation coherent anti-Stokes Raman scattering (CARS) microscopy and its applications for real-time imaging. Opt. Express 17, 9526 (2009)

    Article  ADS  Google Scholar 

  44. M. Müller, J.M. Schins, Imaging the thermodynamic state of lipid membranes with multiplex CARS microscopy. J. Phys. Chem. B 106, 3715–3723 (2002)

    Article  Google Scholar 

  45. X. Nan, E.A.M. Tonary, A. Stolow, X.S. Xie, J.P. Pezzacki, Intracellular imaging of HCV RNA and cellular lipids by using simultaneous two-photon fluorescence and coherent anti- Stokes Raman scattering microscopies. ChemBioChem 7, 1895–1897 (2006)

    Article  Google Scholar 

  46. M. Okuno, H. Kano, P. Leproux, V. Couderc, H. Hamaguchi, Ultrabroadband multiplex CARS microspectroscopy and imaging using a subnanosecond supercontinuum light source in the deep near infrared. Opt. Lett. 33, 923–925 (2008)

    Article  ADS  Google Scholar 

  47. G.J. Puppels, F.F.M. de Mul, C. Otto, J. Greve, M. Robert-Nicoud, D.J. Arndt-Jovin, T.M. Jovin, Studying single living cells and chromosomes by confocal Raman microspectroscopy. Nature 347, 301–303 (1990)

    Article  ADS  Google Scholar 

  48. G.J. Puppels, M. Grond, J. Greve, Direct imaging Raman microscope based on tunable wavelength excitation and narrow-band emission detection. Appl. Spectrosc. 47, 1256–1267 (1993)

    Article  ADS  Google Scholar 

  49. H.N. Paulsen, K.M. Hilligsoe, J. Thogersen, S.R. Keiding, J.J. Larsen, Coherent anti- Stokes Raman scattering microscopy with a photonics crystal fiber based light source: Opt. Lett. 28, 1123–1125 (2003)

    Google Scholar 

  50. Y. Saito, T. Murakami, Y. Inouye, S. Kawata, Fabrication of silver probes for localized plasmon excitation in near-field Raman spectroscopy. Chem. Lett. 34, 920–921 (2005)

    Article  Google Scholar 

  51. Y. Saito, M. Kobayashi, D. Hiraga, K. Fujita, S. Kawano, N. Smith, Y. Inouye, S. Kawata, Z-polarization sensitive detection in micro Raman spectroscopy by radially polarized incident light. J. Raman Spectrosc. 39, 1643–1648 (2008)

    Article  ADS  Google Scholar 

  52. Y.R. Shen, The Principles of Nonlinear Optics (John Wiley and Sons, New York, 1984)

    Google Scholar 

  53. M.D. Levenson, Introduction to Nonlinear Laser Spectroscopy (Academic press, Orlando, 1988)

    Google Scholar 

  54. R.L. Shoemaker, P.H. Bartels, D.W. Hillman, J. Jonas, D. Kessler, R.V. Sshack, D. Vukiobratovich, An ultrafast laser scanner microscope for digital image analysis. IEEE Trans. Biomed. Eng. 29, 82–91 (1982)

    Article  Google Scholar 

  55. R.M. Stöckle, Y.D. Suh, V. Deckert, R. Zenobi, Nanoscale chemical analysis by Tipenhanced Raman Scattering. Chem. Phys. Lett. 318, 131–136 (2000)

    Article  ADS  Google Scholar 

  56. S. Tanaka, L.T. Cai, H. Tabata, T. Kawai, Formation of two-dimensional network structure of DNA molecules on Si substrate. Jpn. J. Appl. Phys. 40, L407–L409 (2001)

    Article  ADS  Google Scholar 

  57. R.Y. Tsien, B.J. Bacskai, Video-rate confocal microscopy, in Handbook of Biological Confocal Microscopy, ed. by J.B. Pawley (Plenum Press, New York, 1995), pp. 459–478

    Google Scholar 

  58. N. Uzunbajakava, C. Otto, Combined Raman and continuouswave-excited two-photon fluorescence cell imaging. Opt. Lett. 28, 2073–2075 (2003)

    Article  ADS  Google Scholar 

  59. A. Volkmer, J.-X. Cheng, X.S. Xie, Vibrational imaging with high sensitivity via Epidetected Coherent Anti-Stokes Raman Scattering (E-CARS) microscopy. Phys. Rev. Lett. 87, 023901 (2001)

    Article  ADS  Google Scholar 

  60. A. Volkmer, L.D. Book, X.S. Xie, Time-resolved coherent anti-Stokes Raman scattering microscopy: Imaging based on Raman free induction decay. Appl. Phys. Lett. 80, 1505–1507 (2002)

    Article  ADS  Google Scholar 

  61. T. Wilson, Confocal Microscopy (Academic Press, London, 1990), p. 58

    Google Scholar 

  62. H. Wang, Y. Fu, P. Zickmund, R. Shi, J.-X. Cheng, Coherent anti-Stokes Raman scattering imaging of axonal myelin in live spinal tissues. Biophysical Journal 89, 692–591 (2005)

    Google Scholar 

  63. X.S. Xie, J. Yu, W.Y. Yang, Living cells as test tubes. Science 312, 228–230 (2006)

    Article  ADS  Google Scholar 

  64. A. Zumbusch, G.R. Holtom, X.S. Xie, Three-dimensional Vibrational Imaging by Coherent Anti-Stokes Raman Scattering. Phy. Rev. Lett. 82, 4142–4145 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsumasa Fujita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hashimoto, M., Ichimura, T., Fujita, K. (2012). CARS Microscopy: Implementation of Nonlinear Vibrational Spectroscopy for Far-Field and Near-Field Imaging. In: Zoubir, A. (eds) Raman Imaging. Springer Series in Optical Sciences, vol 168. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28252-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28252-2_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28251-5

  • Online ISBN: 978-3-642-28252-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics