Skip to main content

Marine Bioprospecting in Southern Africa

  • Chapter
  • First Online:
Drug Discovery in Africa

Abstract

Natural products isolated from marine invertebrate fauna and their associated microbial communities are globally recognized as potentially rich sources of new pharmaceuticals, especially anti-cancer agents. With the exception of southern Africa, Africa’s marine biodiversity is generally poorly described especially from marine biota found in the more remote and largely inaccessible areas along Africa’s 30,500-km-long coastline. Over the last four decades, bioprospecting for new medicinal compounds from African marine organisms has generally been confined to the marine invertebrate communities residing off the more accessible southern African coast. A total of 18 South African marine natural products have been patented for their anti-cancer activity with the marine tube worm metabolite cephalostatin 1 and a synthetic analogue of the sponge metabolite hemiasterlin, showing the greatest promise for new drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BMS:

Bristol-Myers Squibb

HIF-1:

Hypoxia-inducible factor-1

NCI:

National Cancer Institute

ORI:

Oceanographic Research Institute

Rhodes:

Rhodes University

SCC:

Squamous cell carcinoma

SCOC:

Squamous cell oesophageal cancer

SIO:

Scripps Institution of Oceanography

SKB:

SmithKline Beecham

STS:

Soft tissue sarcoma

References

  1. Cragg GM, Grothaus PG et al (2009) Impact of natural products on developing new anti-cancer agents. Chem Rev 109:3012–3043

    Article  CAS  Google Scholar 

  2. Fusetani N (2010) Biotechnological potential of marine natural products. Pure Appl Chem 82:17–26

    Article  CAS  Google Scholar 

  3. Glaser KB, Mayer AMS (2009) A renaissance in marine pharmacology: from preclinical curiosity to clinical reality. Biochem Pharmacol 78:440–448

    Article  CAS  Google Scholar 

  4. Sashidhara KV, White KN et al (2009) A selective account of effective paradigms and significant outcomes in the discovery of inspirational marine natural products. J Nat Prod 72:588–603

    Article  CAS  Google Scholar 

  5. Cuevas C, Francesch A (2009) Development of Yondelis (trabectedin, ET-743). A semisynthetic process solves the supply problem. Nat Prod Rep 26:322–337

    Article  CAS  Google Scholar 

  6. European Science Foundation (2010) Position Paper 15. Marine biotechnology: a new vision and strategy for Europe. http://www.esf.org/index.php?eID=tx_nawsecuredl&u=0&file=fileadmin/be_user/research_areas/marine/pdf/Publications/MBPP15_MarineBiotechnology.pdf&t= 1305543601&hash=63880103a556f163639f0be4178d1512. Accessed 23 May 2010

  7. Andersen RJ, Williams DE (2000) Pharmaceuticals from the sea. In: Hester R, Harrison R (eds) Chemistry in the marine environment, 13th edn. RSC Press, Cambridge

    Google Scholar 

  8. Jarvis LM (2009) Building brick by brick. Chem Eng News 87:13–20

    Google Scholar 

  9. Mulholland DA, Drewes SE (2004) Global phytochemistry: indigenous medicinal chemistry on track in southern Africa. Phytochemistry 65:769–782

    Article  CAS  Google Scholar 

  10. Branch ML, Branch GM (1992) The living shores of Southern Africa. Struik, Cape Town

    Google Scholar 

  11. Branch GM, Griffiths CL et al (1994) Two oceans. David Philip, Cape Town

    Google Scholar 

  12. Davies-Coleman MT (2005) Bioactive natural products from southern African marine invertebrates. In: Atta-ur-Rahman (ed) Studies in natural products chemistry, 32nd edn. Elsevier, Amsterdam

    Google Scholar 

  13. Pettit GR, Inoue M et al (1988) Isolation and structure of the powerful cell-growth inhibitor cephalostatin-1. J Am Chem Soc 110:2006–2007

    Article  CAS  Google Scholar 

  14. Pettit GR, Herald CL et al (1993) Isolation and structure of the powerful human cancer cell-growth inhibitors spongistatins 4 and 5 from an African Spirastrella-Spinispirulifera (Porifera) 1. J Chem Soc Chem Comm 1805–1807

    Google Scholar 

  15. Lopez-Anton N, Rudy A et al (2006) The marine product cephalostatin 1 activates an endoplasmic reticulum stress-specific and apoptosome-independent apoptotic signaling pathway. J Biol Chem 281:33078–33086

    Article  CAS  Google Scholar 

  16. Rudy A, Lopez-Anton N et al (2008) The cephalostatin way of apoptosis. J Nat Prod 71:482–486

    Article  CAS  Google Scholar 

  17. Fortner KC, Kato D et al (2010) Enantioselective synthesis of (+)-cephalostatin 1. J Am Chem Soc 132:275–280

    Article  CAS  Google Scholar 

  18. Fenical W, Jensen P et al (2003) New anticancer drugs from cultured and collected marine organisms. Pharm Biol 41:6–14

    Article  CAS  Google Scholar 

  19. Moser BR (2008) Review of cytotoxic cephalostatins and ritterazines: isolation and synthesis. J Nat Prod 71:487–491

    Article  CAS  Google Scholar 

  20. Lee S, LaCour TG et al (2009) Chemistry of trisdecacyclic pyrazine antineoplastics: the cephalostatins and ritterazines. Chem Rev 109:2275–2314

    Article  CAS  Google Scholar 

  21. Proksch P, Edrada-Ebel R et al (2003) Drugs from the sea – opportunities and obstacles. Mar Drugs 1:5–17

    Article  CAS  Google Scholar 

  22. LaCour TG, Guo C et al (1998) Interphylal product splicing: the first total syntheses of cephalostatin 1, the north hemisphere of ritterazine G, and the highly active hybrid analog, ritterostatin GN1N. J Am Chem Soc 120:692–707

    Article  CAS  Google Scholar 

  23. Williams GC (1993) Coral reef octocorals – an illustrated guide to the soft corals, sea fans and sea pens inhabiting the coral reefs of northern Natal. Durban Natural Science Museum, Durban

    Google Scholar 

  24. Blunt JW, Copp BR et al (2011) Marine natural products. Nat Prod Rep 28:196–268

    Article  CAS  Google Scholar 

  25. Rudi A, Goldberg I et al (1993) Sodwanones A-C, three new triterpenoids from a marine sponge. Tetrahedron Lett 34:3943–3944

    Article  CAS  Google Scholar 

  26. Rudi A, Kashman Y et al (1994) Sodwanones A-F, new triterpenoids from the marine sponge Axinella weltneri. J Nat Prod 57:1416–1423

    Article  CAS  Google Scholar 

  27. Rudi A, Goldberg I et al (1995) Sodwanones G, H, and I, new cytotoxic triterpenes from a marine sponge. J Nat Prod 58:1702–1712

    Article  CAS  Google Scholar 

  28. Rudi A, Kashman Y et al (1996) Cytotoxic triterpenes from a marine sponge. WO Patent 9701334

    Google Scholar 

  29. Kashman Y, Koren-Goldshlager G et al (1999) Halitulin, a new cytotoxic alkaloid from the marine sponge Haliclona tulearensis. Tetrahedron Lett 40:997–1000

    Article  CAS  Google Scholar 

  30. Kashman Y, Koren-Goldshlager G et al (1999) Cytotoxic alkaloids including halitulin, isolation from Haliclona tulearensis, and antitumor activity. WO Patent 2000020411

    Google Scholar 

  31. Talpir R, Benayahu Y et al (1994) Hemiasterlin and geodiamolide TA; two new cytotoxic peptides from the marine sponge Hemiasterella minor (Kirkpatrick). Tetrahedron Lett 35:4453–4456

    Article  CAS  Google Scholar 

  32. Kashman Y, Gravalos DG (1995) Hemiasterlin and geodiamolide TA from the sponge Hemiasterella minor, and methods using them for treatment of tumors. US Patent 5661175

    Google Scholar 

  33. Anderson HJ, Coleman JE et al (1997) Cytotoxic peptides hemiasterlin, hemiasterlin A, and hemiasterlin B include mitotic arrest and abnormal spindle formation. Cancer Chemother Pharmacol 39:223–226

    Article  CAS  Google Scholar 

  34. Kingston DGI (2009) Tubulin-interactive natural products as anticancer agents. J Nat Prod 72:507–515

    Article  CAS  Google Scholar 

  35. Nieman JA, Coleman JE et al (2003) Synthesis and antimitotic/cytotoxic activity of hemiasterlin analogues. J Nat Prod 66:183–199

    Article  CAS  Google Scholar 

  36. Kuznetsov G, TenDyke K et al (2009) Tubulin-based antimitotic mechanism of E7974, a novel analogue of the marine sponge natural product hemiasterlin. Mol Cancer Ther 8:2852–2860

    Article  CAS  Google Scholar 

  37. Vashist YK, Tiffon C et al (2006) Inhibition of hepatic tumor cell proliferation in vitro and tumor growth in vivo by taltobulin, a synthetic analogue of the tripeptide hemiasterlin. World J Gastroenterol 12:6771–6778

    CAS  Google Scholar 

  38. Hadaschik BA, Adomat H et al (2008) Intravesical chemotherapy of high-grade bladder cancer with HTI-286, a synthetic analogue of the marine sponge product hemiasterlin. Clin Cancer Res 14:1510–1518

    Article  CAS  Google Scholar 

  39. Hadaschik BA, Ettinger S et al (2008) Targeting prostate cancer with HTI-286, a synthetic analog of the marine sponge product hemiasterlin. Int J Cancer 122:2368–2376

    Article  CAS  Google Scholar 

  40. Rudi A, Ketzinel S et al (1995) Antheliatin and zahavins A and B, three new cytotoxic xenicane diterpenes from two soft corals. J Nat Prod 58:1581–1586

    Article  CAS  Google Scholar 

  41. Rudi A, Kashman Y et al (1996) Reef-inhabiting soft coral cytotoxic xenicane diterpenes with anti-tumor activities, Anthelia glauca antheliatin and Alcyonium aurea zahavin a and zahavin b. WO Patent 9632388

    Google Scholar 

  42. Keyzers RA, Daoust J et al (2008) Autophagy-modulating aminosteroids isolated from the sponge Cliona celata. Org Lett 10:2959–2962

    Article  CAS  Google Scholar 

  43. Keyzers RA, Gray CA et al (2006) Malonganenones A-C, novel tetraprenylated alkaloids from the Mozambique gorgonian Leptogorgia gilchristi. Tetrahedron 62:2200–2206

    Article  CAS  Google Scholar 

  44. Cockburn IL, Pesce E et al (2011) Screening for small molecule modulators of Hsp70 chaperone activity using protein aggregation suppression assays: inhibition of the plasmodial chaperone PfHsp70-1. Biol Chem 392:431–438

    Article  CAS  Google Scholar 

  45. Dai J, Fishback JA et al (2006) Sodwanone and yardenone triterpenes from a South African species of the marine sponge Axinella inhibit hypoxia-inducible factor-1 (HIF-1) activation in both breast and prostate tumor cells. J Nat Prod 69:1715–1720

    Article  CAS  Google Scholar 

  46. Hendricks D, Parker MI (2002) Oesophageal cancer in Africa. IUBMB Life 53:263–268

    Article  CAS  Google Scholar 

  47. Stoner GD, Wang LS et al (2007) Chemoprevention of esophageal squamous cell carcinoma. Toxicol Appl Pharm 224:337–349

    Article  CAS  Google Scholar 

  48. Pickens A, Orringer MB (2003) Geographical distribution and racial disparity in esophageal cancer. Ann Thorac Surg 76:S1367–S1369

    Article  Google Scholar 

  49. Mqoqi N, Keller P et al (2003) Incidence and geographical distribution of histologically diagnosed cancer in South Africa, 1996–1997. National Cancer Registry of South Africa, South African Institute for Medical Research, Johannesburg

    Google Scholar 

  50. Tew WP, Kelsen DP et al (2005) Targeted therapies for esophageal cancer. Oncologist 10:590–601

    Article  CAS  Google Scholar 

  51. Lordick F, Stein HJ et al (2004) Neoadjuvant therapy for oesophagogastric cancer. Brit J Surg 91:540–551

    Article  CAS  Google Scholar 

  52. Scheithauer W (2004) Esophageal cancer: chemotherapy as palliative therapy. Ann Oncol 15:97–100

    Google Scholar 

  53. Whibley CE, Keyzers RA et al (2005) Antiesophageal cancer activity from southern African marine organisms. Ann N Y Acad Sci 1056:405–412

    Article  CAS  Google Scholar 

  54. Whibley CE, McPhail KL et al (2007) Reactive oxygen species mediated apoptosis of esophageal cancer cells induced by marine triprenyl toluquinones and toluhydroquinones. Mol Cancer Ther 6:2535–2543

    Article  CAS  Google Scholar 

  55. Li CH, Chen XS et al (2005) The first total synthesis of triprenylquinone and hydroquinones. Chin Chem Lett 16:1024–1026

    CAS  Google Scholar 

  56. Davies-Coleman MT, Froneman W et al (2005) Anti-oesophageal cancer activity in extracts of deep-water Marion Island sponges. S Afr J Sci 101:489–490

    Google Scholar 

  57. van Wyk AWW, Gray CA et al (2008) Bioactive metabolites from the South African marine mollusk Trimusculus costatus. J Nat Prod 71:420–425

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael T. Davies-Coleman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Davies-Coleman, M.T., Sunassee, S.N. (2012). Marine Bioprospecting in Southern Africa. In: Chibale, K., Davies-Coleman, M., Masimirembwa, C. (eds) Drug Discovery in Africa. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28175-4_8

Download citation

Publish with us

Policies and ethics