Skip to main content

High Performance Computing Techniques for Scaling Image Analysis Workflows

  • Conference paper
Applied Parallel and Scientific Computing (PARA 2010)

Abstract

Biomedical images are intrinsically complex with each domain and modality often requiring specialized knowledge to accurately render diagnosis and plan treatment. A general software framework that provides access to high-performance resources can make possible high-throughput investigations of micro-scale features as well as algorithm design, development and evaluation. In this paper we describe the requirements and challenges of supporting microscopy analyses of large datasets of high-resolution biomedical images. We present high-performance computing approaches for storage and retrieval of image data, image processing, and management of analysis results for additional explorations. Lastly, we describe issues surrounding the use of high performance computing for scaling image analysis workflows.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rimm, D.L., Camp, R.L., Charette, L.A., Costa, J., Olsen, D.A., Reiss, M.: Tissue microarray: A new technology for amplification of tissue resources. Cancer Journal 7(1), 24–31 (2001)

    Google Scholar 

  2. Zhang, X., Pan, T., Catalyurek, U., Kurc, T., Saltz, J.: Serving Queries to Multi-Resolution Datasets on Disk-based Storage Clusters. In: The Proceedings of 4th IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGrid 2004), Chicago, IL (April 2004)

    Google Scholar 

  3. Kumar, V.S., Rutt, B., Kurc, T.M., Catalyurek, U.V., Pan, T.C., Chow, S., Lamont, S., Martone, M., Saltz, J.H.: Large-scale biomedical image analysis in grid environments. IEEE Transactions on Information Technology in Biomedicine 12(2), 154–161 (2008)

    Article  Google Scholar 

  4. Kumar, V., Kurc, T., Ratnakar, V., Kim, J., Mehta, G., Vahi, K., Nelson, Y., Sadayappan, P., Deelman, E., Gil, Y., Hall, M., Saltz, J.: Parameterized specification, configuration and execution of data-intensive scientific workflows. Cluster Computing (April 2010)

    Google Scholar 

  5. Beynon, M., Chang, C., Catalyurek, U., Kurc, T., Sussman, A., Andrade, H., Ferreira, R., Saltz, J.: Processing large-scale multi-dimensional data in parallel and distributed environments. Parallel Comput. 28(5), 827–859 (2002)

    Article  Google Scholar 

  6. Kumar, V., Kurc, T., Saltz, J., Abdulla, G., Kohn, S., Matarazzo, C.: Architectural Implications for Spatial Object Association Algorithms. In: The 23rd IEEE International Parallel and Distributed Processing Symposium (IPDPS 2009), Rome, Italy (May 2009)

    Google Scholar 

  7. Gray, J., Nieto-Santisteban, M.A., Szalay, A.S.: The zones algorithm for finding points-near-a point or cross-matching spatial datasets. CoRR, abs/cs/0701171 (2007)

    Google Scholar 

  8. Kurc, T., Hastings, S., Kumar, S., et al.: HPC and Grid Computing for Integrative Biomedical Research. International Journal of High Performance Computing Applications, Special Issue of the Workshop on Clusters and Computational Grids for Scientific Computing (August 2009)

    Google Scholar 

  9. Oster, S., Langella, S., Hastings, S., Ervin, D., Madduri, R., Phillips, J., Kurc, T., Siebenlist, F., Covitz, P., Shanbhag, K., Foster, I., Saltz, J.: caGrid 1.0: An Enterprise Grid Infrastructure for Biomedical Research. Journal of the American Medical Informatics Association (JAMIA) 15, 138–149 (2008)

    Article  Google Scholar 

  10. Felten, C.L., Strauss, J.S., Okada, D.H., Marchevsky, A.: Virtual microscopy: high resolution digital photomicrography as a tool for light microscopy simulation. Hum. Pathol. 30(4), 477–483 (1999)

    Article  Google Scholar 

  11. Singson, R.P., Natarajan, S., Greenson, J.K., Marchevsky, A.: Virtual microscopy and the Internet as telepathology consultation tools. A study of gastrointestinal biopsy specimens. Am J. Clin. Pathol. 111(6), 792–795 (1999)

    Article  Google Scholar 

  12. Ramirez, N.C., Barr, T.J., Billiter, D.M.: Utilizing virtual microscopy for quality control review. Dis Markers 23(5-6), 459–466 (2007)

    Article  Google Scholar 

  13. Okada, D.H., Binder, S.W., Felten, C.L., Strauss, J.S., Marchevsky, A.M.: Virtual microscopy and the internet as telepathology consultation tools: Diagnostic accuracy in evaluating melanocytic skin lesions. Am J. Dermatopatholology 21(6), 525–531 (1999)

    Article  Google Scholar 

  14. Afework, A., Beynon, M., Bustamante, F., et al.: Digital dynamic telepathology - the Virtual Microscope. In: The AMIA Annual Fall Symposium. American Medical Informatics Association (November 1998)

    Google Scholar 

  15. Goldberg, I., Allan, C., Burel, J.M., et al.: The open microscopy environment (OME) data model and xml file: Open tools for informatics and quantitative analysis in biological imaging. Genome Biol. 6(R47) (2005)

    Google Scholar 

  16. Martone, M., Tran, J., Wong, W., Sargis, J., Fong, L., Larson, S., Lamont, S., Gupta, A., Ellisman, M.: The cell centered database project: An update on building community resources for managing and sharing 3d imaging data. Journal of Structural Biology 161(3), 220–231 (2008)

    Article  Google Scholar 

  17. Manolakos, E., Funk, A.: Rapid prototyping of component-based distributed image processing applications using JavaPorts. In: Workshop on Computer-Aided Medical Image Analysis, CenSSIS Research and Industrial Collaboration Conference (2002)

    Google Scholar 

  18. Oberhuber, M.: Distributed high-performance image processing on the internet, MS Thesis, Technische Universitat Graz (2002)

    Google Scholar 

  19. Ludascher, B., Altintas, I., et al.: Scientific workflow management and the kepler system. Research articles. Concurr. Comput.: Pract. Exper. 18(10), 1039–1065 (2006)

    Article  Google Scholar 

  20. Deelman, E., Blythe, J., Gil, Y., Kesselman, C., Mehta, G., Patil, S., Su, M.-H., Vahi, K., Livny, M.: Pegasus: Mapping Scientific Workflows onto the Grid. In: Dikaiakos, M.D. (ed.) AxGrids 2004. LNCS, vol. 3165, pp. 11–20. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  21. Glatard, T., Montagnat, J., Pennec, X.: Efficient services composition for grid-enabled data-intensive applications. In: Proceedings of the IEEE International Symposium on High Performance Distributed Computing (HPDC 2006), Paris, France, June 19 (2006)

    Google Scholar 

  22. Andrade, H., Gedik, B., Wu, K., Yu, P.: Scale-Up Strategies for Processing High-Rate Data Streams in System S. In: The 25th International Conference on Data Engineering (ICDE 2009), Shangai, China, pp. 1375–1378 (2009)

    Google Scholar 

  23. Cudre-Mauroux, P., Lim, H., Simakov, J., et al.: A Demonstration of SciDB: A Science-Oriented DBMS. In: 35th International Conference on Very Large Data Bases (VLDB 2009), Lyon, France (2009)

    Google Scholar 

  24. Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clusters. In: 6th Symposium on Operating Systems Design and Implementation (OSDI 2004), San Francisco, CA (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Kristján Jónasson

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Widener, P.M. et al. (2012). High Performance Computing Techniques for Scaling Image Analysis Workflows. In: Jónasson, K. (eds) Applied Parallel and Scientific Computing. PARA 2010. Lecture Notes in Computer Science, vol 7134. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28145-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28145-7_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28144-0

  • Online ISBN: 978-3-642-28145-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics