Skip to main content

Introduction to Surface Plasmon Theory

  • Chapter
  • First Online:
Book cover Plasmonics

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 167))

Abstract

This chapter is an introduction to the surface plasmon theory. We start with the solid-state point of view with emphasis on the concept of polariton and the limits of the Drude model. The concept of electromagnetic surface wave is then introduced in a general framework. Three particular cases are then discussed: the surface plasmon, the surface phonon polariton and the Sommerfeld surface wave. The key properties of surface plasmons for optics are discussed in general terms, with special emphasis on the concepts of field confinment and local density of states. The differences between the dispersion relations of surface waves in the presence of losses are analysed and their significance is explained. Finally, an equivalent of the Huygens–Fresnel principle is derived for the surface plasmon polaritons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the context of Fermi golden rule, a factor 1/3 is introduced in order to account for the fact that a given dipole can couple to only one component of the electric field.

References

  1. L.M. Brekhovskikh, Waves in layered media (Academic Press, New York, 1960)

    Google Scholar 

  2. A. Banos, Dipole radiation in the presence of a conducting half-space (IEEE Press, Piscataway, 1994)

    Google Scholar 

  3. L. Felsen, N. Marcuvitz, Radiation and scattering of waves (Oxford University Press, NY, 1996)

    Google Scholar 

  4. R.W.P. King, M. Owens, T.T. Wu, Lateral electromagnetic waves (Springer Verlag, NY, 1992)

    Book  Google Scholar 

  5. A.D. Boardman(ed.), Electromagnetic surface modes (Wiley, New York, 1982)

    Google Scholar 

  6. V.M. Agranovich, D.L. Mills (eds.), Surface Polaritons (North-Holland, Amsterdam, 1982)

    Google Scholar 

  7. H. Raether, Surface Plasmons (Springer-Verlag, Berlin, 1988)

    Google Scholar 

  8. A.V. Zayats, I.I. Smolyaninov, A.A. Maradudin, Phys. Rep. 408, 131 (2005)

    Article  ADS  Google Scholar 

  9. W.L. Barnes, A. Dereux, T.W. Ebbesen, Nature 424, 824 (2003)

    Article  ADS  Google Scholar 

  10. J.A. Schuller, E.S. Barnard, W. Cai, Y.C. Jun, J.S. White, M.L. Brongersma, Nat. Mater. 9, 193 (2010)

    Article  ADS  Google Scholar 

  11. C. Kittel, Solid State Physics (John Wiley, New York, 1987)

    Google Scholar 

  12. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Holt-Saunders, New York, 1976)

    Google Scholar 

  13. J.M. Ziman, Principles of the theory of solids (Cambridge University Press, London, 1964)

    MATH  Google Scholar 

  14. D. Pines, Elementary excitations in solids: lectures on phonons, electrons and plasmons (W.A. Benjamin, London, 1964)

    Google Scholar 

  15. C. Kittel, Quantum Theory of Solids (Wiley, New York, 1987)

    Google Scholar 

  16. J.D. Jackson, Classical Electrodynamics, 3rd edn. (Wiley, New York, 1999)

    MATH  Google Scholar 

  17. G.W. Ford, W.H. Weber, Phys. Rep. 113, 195 (1984)

    Article  ADS  Google Scholar 

  18. L.D. Landau, L.P. Pitaevskii, E.M. Lifshitz, Electrodynamics of continuous media (Elsevier, Amsterdam, 2004)

    Google Scholar 

  19. P.G. Etchegoin, E.C. Le Ru, M. Meyer, J. Chem. Phys. 125, 164705 (2006)

    Article  ADS  Google Scholar 

  20. M. Ordal et al., Appl. Opt. 24, 4493 (1985)

    Article  ADS  Google Scholar 

  21. N. Del Fatti, Ph.D Dissertation, Ecole Polytechnique, 1999

    Google Scholar 

  22. M. Kaveh, N. Wiser, Adv.in Phys. 33, 257 (1984)

    Google Scholar 

  23. C. Yi Tsai, C. Yao Tsai, C.H. Chen, T.L. Sung, T.Y. Wu, F.P. Shih, IEEE J. Quantum. Electron. 34, 552 (1998)

    Article  ADS  Google Scholar 

  24. P.B. Allen, Phys. Rev. B 3, 305 (1971)

    Google Scholar 

  25. J.B. Smith, H. Ehrenreich, Phys. Rev. B 25, 923 (1982)

    Google Scholar 

  26. R.N. Gurzhi, M. Ya Azbel’, H.P. Lin, Sov. Phys. Solid State 5, 554 (1963)

    Google Scholar 

  27. A. Vial, A.S. Grimault, D. Macias, D. Barchiesi, M. Lamy de la Chapelle, Phys. Rev. B 71, 085416 (2005)

    Google Scholar 

  28. T. Laroche, C. Girard, Appl. Phys. Lett. 89, 233119 (2006)

    Article  ADS  Google Scholar 

  29. F. Hao, P. Nordlander, Chem. Phys. Lett. 446, 115 (2007)

    Article  ADS  Google Scholar 

  30. P.B.Johnson, R.W.Christy, Phys. Rev. B 6, 4370 (1972)

    Google Scholar 

  31. A.V. Shchegrov, K. Joulain, R. Carminati, J.J. Greffet, Phys. Rev. Lett. 85, 1548 (2000)

    Article  ADS  Google Scholar 

  32. K. Joulain, R. Carminati, J.P. Mulet, J.J. Greffet, Phys. Rev. B 68, 245405 (2003)

    Google Scholar 

  33. K. Joulain, J.P. Mulet, F. Marquier, R. Carminati, JJ Greffet. Surf. Sci. Rep. 57, 59 (2005)

    Article  ADS  Google Scholar 

  34. R.E. Collin, IEEE Trans. Antennas Propag. Mag. 46, 64 (2004)

    Article  ADS  Google Scholar 

  35. P. Lalanne, J.P. Hugonin, Nat. Phys. 2, 551 (2006)

    Article  Google Scholar 

  36. P. Lalanne, J.P. Hugonin, H.T. Liu, B. Wang, Sur. Sci. Rep. 64, 453 (2009)

    Article  Google Scholar 

  37. H. Liu, P. Lalanne, Nature 452, 728 (2008)

    Article  ADS  Google Scholar 

  38. W. Dai, C.M. Soukoulis, Phys. Rev. B 80, 155407 (2009)

    Google Scholar 

  39. A. Yu Nikitin, S.G. Rodrigo, F.J. Garcia-Vidal, L. Martin-Moreno, New J. Phys. 11, 123020 (2009)

    Article  Google Scholar 

  40. K. Aki, P.G. Richards, Quantitative Seismology (University Science Books, Sausalito, 2002)

    Google Scholar 

  41. J.B. Pendry, Phys. Rev. Lett. 85, 3966 (2000)

    Article  ADS  Google Scholar 

  42. N. Fang, H. Lee, C. Sun and X. Zhang. Science 308, 534 (2005)

    Article  ADS  Google Scholar 

  43. T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, R. Hillenbrand, Science 313, 1595 (2006)

    Article  Google Scholar 

  44. I.I. Smolyaninov, C.C. Davis, A.V. Zayats, New J. Phys. 7, 175(1)–175(7) (2005)

    Google Scholar 

  45. I.I. Smolyaninov, C.C. Davis, J. Elliot, A.V. Zayats, Phys. Rev. Lett. 98, 209704 (2007)

    Article  ADS  Google Scholar 

  46. A. Drezet, A. Hohenau, J.R. Krenn, Phys. Rev. Lett. 98, 209703 (2007)

    Article  ADS  Google Scholar 

  47. D.W. Pohl, W. Denk, M. Lanz, Appl. Phys. Lett. 44, 651 (1984)

    Article  ADS  Google Scholar 

  48. A. Lewis, M. Isaacson, A. Harootunian, A. Murray, Ultramicroscopy 13, 227 (1984)

    Article  Google Scholar 

  49. H.J. Lezec, A. Degiron, E. Devaux, R.A. Linke, L. MArtin-Poreno, F.J. Garcia-Vidal, T.W. Ebbesen, Science 297, 820 (2002)

    Google Scholar 

  50. J. Wessel, J. Opt. Soc. Am. B 2, 1538 (1985)

    Google Scholar 

  51. A. Madrazo, R. Carminati, M. Nieto-Vesperinas, J.J. Greffet, J. Opt. Soc. Am. A 15, 109 (1998)

    Google Scholar 

  52. K. Li, M.I. Stockman, D.J. Bergman, Phys. Rev. Lett. 91, 227402 (2003)

    Article  ADS  Google Scholar 

  53. Y.C. Jun, R.D. Kekatpure, J.S. White, M.L. Brongersma, Phys. Rev. B 78, 153 111 (2008)

    Google Scholar 

  54. S.I. Bozhevolnyi, V.S. Vokov, E. Devaux, JY Laluet and T. Ebbesen, Nature 440, 508 (2006)

    Article  ADS  Google Scholar 

  55. R. Esteban, T. Teperik, JJ Greffet. Phys. Rev. Lett. 104, 026802 (2010)

    Article  ADS  Google Scholar 

  56. Y. Todorov, A.M. Andrews, R. Colombelli, S. de Liberato, C. Ciuti, P. Klang, G. Strasser, C. Sirtori, Phys. Rev. Lett. 105, 196402 (2010)

    Article  ADS  Google Scholar 

  57. K.H. Drexhage, in Progress in Optics (Ed. E. Wolf, North Holland, Amsterdam, 1974)

    Google Scholar 

  58. R.R. Chance, A. Prock, R. Silbey, Adv. Chem. Phys. 37, 1 (1978)

    Article  Google Scholar 

  59. W.L. Barnes, J. Mod. Opt. 45, 661 (1998)

    Article  ADS  Google Scholar 

  60. E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, JJ Greffet. Nat. Photonics 3, 514 (2006)

    Article  ADS  Google Scholar 

  61. Y. de Wilde, F. Formanek, R. Carminati, B. Gralak, PA Lemoine, K. Joulain, JP Mulet, Y. Chen, JJ Greffet. Nature 444, 740 (2006)

    Article  ADS  Google Scholar 

  62. J.P. Mulet, K. Joulain, R. Carminati, J.J. Greffet, Nanoscale Microscale Thermophys. Eng. 6, 209 (2002)

    Google Scholar 

  63. J.P. Mulet, K. Joulain, R. Carminati, J.J. Greffet, Appl. Phys. Lett. 78, 2931 (2001)

    Article  ADS  Google Scholar 

  64. S. Shen, A. Narayanaswamy, G. Chen, Nano Lett. 9, 2909 (2009)

    Article  ADS  Google Scholar 

  65. S.A. Biehs, E. Rousseau, JJ Greffet. Phys. Rev. Lett. 105, 234301 (2010)

    Article  ADS  Google Scholar 

  66. J.M. Gérard, B. Gayral, J. Lightwave Technol. 17, 2089 (1999)

    Article  ADS  Google Scholar 

  67. J.J. Greffet, M. Laroche, F. Marquier. Phys. Rev. Lett. 105, 117701 (2010)

    Article  ADS  Google Scholar 

  68. S. Haroche, in Proceedings of the Les Houches Summer School Fundamentals Systems in Quantum Optics, Elsevier Science Publishers, Amsterdam, 1992, ed. by J. Dalibard

    Google Scholar 

  69. A. Kock, E. Gornik, M. Hauser, W. Beistingl, Appl. Phys. Lett. 57, 2327 (1990)

    Article  ADS  Google Scholar 

  70. D.K. Gifford, D.G. Hall, Appl. Phys. Lett. 81, 4315 (2002)

    Article  ADS  Google Scholar 

  71. J. Azoulay, A. Débarre, A. Richard, P. Tchénio, Europhys. Lett. 51, 374 (2000)

    Article  ADS  Google Scholar 

  72. M. Thomas, JJ Greffet, R. Carminati, JR Arias-Gonzalez. Appl. Phys. Lett. 85, 3863 (2004)

    Article  ADS  Google Scholar 

  73. K. Okamoto, I. Niki, A. Shvartser, Y Narukawa, T. Mukai, A. Scherer. Nat. Mater. 3, 601 (2004)

    Article  ADS  Google Scholar 

  74. S. Kuhn, Ulf Hakanson, L. Rogobete, V. Sandoghdar. Phys. Rev. Lett. 97, 017402 (2006)

    Article  ADS  Google Scholar 

  75. P. Anger, P. Bharadwaj, L. Novotny, Phys. Rev. Lett. 96, 113002 (2006)

    Article  ADS  Google Scholar 

  76. A. Curto, G. Volpe, T.H. Taminiau, M.P. Freuzer, R. Quidant, N.F. van Hulst, Science 329, 930 (2010)

    Article  ADS  Google Scholar 

  77. T.H. Taminiau, F.D. Stefani, F.B. Segerink, N.F. van Hulst, Nat. Photonics 2, 234 (2008)

    Article  Google Scholar 

  78. H.B.G. Casimir, Proc. Koninkl. Ned. Akad. Wetenschap. 51, 793 (1948)

    MATH  Google Scholar 

  79. S.K. Lamoreaux, Phys.rev.Lett. 78, 5 (1997)

    Google Scholar 

  80. R.S. Decca, D. Lopez, E Fishbach, DE Krause. Phys. Rev. Lett. 91, 050402 (2003)

    Article  ADS  Google Scholar 

  81. G. Jourdan, A. Lambrecht, F. Comin, J. Chevrier, Europhys. Lett. 85, 31001 (2009)

    Article  ADS  Google Scholar 

  82. C. Genet, A. Lambrecht, S. Reynaud, Phys. Rev.A 62, 012110 (2000)

    Google Scholar 

  83. C. Henkel, K. Joulain, J.P Mulet, J.J Greffet, Phys. Rev.A 69, 023808 (2004)

    Google Scholar 

  84. F. Intravaia, A. Lambrecht, Phys. Rev. Lett. 94, 110404 (2005)

    Article  ADS  Google Scholar 

  85. F. Intravaia, C. Henkel, A. Lambrecht, Phys. Rev.A 76, 033820 (2007)

    Google Scholar 

  86. M.I. Stockman, S.V. Faleev, D.J. Bergman, Phys. Rev. Lett. 88, 067402 (2002)

    Article  ADS  Google Scholar 

  87. M. Aeschlimann et al., Nature 446, 301 (2007)

    Article  ADS  Google Scholar 

  88. D. Sarid, Phys. Rev. Lett. 47, 1927 (1981)

    Article  ADS  Google Scholar 

  89. E. Prodan, C. Radloff, N.J. Halas, P. Nordlander, Science 302, 419 (2003)

    Article  ADS  Google Scholar 

  90. A. Archambault, T. Teperik, F. Marquier, J.J. Greffet, Phys. Rev. B 79, 195414 (2009)

    Google Scholar 

  91. R.W. Alexander, G.S. Kovener, R.J. Bell, Phys. Rev. Lett. 32, 154 (1974)

    Article  ADS  Google Scholar 

  92. E.T. Arakawa, M.W. Williams, R.N. Hamm, R.H. Ritchie, Phys. Rev. Lett. 31, 1127 (1973)

    Article  ADS  Google Scholar 

  93. L. Feng, K.A. Tetz, B. Slutsky, V. Lomakin, Y. Fainman Appl, Phys. Lett. 91, 081101 (2007)

    Google Scholar 

  94. Z. Liu, J.M. Steele, W. Srituravanich, Y. Pikus, C. Sun, X. Zhang, Nano Lett. 5, 1726–1729 (2005)

    Article  ADS  Google Scholar 

  95. L. Yin, V.K. Vlasko-Vlasov, J. Pearson, J.M. Hiller, J. Hua, U. Welp, D.E. Brown, C.W. Kimball, Nano Lett. 5, 1399–1402 (2005)

    Article  ADS  Google Scholar 

  96. A.J. Huber, B. Deutsch, L. Novotny, R. Hillenbrand, Appl. Phys. Lett. 92, 203104 (2008)

    Google Scholar 

  97. R. Zia, M.L. Brongersma, Nat. Nanotechnol. 2, 426–429 (2007)

    Article  ADS  Google Scholar 

  98. T.V. Teperik, A. Archambault, F. Marquier, J.J. Greffet, Opt. Express 17, 17483 (2009)

    Article  ADS  Google Scholar 

  99. I.I. Smolyaninov, D.L. Mazzoni, J. Mait, C.C. Davis, Phys. Rev. B 56, 1601 (1997)

    Google Scholar 

  100. P. Dawson, F. de Fornel, J.P. Goudonnet, Phys. Rev. Lett. 72, 2927 (1994)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Jacques Greffet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Greffet, JJ. (2012). Introduction to Surface Plasmon Theory. In: Enoch, S., Bonod, N. (eds) Plasmonics. Springer Series in Optical Sciences, vol 167. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28079-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28079-5_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28078-8

  • Online ISBN: 978-3-642-28079-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics