Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 661 Accesses

Abstract

Simple cyclic enones have generally been omitted within the vast majority of studies on the asymmetric epoxidation of α,β-unsaturated ketones. Thus, we decided to focus on these challenging cyclic substrates as a departure point before extending the methodology to different types of α,β-unsaturated ketones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Yield determined by GC with an internal standard method.

  2. 2.

     Catalyst system [(R,R)-DPEN ⋅ (S)-TRIP] exhibited low catalytic efficiency also with other 3-substituted 2-cyclohexenones; i.a. (2R,3S)-3-benzyl-2,3-epoxycyclohexanone (48m) was obtained in 35% yield and 86:14 er and (2R,3S)-3-isopropyl-2,3-epoxycyclohexanone (48i) in 36% yield and 89.5:10.5 er, respectively.

  3. 3.

    [(R,R)-DPEN  TFA] and [(R,R)-DPEN ⋅ (S)-TRIP] were tested, but gave inferior results (~40% conversion, 80:20 and 93:7 er, respectively).

  4. 4.

    The relative configuration was assigned by NOE analysis.

  5. 5.

    Racemate was obtained with alkaline hydrogen peroxide in methanol with 98:2 dr.

  6. 6.

    One-pot syntheses of epoxide 84 starting from diketone 82 are possible in the presence of catalyst [67  2 TCA] but have not been optimized.

  7. 7.

    Racemate was obtained with alkaline hydrogen peroxide in methanol with 94:6 dr from racemic enone 83.

  8. 8.

    This is in accordance with our observation that 2-cyclopentenone (46r) dimerizes in the presence of the catalytic salt [13 ⋅ 2 TFA] as detected by GC–MS and ESI-MS.

  9. 9.

    This trend had previously been observed with the six-membered ring analogues.

  10. 10.

    [13 ⋅ 3 TCA] was chosen instead of [13 ⋅ 2 TCA] since a 3:1 acid/9-amino(9-deoxy)epiquinine ratio seemed to have a beneficial effect on the catalyst activity (Table 4.22, entry 6 versus 7).

  11. 11.

    Determined by GC-MS.

  12. 12.

    The sterically demanding 9-amino(9-deoxy)epiquinine (13) catalyst may somewhat shield the α-position and thus hinder α-protonation in favour of competing γ-protonation.

  13. 13.

     Determined by GC–MS.

  14. 14.

     Deng and co-workers reported identical substrate scope limitations in their [13 ⋅ 3 TFA]-catalyzed asymmetric alkylperoxidation of α,β-unsaturated ketones with TBHP and related oxidants.

  15. 15.

    Iso-46v was detected in the crude product mixture prior to treatment with base. Deconjugation was also noticed in the reaction of 2-cycloheptenone (46s), yet only to a negligible extent (~1%).

  16. 16.

    The same two-step protocol was applied to 2-cycloheptenone (46s). Yet, the yield was not significantly improved to compensate for the loss of enantioselectivity (96.5:3.5 er).

  17. 17.

    Density functional theory (DFT) computation at the B3LYP/6-31G* level of theory (Vacuum) was performed using Spartan’08 Windows from Wavefunction, Inc.

  18. 18.

    Due to the incompatibility of the reaction conditions of the hydroperoxidation and the hydrogenation, this transformation was carried out in a stepwise fashion simply interrupted by an aqueous work-up alike in the epoxidation protocol.

  19. 19.

    We discovered a catalytic effect of the eight-membered ring peroxide 117 on the reductive cleavage of 2,3-epoxycyclooctanone 48v which is to date unknown in nature. Full conversion to 3-hydroxycyclooctanone 124d was achieved within 10 min at ambient temperature albeit once again with erosion of optical purity.

  20. 20.

    Density functional theory (DFT) computation at the B3LYP/6-31G* level (Vacuum) was performed using Spartan ‘08 Windows from Wavefunction, Inc.

  21. 21.

    Initially formed refers to the epoxide fraction which is formed directly under the reaction conditions, and not through conversion of the corresponding peroxyhemiketal to the epoxide while treating the crude mixture with base (NaOH).

  22. 22.

    Enantiomeric ratios were determined after converting the peroxyhemiketals to the corresponding epoxides.

  23. 23.

    The reaction catalyzed by [(R,R)-DPEN ⋅ (S)-TRIP] supposedly proceeds in an analogous fashion.

  24. 24.

    pK a(H2O2) 11.8, for comparison: pK a(quinuclidine) 11.1, pK a(i-PrNH2) 10.7, pK a(benzyl amine) 9.34, pK a(quinoline) 4.85.

  25. 25.

    pK a(2,3-diaminobutane, rac.) 10.00, 6.91.

  26. 26.

    Alternatively, a cross-over experiment could have been carried out by mixing a peroxyhemiketal with a different enone substrate under reaction condition in the absence of H2O2.

  27. 27.

    In particular for reactions conducted at elevated temperatures of 50 °C or higher.

  28. 28.

    DFT calculations were performed using Spartan′08 Windows from Wavefunction, Inc.

  29. 29.

    Due to a change in priority of the substituent attached to the β-carbon, compounds 46h-m formally undergo attack from the re(β)-face in the presence of catalyst [13 ⋅ 2 TFA], although in practice there is no change in facial selectivity.

  30. 30.

    Cyclic enones 46g,h and l were prepared by Martin through the same route.

  31. 31.

    Cyclic enones 46v-x were prepared in collaboration with Wang.

  32. 32.

    Despite several reruns, we were not able to reproduce the diastereoselectivity of >12:1 (threo/erythro) reported by the Kessar group.

  33. 33.

    Suzuki–Miyaura reaction of boronic diacid 157 with 2,4,6-triisopropylphenyl bromide afforded poor yields of the dicoupling product.

References

  1. Wang X, List B (2008) Angew Chem Int Ed 47:1119

    Article  CAS  Google Scholar 

  2. Martin NJA, List B (2006) J Am Chem Soc 128:13368

    Article  CAS  Google Scholar 

  3. Kawara A, Taguchi T (1994) Tetrahedron Lett 35:8805

    Article  CAS  Google Scholar 

  4. Yamaguchi M, Shiraishi T, Hirama M (1996) J Org Chem 61:3520

    Article  CAS  Google Scholar 

  5. Yamaguchi M, Shiraishi T, Hirama M (1993) Angew Chem Int Ed 32:1176

    Article  Google Scholar 

  6. Hanessian S, Pham V (2000) Org Lett 2:2975

    Article  CAS  Google Scholar 

  7. Zhou J, Wakchaure V, Kraft P, List B (2008) Angew Chem Int Ed 47:7656

    Article  CAS  Google Scholar 

  8. Mayer S, List B (2006) Angew Chem Int Ed 45:4193

    Article  CAS  Google Scholar 

  9. Wynberg H, Marsman B (1980) J Org Chem 45:158

    Article  CAS  Google Scholar 

  10. Martin NJA (2008) Ph.D. thesis

    Google Scholar 

  11. Kienle M, Argyrakis W, Baro A, Laschat S (2008) Tetrahedron Lett 49:1971

    Article  CAS  Google Scholar 

  12. Alexakis A, Benhaim C (2002) Eur J Org Chem 2002:3221

    Article  Google Scholar 

  13. Alexakis A, Bäckvall JE, Krause N, Pàmies O, Diéguez M (2008) Chem Rev 108:2796

    Article  CAS  Google Scholar 

  14. Stork G, Danheiser RL (1973) J Org Chem 38:1775

    Article  CAS  Google Scholar 

  15. Hoke ME, Brescia M-R, Bogaczyk S, DeShong P, King BW, Crimmins MT (2001) J Org Chem 67:327

    Article  CAS  Google Scholar 

  16. Baldwin JE, Adlington RM, Mitchell MB (1993) J Chem Soc, Chem Commun (17):1332

    Google Scholar 

  17. Sucrow W, Rädecker G (1988) Chem Ber 121:219

    Article  CAS  Google Scholar 

  18. Christian CF, Takeya T, Szymanski MJ, Singleton DA (2007) J Org Chem 72:6183

    Article  CAS  Google Scholar 

  19. Ramachary DB, Ramakumar K, Kishor M (2005) Tetrahedron Lett 46:7037

    Article  CAS  Google Scholar 

  20. Ramachary DB, Ramakumar K, Narayana VV (2008) Chem Eur J 14:9143

    Article  CAS  Google Scholar 

  21. Yanagisawa A, Shinohara A, Takahashi H, Arai T (2007) Synlett 1:141

    Article  CAS  Google Scholar 

  22. Hong L, Sun W, Liu C, Wang L, Wong K, Wang R (2009) Chem Eur J 15:11105

    Article  CAS  Google Scholar 

  23. Yang Y-Q, Zhao G (2008) Chem Eur J 14:10888

    Article  CAS  Google Scholar 

  24. Nazarov IN, Akhrem AA (1950) Zh Obshch Khim 20:2183

    CAS  Google Scholar 

  25. Payne G (1958) J Org Chem 23:310

    Article  CAS  Google Scholar 

  26. Fraile JM, García JI, Mayoral JA, Sebti S, Tahirb R (2001) Green Chem 3:271

    Article  CAS  Google Scholar 

  27. Cativiela C, Figueras F, Fraile JM, García JI, Mayoral JA (1995) Tetrahedron Lett 36:4125

    Article  CAS  Google Scholar 

  28. Paquette LA, Carr RVC, Bellamy F (1978) J Am Chem Soc 100:6764

    Article  CAS  Google Scholar 

  29. Rieche A, Schmitz E, Gründemann E (1960) Chem Ber 93:2443

    Article  CAS  Google Scholar 

  30. Xie J-W, Chen W, Li R, Zeng M, Du W, Yue L, Chen Y-C, Wu Y, Zhu J, Deng J-G (2007) Angew Chem Int Ed 46:389

    Article  CAS  Google Scholar 

  31. Erkkilä A, Pihko PM (2007) Eur J Org Chem 2007:4205

    Article  CAS  Google Scholar 

  32. Hamann H-J, Bunge A, Liebscher J (2008) Chem Eur J 14:6849

    Article  CAS  Google Scholar 

  33. Carey FA, Sundberg RJ (2007) Advanced organic chemistry. Part A: structure and mechanisms: structure and mechanisms, 5th edn. Springer, New York

    Google Scholar 

  34. Wang X, Reisinger CM, List B (2008) J Am Chem Soc 130:6070

    Article  CAS  Google Scholar 

  35. Lu X, Liu Y, Sun B, Cindric B, Deng L (2008) J Am Chem Soc 130:8134

    Article  CAS  Google Scholar 

  36. Carlone A, Bartoli G, Bosco M, Pesciaioli F, Ricci P, Sambri L, Melchiorre P (2007) Eur J Org Chem 33:5492

    Article  CAS  Google Scholar 

  37. Barnier J-P, Morisson V, Blanco L (2001) Synth Commun 31:349

    Article  CAS  Google Scholar 

  38. Kulinkovich OG, Astashko DA, Tyvorskii VI, Ilyina NA (2001) Synthesis 10:1453

    Article  Google Scholar 

  39. Maulide N, Vanherck J-C, Gautier A, Marko IE (2007) Acc Chem Res 40:381

    Article  CAS  Google Scholar 

  40. Bailey M, Staton I, Ashton PR, Markó IE, Ollis WD (1991) Tetrahedron: Asymmetry 2:495

    Article  CAS  Google Scholar 

  41. Kayser RH, Pollack RM (1975) J Am Chem Soc 97:952

    Article  CAS  Google Scholar 

  42. Schuurman RJW, Linden Ad, Grimbergen RPF, Nolte RJM, Scheeren HW (1996) Tetrahedron 52:8307

    Article  CAS  Google Scholar 

  43. Aggarwal VK, Mereu A (1999) Chem Commun (22):2311

    Google Scholar 

  44. Bartoli G, Bosco M, Carlone A, Pesciaioli F, Sambri L, Melchiorre P (2007) Org Lett 9:1403

    Article  CAS  Google Scholar 

  45. Xie J-W, Huang X, Fan L-P, Xu D-C, Li X-S, Su H, Wen Y-H (2009) Adv Synth Catal 351:3077

    Article  CAS  Google Scholar 

  46. Fehr C, Galindo J (2005) Helv Chim Acta 88:3128

    Article  CAS  Google Scholar 

  47. Dussault PH, Liu X (1999) Org Lett 1:1391

    Article  CAS  Google Scholar 

  48. Kirihara M, Kakuda H, Ichinose M, Ochiai Y, Takizawa S, Mokuya A, Okubo K, Hatano A, Shiro M (2005) Tetrahedron 61:4831

    Article  CAS  Google Scholar 

  49. Chung WK, Lam SK, Lo B, Liu LL, Wong W-T, Chiu P (2009) J Am Chem Soc 131:4556

    Article  CAS  Google Scholar 

  50. Mukherjee S, Yang JW, Hoffmann S, List B (2007) Chem Rev 107:5471

    Article  CAS  Google Scholar 

  51. Machajewski TD, Wong C-H (2000) Angew Chem Int Ed 39:1352

    Article  CAS  Google Scholar 

  52. Geary LM, Hultin PG (2009) Tetrahedron: Asymmetry 20:131

    Article  CAS  Google Scholar 

  53. Mahrwald RE (ed) (2004) Modern aldol reactions. Wiley-VCH, Weinheim

    Google Scholar 

  54. Guillena G, Nájera C, Ramón DJ (2007) Tetrahedron: Asymmetry 18:2249

    Article  CAS  Google Scholar 

  55. Krattiger P, Kovasy R, Revell JD, Ivan S, Wennemers H (2005) Org Lett 7:1101

    Article  CAS  Google Scholar 

  56. Tang Z, Jiang F, Cui X, Gong L-Z, Mi A-Q, Jiang Y-Z, Wu Y-D (2004) Proc Natl Acad Sci USA 101:5755

    Article  CAS  Google Scholar 

  57. Tang Z, Jiang F, Yu L-T, Cui X, Gong L-Z, Mi A-Q, Jiang Y-Z, Wu Y-D (2003) J Am Chem Soc 125:5262

    Article  CAS  Google Scholar 

  58. List B, Pojarliev P, Castello C (2001) Org Lett 3:573

    Article  CAS  Google Scholar 

  59. Morisson V, Barnier J-P, Blanco L (1999) Tetrahedron Lett 40:4045

    Article  CAS  Google Scholar 

  60. Griesbaum K, Kim WS (1992) J Org Chem 57:5574

    Article  CAS  Google Scholar 

  61. Baumstark AL, Vasquez PC, Chen Y (1993) Heteroat Chem 4:175

    Article  CAS  Google Scholar 

  62. Makarov SV (2001) Russ Chem Rev 70:885

    Article  CAS  Google Scholar 

  63. Li DR, Murugan A, Falck JR (2007) J Am Chem Soc 130:46

    Article  CAS  Google Scholar 

  64. Körber K, Risch P, Brückner R (2005) Synlett 19:2905

    Google Scholar 

  65. Corey EJ, Ensley HE (1973) J Org Chem 38:3187

    Article  CAS  Google Scholar 

  66. Molander GA, Hahn G (1986) J Org Chem 51:2596

    Article  CAS  Google Scholar 

  67. Miyashita M, Suzuki T, Yoshikoshi A (1987) Tetrahedron Lett 28:4293

    Article  CAS  Google Scholar 

  68. Engman L, Stern D (2002) J Org Chem 59:5179

    Article  Google Scholar 

  69. Jung ME, Allen DA (2008) Org Lett 10:2039

    Article  CAS  Google Scholar 

  70. Miyashita M, Suzuki T, Hoshino M, Yoshikoshi A (1997) Tetrahedron 53:12469

    Article  CAS  Google Scholar 

  71. Pidathala C, Hoang L, Vignola N, List B (2003) Angew Chem Int Ed 42:2785

    Article  CAS  Google Scholar 

  72. Ghobril C, Sabot C, Mioskowski C, Baati R (2008) Eur J Org Chem (24):4104

    Google Scholar 

  73. McCullough KJ, Nojimab M (2001) Curr Org Synth 5:601

    CAS  Google Scholar 

  74. Dussault PH, Zope U (1995) Tetrahedron Lett 36:3655

    Article  CAS  Google Scholar 

  75. Tokuyasu T, Ito T, Masuyama A, Nojima M (2000) Heterocycles 53:1293

    Article  CAS  Google Scholar 

  76. Dussault PH, Lee RJ, Schultz JA, Suh YS (2000) Tetrahedron Lett 41:5457

    Article  CAS  Google Scholar 

  77. Dussault PH, Lee IQ, Lee H-J, Lee RJ, Niu QJ, Schultz JA, Zope UR (2000) J Org Chem 65:8407

    Article  CAS  Google Scholar 

  78. Dussault PH, Trullinger TK, Cho-Shultz S (2000) Tetrahedron 56:9213

    Article  CAS  Google Scholar 

  79. Courtneidge JL, Bush M, Loh LS (1992) Tetrahedron 48:3835

    Article  CAS  Google Scholar 

  80. Baba N, Oda J, Kawahara S, Hamada M (1989) Bull Inst Chem Res Kyoto Univ 67:121

    CAS  Google Scholar 

  81. Zajac WW, Walters TR, Darcy MG (1988) J Org Chem 53:5856

    Article  CAS  Google Scholar 

  82. Baidya M, Horn M, Zipse H, Mayr H (2009) J Org Chem 74:7157

    Article  CAS  Google Scholar 

  83. Aggarwal VK, Lopin C, Sandrinelli F (2003) J Am Chem Soc 125:7596

    Article  CAS  Google Scholar 

  84. Chen W, Du W, Duan Y-Z, Wu Y, Yang S-Y, Chen Y-C (2007) Angew Chem Int Ed 46:7667

    Article  CAS  Google Scholar 

  85. Kelly DR, Caroff E, Flood RW, Heal W, Roberts SM (2004) Chem Commun 2016

    Google Scholar 

  86. Kelly DR, Roberts SM (2006) Pept Sci 84:74

    Article  CAS  Google Scholar 

  87. Woods GF, Tucker IW (1948) J Am Chem Soc 70:2174

    Article  CAS  Google Scholar 

  88. Woods GF, Griswold PH, Armbrecht BH, Blumenthal DI, Plapinger R (1949) J Am Chem Soc 71:2028

    Article  CAS  Google Scholar 

  89. Ito Y, Hirao T, Saegusa T (1978) J Org Chem 43:1011

    Article  CAS  Google Scholar 

  90. Hadjiarapoglou L, Klein I, Spitzner D, de Meijere A (1996) Synthesis 525

    Google Scholar 

  91. Yu J-Q, Corey EJ (2002) Org Lett 4:2727

    Article  CAS  Google Scholar 

  92. Larock RC, Hightower TR, Kraus GA, Hahn P, Zheng D (1995) Tetrahedron Lett 36:2423

    Article  CAS  Google Scholar 

  93. Cahiez G, Avedissian H (1998) Synthesis 1199

    Google Scholar 

  94. Trnka TM, Grubbs RH (2000) Acc Chem Res 34:18

    Article  CAS  Google Scholar 

  95. Chatterjee AK, Morgan JP, Scholl M, Grubbs RH (2000) J Am Chem Soc 122:3783

    Article  CAS  Google Scholar 

  96. Tietze LF, Henrich M, Niklaus A, Buback M (1999) Chem Eur J 5:297

    Article  CAS  Google Scholar 

  97. Oare DA, Henderson MA, Sanner MA, Heathcock CH (1990) J Org Chem 55:132

    Article  CAS  Google Scholar 

  98. Usuda H, Kuramochi A, Kanai M, Shibasaki M (2004) Org Lett 6:4387

    Article  CAS  Google Scholar 

  99. Brunner H, Bügler J, Nuber B (1995) Tetrahedron: Asymmetry 6:1699

    Article  CAS  Google Scholar 

  100. Brunner H, Bügler J (1997) Bull Soc Chim Belg 106:77

    CAS  Google Scholar 

  101. Brunner H, Schmidt P (2000) Eur J Org Chem (11):2119

    Google Scholar 

  102. Zhang E, Fan C-A, Tu Y-Q, Zhang F-M, Song Y-L (2009) J Am Chem Soc 131:14626

    Article  CAS  Google Scholar 

  103. McCooey SH, Connon SJ (2007) Org Lett 9:599

    Article  CAS  Google Scholar 

  104. Vakulya B, Varga S, Csámpai A, Soós T (2005) Org Lett 7:1967

    Article  CAS  Google Scholar 

  105. Berkessel A, Guixá M, Schmidt F, Neudörfl JM, Lex J (2007) Chem Eur J 13:4483

    Article  CAS  Google Scholar 

  106. Franz MH, Röper S, Wartchow R, Hoffmann HMR (2004) J Org Chem 69:2983

    Article  CAS  Google Scholar 

  107. Kessar SV, Singh P, Singh KN, Singh SK (1999) Chem Commun (19):1927

    Google Scholar 

  108. Kessar SV, Singh P, Vohra R, Kaur NP, Singh KN (1991) J Chem Soc, Chem Commun (8):568

    Google Scholar 

  109. Kessar SV, Singh P, Kaur A, Singh S (2003) ARKIVOC 3:120

    Google Scholar 

  110. Li J, Luo S, Cheng J-P (2009) J Org Chem 74:1747

    Article  CAS  Google Scholar 

  111. Simonsen KB, Gothelf KV, Jorgensen KA (1998) J Org Chem 63:7536

    Article  CAS  Google Scholar 

  112. Wipf P, Jung J-K (2000) J Org Chem 65:6319

    Article  CAS  Google Scholar 

  113. Zhu SS, Cefalo DR, La DS, Jamieson JY, Davis WM, Hoveyda AH, Schrock RR (1999) J Am Chem Soc 121:8251

    Article  CAS  Google Scholar 

  114. Seayad J, Seayad AM, List B (2006) J Am Chem Soc 128:1086

    Article  CAS  Google Scholar 

  115. Akiyama T (2004) WO2004096753, PCT Int Appl

    Google Scholar 

  116. Storer RI, Carrera DE, Ni Y, MacMillan DWC (2005) J Am Chem Soc 128:84

    Article  CAS  Google Scholar 

  117. Maruoka K, Itoh T, Araki Y, Shirasaka T, Yamamoto H (1988) Bull Chem Soc Jpn 61:2975

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corinna Reisinger .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reisinger, C. (2012). Results and Discussion. In: Epoxidations and Hydroperoxidations of α,β-Unsaturated Ketones. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28118-1_4

Download citation

Publish with us

Policies and ethics