Skip to main content

Nanomedicine in the Development of Drugs for Poverty-Related Diseases

  • Chapter
  • First Online:
  • 1233 Accesses

Abstract

The use of current treatments for poverty-related diseases (PRDs) is compromised due to factors such as toxicity and poor solubility leading to lowered bioavailability and thus reduced efficacy. In addition, there is lack of activity from the pharmaceutical industry due to the difficulty in refinancing the high development costs. Hence, new approaches have to be explored for the treatment of PRDs. Nanotechnology-based drug delivery systems (nanomedicine) offer a possible solution by presenting the ability to alter the pharmacokinetics of the conventional drugs to enhance bioavailability, increase the half-life of the drugs and reduce the toxicity. The advantages that nanomedicine-based drug delivery systems present in the treatment of PRDs and the progress of its application in Africa are summarised in this chapter. Nanodrug delivery systems seem to be a promising and viable strategy for improving treatment of PRDs and should urgently be considered in drug development programmes in Africa.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ACTs:

Artemisinin-based combination therapies

ADME:

Absorption, distribution, metabolism and excretion

ARV:

Antiretroviral

AUC:

Area under the curve

C max :

Maximum plasma concentration

CYP:

Cytochrome P450

ESE:

Emulsion-solvent-evaporation

ESSE:

Emulsion-solvent-surfactant-evaporation

ETB:

Ethambutol

HIV:

Human immunodeficiency virus

INH:

Isoniazid

IV:

Intravenous

MIC:

Minimum inhibitory concentration

NTDs:

Neglected tropical diseases

PBCA:

Poly(butyl-2-cyanoacrylate)

PCL:

Polycaprolactone

PEG:

Polyethylene glycol

PK:

Pharmacokinetics

PLGA:

Poly(D,L-lactic-co-glycolic acid)

PRDs:

Poverty-related diseases

PZA:

Pyrazinamide

RES:

Reticuloendothelial system

RECG:

Reverse-emulsion-cationic-gelification

RESCG:

Reverse-emulsion-surfactant-cationic-gelification

RIF:

Rifampicin

R&D:

Research and development

TB:

Tuberculosis

References

  1. Bawa R, Bawa SR, Maebius SB et al (2005) Protecting new ideas and inventions in nanomedicine with patents. Nanomedicine 1:150–158

    Article  CAS  Google Scholar 

  2. Mishra B, Patel BB, Tiwari S (2010) Colloidal nanocarriers: a review on formulation technology, types and applications toward targeted drug delivery. Nanomedicine 6:9–24

    Article  CAS  Google Scholar 

  3. Malam Y, Loizidou M, Seifalian AM (2009) Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol Sci 30:592–599

    Article  CAS  Google Scholar 

  4. WHO (2010) Global tuberculosis control: WHO report 2010. World Health Organisation, Geneva

    Google Scholar 

  5. WHO (2010) World malaria report 2010. World Health Organisation, Geneva

    Google Scholar 

  6. UNAIDS (2010) UNAIDS report on the global AIDS epidemic

    Google Scholar 

  7. Davidson RN (2005) Leishmaniasis. Medicine 33:43–46

    Google Scholar 

  8. Anwabani GM (2002) Drug development: a perspective from Africa. Paediatr Perinat Drug Ther 5:4–11

    Article  Google Scholar 

  9. Choonara YE, Pillay V, Ndesendo VMK et al (2011) Polymeric emulsion and crosslink-mediated synthesis of super-stable nanoparticles as sustained-release anti-tuberculosis drug carriers. Colloids Surf B Biointerfaces 87:243–254

    Article  CAS  Google Scholar 

  10. Semete B, Booysen L, Lemmer Y et al (2010) In vivo evaluation of the biodistribution and safety of PLGA nanoparticles as drug delivery systems. Nanomedicine 6:662–671

    Article  CAS  Google Scholar 

  11. Semete B, Booysen LI, Kalombo L et al (2010) In vivo uptake and acute immune response to orally administered chitosan and PEG coated PLGA nanoparticles. Toxicol Appl Pharmacol 249:158–165

    Article  CAS  Google Scholar 

  12. Swai H, Semete B, Kalombo L et al (2008) Potential of treating tuberculosis with a polymeric nano-drug delivery system. J Control Release 132:e48

    Article  CAS  Google Scholar 

  13. Ma Z, Lienhardt C, McIlleron H et al (2010) Global tuberculosis drug development pipeline: the need and the reality. Lancet 375:2100–2109

    Article  Google Scholar 

  14. http://www.novartisoncology.com/research-innovation/pipeline.jsp. Accessed 22 July 2011

  15. Jang GR, Harris RZ, Lau DT (2001) Pharmacokinetics and its role in small molecule drug discovery research. Med Res Rev 21:382–396

    Article  CAS  Google Scholar 

  16. http://hivinsite.ucsf.edu/InSite?page=ar-01-03. Accessed 23 June 2011

  17. Nzila A, Chilengi R (2010) Modulators of the efficacy and toxicity of drugs in malaria treatment. Trends Pharmacol Sci 31:277–283

    Article  CAS  Google Scholar 

  18. Grimberg BT, Mehlotra RK (2011) Expanding the antimalarial drug arsenal-now, but how? Pharmaceuticals (Basel) 4:681–712

    Google Scholar 

  19. Chatelain E, Ioset JR (2011) Drug discovery and development for neglected diseases: the DNDi model. Drug Des Devel Ther 5:175–181

    Google Scholar 

  20. Kola I, Landis J (2004) Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov 3:711–715

    Article  CAS  Google Scholar 

  21. Riviere JE (2009) Pharmacokinetics of nanomaterials: an overview of carbon nanotubes, fullerenes and quantum dots. Wiley Interdiscip Rev Nanomed Nanobiotechnol 1:26–34

    Article  CAS  Google Scholar 

  22. Couvreur P, Vauthier C (2006) Nanotechnology: intelligent design to treat complex disease. Pharm Res 23:1417–1450

    Article  CAS  Google Scholar 

  23. Gelperina S, Kisich K, Iseman MD et al (2005) The potential advantages of nanoparticle drug delivery systems in chemotherapy of tuberculosis. Am J Respir Crit Care Med 172:1487–1490

    Article  Google Scholar 

  24. Li SD, Huang L (2008) Pharmacokinetics and biodistribution of nanoparticles. Mol Pharm 5:496–504

    Article  CAS  Google Scholar 

  25. Pandey R, Ahmad Z, Sharma S et al (2005) Nano-encapsulation of azole antifungals: potential applications to improve oral drug delivery. Int J Pharm 301:268–276

    Article  CAS  Google Scholar 

  26. Medina C, Santos-Martinez MJ, Radomski A et al (2007) Nanoparticles: pharmacological and toxicological significance. Br J Pharmacol 150:552–558

    Article  CAS  Google Scholar 

  27. Kingsley JD, Dou H, Morehead J et al (2006) Nanotechnology: a focus on nanoparticles as a drug delivery system. J Neuroimmune Pharmacol 1:340–350

    Article  Google Scholar 

  28. McNeil SE (2005) Nanotechnology for the biologist. J Leukoc Biol 78:585–594

    Article  CAS  Google Scholar 

  29. Desai MP, Labhasetwar V, Walter E et al (1997) The mechanism of uptake of biodegradable microparticles in Caco-2 cells is size dependent. Pharm Res 14:1568–1573

    Article  CAS  Google Scholar 

  30. Koziara JM, Lockman PR, Allen DD et al (2003) In situ blood-brain barrier transport of nanoparticles. Pharm Res 20:1772–1778

    Article  CAS  Google Scholar 

  31. Park JH, Saravanakumar G, Kim K et al (2010) Targeted delivery of low molecular drugs using chitosan and its derivatives. Adv Drug Deliv Rev 62:28–41

    Article  CAS  Google Scholar 

  32. Freiberg S, Zhu XX (2004) Polymer microspheres for controlled drug release. Int J Pharm 282:1–18

    Article  CAS  Google Scholar 

  33. Mohanraj VJ, Chen Y (2006) Nanoparticles – a review. Trop J Pharm Res 5:561–573

    Google Scholar 

  34. Kondo N, Iwao T, Kikuchi M et al (1993) Pharmacokinetics of a micronized, poorly water-soluble drug, HO-221, in experimental animals. Biol Pharm Bull 16:796–800

    Article  CAS  Google Scholar 

  35. Mittal G, Sahana DK, Bhardwaj V et al (2007) Estradiol loaded PLGA nanoparticles for oral administration: effect of polymer molecular weight and copolymer composition on release behavior in vitro and in vivo. J Control Release 119:77–85

    Article  CAS  Google Scholar 

  36. Kumari A, Yadav SK, Yadav SC (2010) Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces 75:1–18

    Article  CAS  Google Scholar 

  37. Bae Y, Kataoka K (2009) Intelligent polymeric micelles from functional poly(ethylene glycol)-poly(amino acid) block copolymers. Adv Drug Deliv Rev 61:768–784

    Article  CAS  Google Scholar 

  38. Gaucher G, Dufresne MH, Sant VP et al (2005) Block copolymer micelles: preparation, characterization and application in drug delivery. J Control Release 109:169–188

    Article  CAS  Google Scholar 

  39. Jones M, Leroux J (1999) Polymeric micelles – a new generation of colloidal drug carriers. Eur J Pharm Biopharm 48:101–111

    Article  CAS  Google Scholar 

  40. Svenson S, Tomalia DA (2005) Dendrimers in biomedical applications–reflections on the field. Adv Drug Deliv Rev 57:2106–2129

    Article  CAS  Google Scholar 

  41. Muller RH, Mader K, Gohla S (2000) Solid lipid nanoparticles (SLN) for controlled drug delivery – a review of the state of the art. Eur J Pharm Biopharm 50:161–177

    Article  CAS  Google Scholar 

  42. Couvreur P, Barratt G, Fattal E et al (2002) Nanocapsule technology: a review. Crit Rev Ther Drug Carrier Syst 19:99–134

    Article  CAS  Google Scholar 

  43. Sosnik A, Carcaboso AM, Glisoni RJ et al (2010) New old challenges in tuberculosis: potentially effective nanotechnologies in drug delivery. Adv Drug Deliv Rev 62:547–559

    Article  CAS  Google Scholar 

  44. Semete B, Kalombo L, Katata L et al. (2011) Potential of improving the treatment of tuberculosis through nanomedicine. Mol Cryst Liq Cryst 556:317–330

    Google Scholar 

  45. Trewyn BG, Nieweg JA, Zhao Y et al (2008) Biocompatible mesoporous silica nanoparticles with different morphologies for animal cell membrane penetration. Chem Eng J 137:23–29

    Article  CAS  Google Scholar 

  46. Benadie Y, Deysel M, Siko DG et al (2008) Cholesteroid nature of free mycolic acids from M. tuberculosis. Chem Phys Lipids 152:95–103

    Article  CAS  Google Scholar 

  47. Lemmer Y, Semete B, Booysen L et al (2008) Targeted nanodrug delivery systems for the treatment of tuberculosis. Drug Discov Today 15:1098

    Article  Google Scholar 

  48. Murray HW, Berman JD, Davies CR et al (2005) Advances in leishmaniasis. Lancet 366:1561–1577

    Article  CAS  Google Scholar 

  49. Abdulla M-H, Lim K-C, Sajid M et al (2007) Schistosomiasis mansoni: Novel chemotherapy using a cysteine protease inhibitor. PLoS Med 4:130–138

    Article  CAS  Google Scholar 

  50. Islam RU, Hean J, van Otterlo WAL et al (2009) Efficient nucleic acid transduction with lipoplexes containing novel piperazine- and polyamine-conjugated cholesterol derivatives. Bioorg Med Chem Lett 19:100–103

    Article  CAS  Google Scholar 

  51. Arbuthnot P (2009) Applying nanotechnology to gene therapy for treatment of serious viral infections. Nano News, South Africa. http://www.sani.org.za/pdf/NanoNovember09.pdf. Accessed 24 Oct 2011

  52. Steyn JD, Wiesner L, du Plessis LH et al (2011) Absorption of the novel artemisinin derivatives artemisone and artemiside: potential application of Pheroid technology. Int J Pharm 414:260–266

    Article  CAS  Google Scholar 

  53. Lowell JE, Earl CD (2009) Leveraging biotech’s drug discovery expertise for neglected diseases. Nat Biotechnol 27:323–329

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rose Hayeshi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Hayeshi, R. et al. (2012). Nanomedicine in the Development of Drugs for Poverty-Related Diseases. In: Chibale, K., Davies-Coleman, M., Masimirembwa, C. (eds) Drug Discovery in Africa. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28175-4_17

Download citation

Publish with us

Policies and ethics