Skip to main content

Mathematical Models to Predict the Critical Conditions for Bacterial Self-healing of Concrete

  • Conference paper
Book cover Mathematical Modeling and Computational Science (MMCP 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7125))

Abstract

Two mathematical models for bacterial self-healing of a crack are considered. The study is embedded within the framework of investigating the potential of bacteria to act as a catalyst of the self-healing process in concrete, that is the ability of concrete to repair occurring cracks autonomously. The first model concerns an analytic formalism to compute the probability that a crack hits an encapsulated particle. Hence, it predicts the probability that the self-healing process starts. The second model of the self-healing process is based on a moving boundary problem. A Galerkin finite-element method is used to solve the diffusion equations. The moving boundaries are tracked using a level set method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balazs, A.C.: Modeling self-healing materials. Materials Today 10(9), 18–23 (2007)

    Article  Google Scholar 

  2. Bratbak, G., Dundas, I.: Bacterial dry matter content and biomass estimation. Applied and Environmental Microbiology, 755–757 (October 1984)

    Google Scholar 

  3. Chen, S., Merriman, B., Osher, S., Smereka, P.: A simple level set method for solving Stefan problems. J. Comp. Physics 135, 8–29 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cleveland, C.C., Liptzin, D.: C:N:P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass? Biogeochemistry 85, 235–252 (2007)

    Article  Google Scholar 

  5. Fischer, H.: Self-repairing material systems — a dream or a reality? Natural Science 2(8), 873–901 (2010)

    Article  Google Scholar 

  6. Gibson, R.F.: A review of recent research on mechanics of multifunctional composite materials and structures. Composite Structures 92, 2793–2810 (2010)

    Article  Google Scholar 

  7. Jonkers, H.M., Schlangen, E.: Development of a bacteria-based self healing concrete. In: Walraven, J.C., Stoelhorst, D. (eds.) Proc. Int. FIB Symp. on Tailor Made Concrete Structures — New Solution for our Society, pp. 425–430. CRC Press, London (2008)

    Google Scholar 

  8. Jonkers, H.M., Thijssen, A., Muyzer, G., Copuroglu, O., Schlangen, E.: Application of bacteria as self-healing agent for the development of sustainable concrete. Ecological Engineering 36(2), 230–235 (2010)

    Article  Google Scholar 

  9. Mookhoek, S.D., Fischer, H.R., van der Zwaag, S.: A numerical study into the effects of elongated capsules on the healing efficiency of liquid-based systems. J. Comp. Mat. Sci. 47(2), 506–511 (2009)

    Article  Google Scholar 

  10. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  11. Pang, J.W.C., Bond, I.P.: “Bleeding composites” — damage detection and self-repair using a biomimetic approach. Composites Part A 36, 183–188 (2005)

    Article  Google Scholar 

  12. Rényi, A.: Wahrscheinlichkeitsrechnung, 2. Aufl., Deutscher Verlag der Wissenschaften, Berlin (1966)

    Google Scholar 

  13. Sethian, J.A.: Fast marching methods. SIAM Rev. 41, 199–235 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Sethian, J.A.: Level set methods and fast marching methods. Cambridge University Press, New York (1999)

    MATH  Google Scholar 

  15. Toohey, K.S., Sottos, N.R., Lewis, J.A., Moor, J.S., White, S.R.: Self-healing materials with microvascular networks. Nature Materials 6, 581–585 (2007)

    Article  Google Scholar 

  16. Tryggvason, G., Bunner, B., Esmaeeli, A., Juric, D., Al-Rawahi, N., Tauber, W., Han, J., Nas, S., Jan, Y.-J.: A front-tracking method for the computations of multiphase flow. J. Comp. Physics 169, 708–759 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wheeler, A.A., Boettinger, W.J., McFadden, G.B.: Phase-field model for isothermal phase transitions in binary alloys. Physical Review A 45, 7424–7439 (1992)

    Article  Google Scholar 

  18. White, S.R., Sottos, N.R., Geubelle, P.H., Moore, J.S., Kessler, M.R., Sriram, S.R., Brown, E.N., Viswanathan, S.: Autonomic healing of polymer composites. Nature 409, 794–797 (2001)

    Article  Google Scholar 

  19. Wilson, G.O., Moore, J.S., White, S.R., Sottos, N.R., Andersson, H.M.: Autonomic healing of epoxy vinyl esters via ring opening metathesis polymerization. Advanced Functional Materials 18(1), 44–52 (2008)

    Article  Google Scholar 

  20. Wolfram, S.: The Mathematica Book. Wolfram Media, Champaign (2003)

    MATH  Google Scholar 

  21. Yin, T., Rong, M.Z., Zhang, M.Q., Yang, G.C.: Self-healing epoxy composites — preparation and effect of the healant consisting of microencapsulated epoxy and latent curing agent. Composites Science and Technology 67, 201–212 (2007)

    Article  Google Scholar 

  22. Zemskov, S.V., Jonkers, H.M., Vermolen, F.J.: An Analytical Model for the Probability Characteristics of a Crack Hitting an Encapsulated Self-Healing Agent in Concrete. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2010. LNCS, vol. 6244, pp. 280–292. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  23. Zemskov, S.V., Jonkers, H.M., Vermolen, F.J.: Two analytical models for the probability characteristics of a crack hitting encapsulated particles: Application to self-healing materials. J. Comp. Mat. Sci. 50, 3323–3333 (2011)

    Google Scholar 

  24. van der Zwaag, S. (ed.): Self healing materials: An alternative approach to 20 centuries of materials science. Springer Series in Materials Science, vol. 100 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zemskov, S.V., Jonkers, H.M., Vermolen, F.J. (2012). Mathematical Models to Predict the Critical Conditions for Bacterial Self-healing of Concrete. In: Adam, G., Buša, J., Hnatič, M. (eds) Mathematical Modeling and Computational Science. MMCP 2011. Lecture Notes in Computer Science, vol 7125. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28212-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28212-6_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28211-9

  • Online ISBN: 978-3-642-28212-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics