Skip to main content

Survey of Surface Plasmon Polariton History

  • Chapter
  • First Online:

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 167))

Abstract

A huge interest in Surface Plasmon Polaritons (SPPs) was born at the beginning of the twentieth century with the discovery of grating anomalies by Wood. Subsequently, the excitation of SPPs by randomly rough surfaces has initiated fascinating subjects of modern physics like enhanced backscattering or Anderson localization of photons. More recently, this domain has attracted considerable attention since plasmonics is involved in the main domains of nanophotonics: metamaterials, near-field optics, extraordinary transmission through subwavelength holes, second harmonic generation, and surface enhanced Raman scattering. This chapter outlines the main steps in the development of these fields of research.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. R.W. Wood, On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Philos. Mag. 4, 396–402 (1902)

    Google Scholar 

  2. L. Rayleigh, Note on the remarkable case of diffraction spectra described by Prof. Wood. Philos. Mag. 14, 60–65 (1907)

    Google Scholar 

  3. L. Rayleigh, On the dynamical theory of gratings. Proc. Royal Soc. (Lond.) 79, 399–416 (1907)

    ADS  MATH  Google Scholar 

  4. R.W. Wood, Diffraction gratings with controlled groove form and abnormal distribution of intensity. Philos. Mag. 23, 310–317 (1912)

    Google Scholar 

  5. L.R. Ingersoll, Some peculiarities of polarization and energy distribution by speculum gratings. Phys. Rev. 17, 493–501 (1921)

    ADS  Google Scholar 

  6. R.W. Wood, Anomalous diffraction gratings. Phys. Rev. 48, 928–936 (1935)

    ADS  Google Scholar 

  7. J. Strong, Effect of evaporated films on energy distribution in grating spectra. Phys. Rev. 49, 291–296 (1936)

    ADS  Google Scholar 

  8. U. Fano, The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves). J. Opt. Soc. Am. 31, 213–222 (1941)

    ADS  Google Scholar 

  9. C.H. Palmer Jr, Parallel diffraction grating anomalies. J. Opt. Soc. Am. 42, 269–276 (1952)

    ADS  Google Scholar 

  10. C.H. Palmer Jr, Diffraction grating anomalies, II, coarse gratings. J. Opt. Soc. Am. 46, 50–53 (1956)

    ADS  Google Scholar 

  11. J.E. Stewart, W.S. Gallaway, Diffraction anomalies in grating spectrophotometers. Appl. Opt. 1, 421–429 (1962)

    ADS  Google Scholar 

  12. A. Hessel, A.A. Oliner, A new theory of Wood’s anomalies on optical gratings. Appl. Opt. 4, 1275–1297 (1965)

    ADS  Google Scholar 

  13. J. Hagglund, F. Sellberg, Reflection, absorption, and emission of light by opaque optical gratings. J. Opt. Soc. Am. 56, 1031–1040 (1966)

    ADS  Google Scholar 

  14. R.H. Ritchie, E.T. Arakawa, J.J. Cowan, R.N. Hamm, Surface-plasmon resonance effect in grating diffraction. Phys. Rev. Lett. 21, 1530–1533 (1968)

    ADS  Google Scholar 

  15. J.J. Cowan, E.T. Arakawa, Dispersion of surface plasmons in dielectric-metal coating on concave diffraction gratings. Z. Physik 235, 97–109 (1970)

    ADS  Google Scholar 

  16. D. Maystre, Sur la diffraction d’une onde plane par un réseau métallique de conductivité finie. Opt. Commun. 6, 50–54 (1972)

    ADS  Google Scholar 

  17. D. Maystre, Sur la diffraction d’une onde plane électromagnétique par un réseau métallique. Opt. Commun. 8, 216–219 (1973)

    ADS  Google Scholar 

  18. R.C. McPhedran, M.D. Waterworth, Properties of diffraction grating anomalies. Opt. Acta 20, 533–547 (1973)

    ADS  Google Scholar 

  19. M.C. Hutley, An experimental study of the anomalies of sinusoidal diffraction gratings. Opt. Acta 20, 607–624 (1973)

    Google Scholar 

  20. M.C. Hutley, V.M. Bird, A detailed experimental study of the anomalies of a sinusoidal diffraction grating. Opt. Acta 20, 771–782 (1973)

    Google Scholar 

  21. R. Petit, D. Maystre, M. Nevière, Practical applications of the electromagnetic theory of gratings, in Space Optics, Proceedings of the Ninth International Congress of Optics, vol. 2 (1974), pp. 667–681

    Google Scholar 

  22. P.M. Van den Berg, J.C.M. Borburgh, Dispersion of surface plasmons in InSb-gratings. Appl. Phys. 3, 55–60 (1974)

    ADS  Google Scholar 

  23. R.C. McPhedran, D. Maystre, A detailed theoretical study of the anomalies of a sinusoidal diffraction grating. Opt. Acta 21, 413–421 (1974)

    ADS  Google Scholar 

  24. R.C. McPhedran, D. Maystre, Theoretical study of the diffraction anomalies of holographic gratings. Nouv. Rev. Optique 5, 241–248 (1974)

    ADS  Google Scholar 

  25. I. Pockrand, Reflection of light from periodically corrugated silver films near the plasma frequency. Phys. Lett. 49A, 259–260 (1974)

    ADS  Google Scholar 

  26. M.C. Hutley, J.P. Verrill, R.C. McPhedran, M. Nevière, P. Vincent, Presentation and verification of a differential formulation for the diffraction by conducting gratings. Nouv. Rev. Optique 6, 87–95 (1975)

    ADS  Google Scholar 

  27. I. Pockrand, Coupling of surface plasma oscillations in thin periodically corrugated silver films. Opt. Commun. 13, 311–313 (1975)

    ADS  Google Scholar 

  28. H. Raether, On the influence of roughness on the optical properties of surfaces: plasma resonance emission and the plasmon dispersion relation. Thin Solid Films 28, 119–124 (1975)

    ADS  Google Scholar 

  29. R. Orlowski, H. Raether, The total reflection of light at smooth and rough silver films and surface plasmons. Surf. Sci. 54, 303–308 (1975)

    Google Scholar 

  30. D. Maystre, R. Petit, Brewster incidence for metallic gratings. Opt. Commun. 17, 196–200 (1976)

    ADS  Google Scholar 

  31. M.C. Hutley, D. Maystre, The total absorption of light by a diffraction grating. Opt. Commun. 19, 431–436 (1976)

    ADS  Google Scholar 

  32. I. Pockrand, H. Raether, Surface plasma-oscillations in silver films with wavy surface profiles—quantitative experimental study. Opt. Commun. 18, 395–399 (1976)

    ADS  Google Scholar 

  33. I. Pockrand, Resonance anomalies in light intensity reflected at silver gratings with dielectric coatings. J. Phys. D Appl. Phys. 9, 2423–2432 (1976)

    ADS  Google Scholar 

  34. E. Kröger, E. Kretschmann, Surface plasmon and polariton dispersion at rough boundaries. Phys. Status Solidi B 76, 515–523 (1976)

    ADS  Google Scholar 

  35. I. Pockrand, H. Raether, Surface plasma oscillations at sinusoidal silver surfaces. Appl. Opt. 16, 1784–1786 (1977)

    ADS  Google Scholar 

  36. C.E. Wheeler, E.T. Arakawa, R.H. Ritchie, Photon excitation of photon surface plasmons in diffraction gratings—effect of groove depth and spacing. Phys. Rev. 13, 2372–2376 (1976)

    ADS  Google Scholar 

  37. J.J. Cowan, E.T. Arakawa, Artificial polarization anomalies from holographic gratings. Opt. Commun. 21, 428–431 (1977)

    ADS  Google Scholar 

  38. R.C. McPhedran, D. Maystre, Theory and solar application of inductive grids. Appl. Phys. (Berlin) 14, 1–20 (1977)

    ADS  Google Scholar 

  39. D. Maystre, M. Nevière, Quantitative theoretical study on plasmon anomalies of diffraction gratings. J. Opt. 8, 165–174 (1977)

    ADS  Google Scholar 

  40. M. Nevière, D. Maystre, P. Vincent, Determination of leaky modes of a corrugated waveguide—application to the study of anomalies of dielectric coated gratings. J. Opt. 8, 231–242 (1977)

    ADS  Google Scholar 

  41. E.G. Loewen, M. Nevière, dielectric coated gratings—curious property. Appl. Opt. 16, 3009–3011 (1977)

    ADS  Google Scholar 

  42. D. Maystre, M. Nevière, P. Vincent, General theory of anomalies and energy absorption by diffraction gratings and their relation with surface waves. Opt. Acta 25, 905–915 (1978)

    ADS  Google Scholar 

  43. M. Nevière, D. Maystre, G.H. Derrick, R.C. McPhedran, M.C. Hutley, On the total absorption of unpolarized monochromatic light, in Proceedings of the I.C.O.XI Conference (Madrid, Spain, 1978), pp. 609–612

    Google Scholar 

  44. J.R. Andrewartha, J.R. Fox, I.J. Wilson, Resonance anomalies in the lamellar grating. Opt. Acta 26, 69–89 (1979)

    ADS  Google Scholar 

  45. J.R. Andrewartha, J.R. Fox, I.J. Wilson, Further properties of lamellar grating resonance anomaly. Opt. Acta 26, 197–209 (1979)

    ADS  Google Scholar 

  46. R. Petit (ed.), Electromagnetic Theory of Gratings. Topics in Current Physics (Springer, Berlin, 1980)

    Google Scholar 

  47. D. Maystre, in General Study of Grating Anomalies from Electromagnetic Surface Modes, ed. by A.D. Boardman. Chapter 17 of Electromagnetic Surface Modes (Wiley, New York, 1982)

    Google Scholar 

  48. M.C. Hutley, Diffraction Gratings (Academic Press, New York, 1982)

    Google Scholar 

  49. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Springer Tracts in Modern Physics, vol. 111 (Springer, New York, 1988)

    Google Scholar 

  50. E.G. Loewen, E. Popov, Diffraction Gratings and Their Applications (Marcel Dekker, New York, 1997)

    Google Scholar 

  51. L. Rayleigh, The Theory of Sound, vol. 2 (Dover, New York, 1945)

    MATH  Google Scholar 

  52. D. Rudolph, G. Schmahl, Spektroscopische Beugungsgitter hoher Teilungsgenauigkeit erzeugt mit Hilfe von Laserlicht und Photoresistschichten. Optik 30, 475–487 (1970)

    ADS  Google Scholar 

  53. J.L. Uretsky, The scattering of plane waves from periodic surfaces. Ann. Phys. 33, 400–427 (1965)

    MathSciNet  ADS  Google Scholar 

  54. D. Maystre, R.C. Mc Phedran, Le théorème de réciprocité pour les réseaux de conductivite finie: Demonstration et applications. Opt. Commun. 12, 164–167 (1974)

    ADS  Google Scholar 

  55. D. Maystre, Sur la diffraction et l’absorption par les réseaux utilisés dans l’infrarouge, le visible et l’ultraviolet; applications à la spectroscopie et au filtrage des ondes électromagn?tiques, Thèse d’Etat, Université d’Aix-Marseille (1974)

    Google Scholar 

  56. M. Nevière, P. Vincent, R. Petit, Sur la théorie du réseau conducteur et ses applications a 1’optique. Nouv. Rev. Optique 5, 65–77 (1974)

    ADS  Google Scholar 

  57. R.H. Ritchie, Plasma losses by fast electrons in thin films. Phys. Rev. 106, 874–881 (1957)

    MathSciNet  ADS  Google Scholar 

  58. A. Wirgin, T. López-Rios, Can surface-enhanced Raman scattering be caused by waveguide resonance? Opt. Commun. 48, 416–420 (1984)

    ADS  Google Scholar 

  59. E. Popov, L. Tsonev, D. Maystre, Losses of plasmon surface wave on metallic grating. J. Mod. Opt. 37, 379–387 (1990)

    ADS  Google Scholar 

  60. E. Popov, L. Tsonev, D. Maystre, Lamellar diffraction grating anomalies. Appl. Opt. 33, 5214–5219 (1994)

    ADS  Google Scholar 

  61. E.L. Wood, J.R. Sambles, N.P. Cotter, S.C. Kitson, Diffraction grating characterization using multiplewavelength excitation of surface-plasmon polaritons. J. Mod. Opt. 42, 1343–1349 (1995)

    ADS  Google Scholar 

  62. F. Pincemin, J.-J. Greffet, Propagation and localization of a surface plasmon polariton on a finite grating. J. Opt. Soc. Am. B 13, 1499–1509 (1996)

    ADS  Google Scholar 

  63. W.L. Barnes, S.C. Kitson, T.W. Preist, J.R. Sambles, Photonic surfaces for surface-plasmon polaritons. J. Opt. Soc. Am. A 14, 1654–1661 (1997)

    ADS  Google Scholar 

  64. T. López-Rios, D. Mendoza, F.J. Garcia-Vidal, J. Sánchez-Dehesa, B. Pannetier, Surface shape resonances in lamellar metallic gratings. Phys. Rev. Lett. 81, 665–668 (1998)

    ADS  Google Scholar 

  65. F.J. Garcia-Vidal, J. Sánchez-Dehesa, A. Dechelette, E. Bustarret, T. López-Rios, T. Fournier, B. Pannetier, Localized surface plasmons in lamellar metallic gratings. J. Lightwave Technol. 17, 2191–2195 (1999)

    ADS  Google Scholar 

  66. W.-C. Tan, T.W. Preist, J.R. Sambles, N.P. Wanstall, Flat surface-plasmon-polariton bands and resonant optical absorption on short-pitch metal gratings. Phys. Rev. B 59, 12661–12666 (1999)

    ADS  Google Scholar 

  67. E.A. Smith, R.M. Corn, Surface plasmon resonance imaging as a tool to monitor biomolecular interactions in an array based format. Appl. Spectrosc. 57, 320A–332A (2003)

    ADS  Google Scholar 

  68. R. Hooper, J.R. Sambles, Surface plasmon polaritons on narrow-ridged short-pitch metal gratings in the conical mount. J. Opt. Soc. Am. 20, 836–843 (2003)

    ADS  Google Scholar 

  69. S.F. Cheng, L.K. Chau, Colloidal gold modified optical fiber for chemical and biochemical sensing. Anal. Chem. 75, 16–21 (2003)

    Google Scholar 

  70. E. Hutter, J. Fendler, Exploitation of localized surface plasmon resonance. Adv. Mater. 16, 1685–1706 (2004)

    Google Scholar 

  71. S. Collin, F. Pardo, R. Teissier, J.L. Pelouard, Efficient light absorption in metal-semiconductor-metal nanostructures. Appl. Phys. Lett. 85, 194–196 (2004)

    ADS  Google Scholar 

  72. K. Aslan, J.R. Lakowicz, C. Geddes, Plasmon light scattering in biology and medicine: new sensing approaches, visions and perspectives. Curr. Opin. Chem. Biol. 9, 538–544 (2005)

    Google Scholar 

  73. J.N. Gollub, D.R. Smith, D.C. Vier, T. Perram, J.J. Mock, Experimental characterization of magnetic surface plasmons on metamaterials with negative permeability. Phys. Rev. B 71, 195402 (2005)

    ADS  Google Scholar 

  74. L.K. Chau, Y.F. Lin, S.F. Cheng, T.J. Lin, Fiber-optic chemical and biochemical probes based on localized surface plasmon resonance. Sens. Actuators B 113, 100–105 (2006)

    Google Scholar 

  75. J.L. Tang, S.F. Cheng, W.T. Hsu, T.Y. Chiang, L.K. Chau, Fiber-optic biochemical sensing with a colloidal gold-modified long period fiber grating. Sens. Actuators B 119, 105–109 (2006)

    Google Scholar 

  76. E. Popov, N. Bonod, S. Enoch, Non-Bloch plasmonic stop-band in real-metal gratings. Opt. Express 10, 6241–6250 (2007)

    ADS  Google Scholar 

  77. E. Popov, N. Bonod, S. Enoch, Comparison of plasmon surface waves on shallow and deep metallic 1D and 2D gratings. Opt. Express 15, 4224–4237 (2007)

    ADS  Google Scholar 

  78. N. Bonod, E. Popov, L. Li, B. Chernov, Unidirectional excitation of surface plasmon by slanted grating. Opt. Express 18, 11427–11432 (2007)

    ADS  Google Scholar 

  79. C.D. Chen, S.F. Cheng, L.K. Chau, C.R.C. Wang, Sensing capability of the localized surface plasmon resonance of gold nanorods. Biosens. Bioelectron. 22, 926–932 (2007)

    Google Scholar 

  80. N. Bonod, E. Popov, R.C. McPhedran, Increased surface plasmon resonance sensitivity with the use of double Fourier harmonic gratings. Opt. Express 16, 11691–11702 (2008)

    ADS  Google Scholar 

  81. J. Le Perchec, P. Quémerais, A. Barbara, T. López-Ríos, Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light. Phys. Rev. Lett. 100, 066408 (2008)

    ADS  Google Scholar 

  82. N. Bonod, G. Tayeb, D. Maystre, S. Enoch, E. Popov, Total absorption of light by lamellar metallic gratings. Opt. Express 16, 15431–15438 (2008)

    ADS  Google Scholar 

  83. E. Popov, D. Maystre, R.C. McPhedran, M. Nevière, M.C. Hutley, G.H. Derrick, Total absorption of unpolarized light by crossed gratings. Opt. Express 16, 6146–6155 (2008)

    ADS  Google Scholar 

  84. T.V. Teperik, F.J. García De Abajo, A.G. Borisov, M. Abdelsalam, P.N. Bartlett, Y. Sugawara, J.J. Baumberg, Omnidirectional absorption in nanostructured metal surface. Nat. Photonics 2, 299–301 (2008)

    Google Scholar 

  85. S. Mokapati, F.J. Beck, A. Polman, K.R. Catchpole, Designing periodic arrays of metal nanoparticles for light trapping applications in solar cells. Appl. Phys. Lett. 95, 53115 (2009)

    ADS  Google Scholar 

  86. S.M. Rytov, Correlation theory of thermal fluctuations in an isotropic medium. Sov. Phys. JETP 6, 130–140 (1958)

    MathSciNet  ADS  Google Scholar 

  87. S.M. Rytov, Y.A. Kravtsov, V.I. Tatarskii, Principles of Statistical Radiophysics (Springer, Berlin, 1989)

    Google Scholar 

  88. J.J. Greffet, R. Carminati, K. Joulain, J.P. Mulet, S.P. Mainguy, Y. Chen, Coherent emission of light by thermal sources. Nature 416, 61–64 (2002)

    ADS  Google Scholar 

  89. C. Henkel, S. Potting, M. Wilkens, Loss and heating of particles in small and noisy traps. Appl. Phys. B 69, 379–387 (1999)

    ADS  Google Scholar 

  90. F. Marquier, K. Joulain, J.P. Mulet, R. Carminati, J.J. Greffet, Y. Chen, Coherent spontaneous emission of light by thermal sources. Phys. Rev. B 69, 155412 (2004)

    ADS  Google Scholar 

  91. M. Laroche, C. Arnold, F. Marquier, Highly directional radiation generated by a tungsten thermal source. Opt. Lett. 30, 2623–2625 (2005)

    ADS  Google Scholar 

  92. C. Henkel, K. Joulain, Electromagnetic field correlations near a surface with a nonlocal optical response. Appl. Phys. B 84, 61–68 (2006)

    ADS  Google Scholar 

  93. J.J. Greffet, C. Henkel, Coherent thermal radiation. Contemp. Phys. 48, 183–194 (2007)

    ADS  Google Scholar 

  94. R.E. Collin, Field Theory of Guided Waves (McGraw-Hill Book Company, New York, 1960), p. 195

    Google Scholar 

  95. T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolff, Extraordinary optical transmission through subwavelength hole arrays. Nature 391, 667–669 (1998)

    ADS  Google Scholar 

  96. P.J. Bliek, L.C. Botten, R. Deleuil, R.C. McPhedran, D. Maystre, Inductive grids in the region of diffraction anomalies: theory, experiment, and applications. IEEE Trans. Microw. Theory Tech. MTT28, 1119–1125 (1980)

    Google Scholar 

  97. H.F. Ghaemi, T. Thio, D.E. Grupp, T.W. Ebbesen, H.Z. Lezec, Surface plasmons enhanced optical transmission through subwavelengths holes. Phys. Rev. B 58, 6779–6782 (1998)

    ADS  Google Scholar 

  98. T. Thio, H.F. Ghaemi, H.J. Lezec, P.A. Wolff, T.W. Ebbesen, Surface-plasmon enhanced transmission through hole arrays in Cr films. JOSA B 16, 1743–1748 (1999)

    ADS  Google Scholar 

  99. T.J. Kim, T. Thio, T.W. Ebbesen, D.E. Grupp, H.J. Lezec, Control of optical transmission through metals perforated with subwavelength hole arrays. Opt. Lett. 24, 256–258 (1999)

    ADS  Google Scholar 

  100. J.A. Porto, F.T. Garcia-Vidal, J.B. Pendry, Transmission resonances on metallic gratings with very narrow slits. Phys. Rev. Lett. 83, 2845–2848 (1999)

    ADS  Google Scholar 

  101. D.E. Grupp, H.J. Lezec, K.M. Pellerin, T.W. Ebbesen, T. Thio, Fundamental role of metal surface in enhanced transmission through subwavelength apertures. Appl. Phys. Lett. 77, 1569–1571 (2000)

    ADS  Google Scholar 

  102. E. Popov, M. Nevière, S. Enoch, R. Reinisch, Theory of light transmission through subwavelength periodic hole arrays. Phys. Rev. B 62, 16100–16108 (2000)

    ADS  Google Scholar 

  103. L. Martin-Moreno, F.J. Garcia-Vidal, H.J. Lezec, K.M. Pellerin, T. Thio, J.B. Pendry, T.W. Ebbesen, Theory of extraordinary optical transmission through subwavelength hole arrays. Phys. Rev. Lett. 86, 1114 (2001)

    ADS  Google Scholar 

  104. A. Krishnan, T. Thio, T.J. Kim, H.J. Lezec, T.W. Ebbesen, P.A. Wolff, J. Pendry, L. Martin-Moreno, F.J. Garcia-Vidal, Evanescently coupled resonance in surface plasmon enhanced transmission. Opt. Comm. 200, 1–7 (2001)

    ADS  Google Scholar 

  105. H.J. Lezec, A. Degiron, E. Devaux, R.A. Linke, L. Martin-Moreno, F.J. Garcia-Vidal, T.W. Ebbesen, Beaming light from a subwavelength aperture. Science 297, 820–823 (2002)

    ADS  Google Scholar 

  106. A. Degiron, H.J. Lezec, W.L. Barnes, T.W. Ebbesen, Effects of hole depth on enhanced light transmission through subwavelength hole arrays. Appl. Phys. Lett. 81, 4327–4329 (2002)

    ADS  Google Scholar 

  107. S. Enoch, E. Popov, M. Nevière, R. Reinisch, Enhanced light transmission by hole arrays. J. Opt. A 4, S83–S87 (2002)

    ADS  Google Scholar 

  108. Q. Cao, P. Lalanne, Negative role of suface plasmon in the transmission of metallic gratings with very narrow slits. Phys. Rev. Lett. 88, 057403 (2002)

    ADS  Google Scholar 

  109. L. Martin-Moreno, F.J. Garcia-Vidal, H.J. Lezec, A. Degiron, T.W. Ebbesen, Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations. Phys. Rev. Lett. 90, 167401 (2003)

    Google Scholar 

  110. N. Bonod, S. Enoch, L. Li, E. Popov, M. Nevière, Resonant optical transmission through thin metallic films with and without holes. Opt. Express 11, 482–490 (2003)

    ADS  Google Scholar 

  111. F.J. Garcia-Vidal, H.J. Lezec, T.W. Ebbesen, L. Martin-Moreno, Multiple paths to enhance optical transmission through a single subwavelength slit. Phys. Rev. Lett. 90, 213901 (2003)

    ADS  Google Scholar 

  112. W.L. Barnes, A. Dereux, T.W. Ebbesen, Surface plasmon subwavelength optics. Nature 424, 824–830 (2003)

    ADS  Google Scholar 

  113. F.I. Baida, D. Van Labeke, Three-dimensional structures for enhanced transmission through a metallic film: annular aperture arrays. Phys. Rev. B 67, 155314 (2003)

    Google Scholar 

  114. F.I. Baida, D. Van Labeke, B. Guizal, Enhanced confined light transmission by single subwavelength apertures in metallic films. Appl. Opt. 42, 6811–6815 (2003)

    ADS  Google Scholar 

  115. F.J. Garcia-Vidal, L. Martin-Moreno, H.J. Lezec, T.W. Ebbesen, Focusing light with a single subwavelength aperture flanked by surface corrugations. Appl. Phys. Lett. 83, 4500–4502 (2003)

    ADS  Google Scholar 

  116. A. Degiron, T.W. Ebbesen, Analysis of the transmission process through a single aperture surrounded by periodic corrugations. Opt. Express 12, 3694–3700 (2004)

    ADS  Google Scholar 

  117. W.L. Barnes, W.A. Murray, J. Dintinger, E. Devaux, T.W. Ebbesen, Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film. Phys. Rev. Lett. 92, 107401 (2004)

    Google Scholar 

  118. E. Popov, M. Nevière, P. Boyer, N. Bonod, Light transmission through single apertures. Opt. Commun. 255, 338–348 (2005)

    ADS  Google Scholar 

  119. A. Degiron, T.W. Ebbesen, The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures. J. Opt. A 7, S90–S96 (2005)

    ADS  Google Scholar 

  120. J. Dintinger, S. Klein, F. Bustos, W.L. Barnes, T.W. Ebbesen, Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays. Phys. Rev. B 71, 035424 (2005)

    ADS  Google Scholar 

  121. S.I. Bozhevolnyi, V.S. Volkov, E. Devaux, T.W. Ebbesen, Channel plasmon-polariton guiding by subwavelength grooves. Phys. Rev. Lett. 95, 046802 (2005)

    ADS  Google Scholar 

  122. H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T.W. Ebbesen, P.F. Lenne, Enhancement of single-molecule fluorescence detection in subwavelength apertures. Phys. Rev. Lett. 95, 117401 (2005)

    ADS  Google Scholar 

  123. E. Popov, M. Neviere, A.L. Fehrembach, N. Bonod, Optimization of plasmon excitation at structured apertures. Appl. Opt. 44, 6141–6154 (2005)

    ADS  Google Scholar 

  124. E. Popov, M. Neviere, A.L. Fehrembach, N. Bonod, Enhanced light transmission through a circular structured aperture. Appl. Opt. 44, 6898–6904 (2005)

    ADS  Google Scholar 

  125. P. Lalanne, J.P. Hugonin, J.C. Rodier, Theory of surface plasmon generation at nanoslit apertures. Phys. Rev. Lett. 95, 902 (2005)

    Google Scholar 

  126. K.G. Lee, Q.H. Park, Coupling of surface plasmon polaritons and light in metallic nanoslits. Phys. Rev. Lett. 95, 902 (2005)

    Google Scholar 

  127. J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F.J. Garcia-Vidal, L. Martin-Moreno, T.W. Ebbesen, How light emerges from an illuminated array of subwavelength holes. Nat. Phys. 1, 120–123 (2006)

    Google Scholar 

  128. D. Van Labeke, D. Gérard, B. Guizal, F. Baida, L. Li, An angle-independent Frequency Selective Surface in the optical range. Opt. Express 14, 11945–11951 (2006)

    ADS  Google Scholar 

  129. J. Wenger, J. Dintinger, N. Bonod, E. Popov, P.F. Lenne, T.W Ebbesen, H. Rigneault, Raman scattering and fluorescence emission in a single nanoaperture: optimizing the local intensity enhancement. Opt. Commun. 267, 224–228 (2006)

    Google Scholar 

  130. E. Popov, M. Nevière, J. Wenger, P.-F. Lenne, H. Rigneault, P.C. Chaumet, N. Bonod, J. Dintinger, T.W. Ebbesen, Field enhancement in single subwavelength apertures. J. Opt. Soc. Am. A 23, 2342–2348 (2006)

    ADS  Google Scholar 

  131. C. Genet, T.W. Ebbesen, Light in tiny holes. Nature 445, 39–46 (2007)

    ADS  Google Scholar 

  132. J. Wenger, F. Cochonaud, J. Dintinger, L. Wawreznieck, T.W. Ebbesen, H. Rigneault, D. Marguet, P.-F. Lenne, Diffusion analysis within single nanometric apertures reveals the ultrafine cell membrane organization. Biophys. J. 92, 913–919 (2007)

    ADS  Google Scholar 

  133. F. Lopez-Tejeira, S.G. Rodrigo, L. Martin-Moreno, F.J. Garcia-Vidal, E. Devaux, T.W. Ebbesen, J.R. Krenn, I.P. Radko, S.I. Bozhevolnyi, M.V. Gonzalez, J.C. Weeber, A. Dereux, Efficient unidirectional nanoslit couplers for surface plasmons. Nat. Phys. 3, 324–328 (2007)

    Google Scholar 

  134. H. Liu, P. Lalanne, Microscopic theory of the extraordinary optical transmission. Nature 452, 728–731 (2008)

    ADS  Google Scholar 

  135. J. Wenger, D. Gerard, J. Dintinger, O. Mahboub, N. Bonod, E. Popov, T.W. Ebbesen, H. Rignault, Emission and excitation contributions to enhanced single molecule fluorescence by gold nanometric apertures. Opt. Express 16, 3008–3020 (2008)

    Google Scholar 

  136. A.-L. Baudrion, F. de Leon-Perez, O. Mahboub, A. Hohenau, H. Ditlbacher, F.J. Garcia-Vidal, J. Dintinger, T.W. Ebbesen, L. Martin-Moreno, J.R. Krenn, Coupling efficiency of light to surface plasmon polariton for single subwavelength holes in a gold film. Opt. Express 16, 3420–3429 (2008)

    ADS  Google Scholar 

  137. M. Spasenovica, D. van Oosten, E. Verhagen, L. Kuipers, Measurements of modal symmetry in subwavelength plasmonic slot waveguides. Appl. Phys. Lett. 95, 203109 (2009)

    ADS  Google Scholar 

  138. E. Verhagen, L. Kuipers, A. Polman, Field enhancement in metallic subwavelength aperture arrays probed by erbium upconversion luminescence. Opt. Express 17, 14586–14598 (2009)

    ADS  Google Scholar 

  139. V.S. Volkov, S.I. Bozhevolnyi, E. Devaux, J.Y. Laluet, T.W. Ebbesen, Wavelength selective nanophotonic components utilizing channel plasmon polaritons. Nanoletters 7, 880–884 (2007)

    ADS  Google Scholar 

  140. P.M. Morse, H. Feshbach, Methods of Theoretical Physics (Mc Graw Hill Book Company, New York, 1953), p. 823

    Google Scholar 

  141. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover Publications, New York, 1965)

    Google Scholar 

  142. V.G. Veselago, The electrodynamics of substances with simultaneously negative values of \(\varepsilon \) and \(\mu \). Sov. Phys. Uspekhi 10, 509–514 (1967)

    Google Scholar 

  143. J.B. Pendry, Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966 (2000)

    ADS  Google Scholar 

  144. G. W’.t Hooft, Comment on negative refraction makes a perfect lens. Phys. Rev. Lett. 87, 249701 (2001)

    Google Scholar 

  145. J.B. Pendry, Reply. Phys. Rev. Lett. 87, 249702 (2001)

    ADS  Google Scholar 

  146. J.M. Williams, Some problems with negative refraction. Phys. Rev. Lett. 87, 249703 (2001)

    ADS  Google Scholar 

  147. J.B. Pendry, Reply. Phys. Rev. Lett. 87, 249704 (2001)

    ADS  Google Scholar 

  148. P.M. Valanju, R.M. Walser, A.P. Valanju, Wave refraction in negative-index media: always positive and very inhomogeneous. Phys. Rev. Lett. 88, 187401 (2002)

    ADS  Google Scholar 

  149. R.W. Ziolkowski, E. Heyman, Wave propagation in media having negative permittivity and permeability. Phys. Rev. E 64, 56625 (2001)

    ADS  Google Scholar 

  150. N. Garcia, M. Nieto-Vesperinas, Left-handed materials do not make a perfect lens. Phys. Rev. Lett. 88, 207403 (2002)

    ADS  Google Scholar 

  151. D. Maystre, S. Enoch, Perfect lenses made with left-handed materials: Alice’s mirror? J. Opt. Soc. Am. A 21, 122–131 (2004)

    ADS  Google Scholar 

  152. D. Maystre, S. Enoch, R.C. Mc Phedran, Why a harmonic solution for lossless, perfectly homogeneous, left-handed material cannot exist. J. Opt. Soc. Am. A 25, 1937–1943 (2008)

    ADS  Google Scholar 

  153. G.W. Milton, N-A. P. Nicorovici and R.C. McPhedran, Optical and dielectric properties of partially resonant composites. Phys. Rev. B 49, 8479–8482 (1994)

    ADS  Google Scholar 

  154. B. Gralak, A. Tip, Macroscopic Maxwell’s equations and negative index materials. J. Math. Phys. 51, 052902 (2010)

    MathSciNet  ADS  Google Scholar 

  155. D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184 (2000)

    ADS  Google Scholar 

  156. R.A. Shelby, D.R. Smith, S. Schultz, Experimental verification of a negative index of refraction. Science 292, 77 (2001)

    ADS  Google Scholar 

  157. D.R. Smith, How to build a superlens. Science 308, 502–503 (2005)

    Google Scholar 

  158. B.-I. Popa, S.A. Cummer, Direct measurement of evanescent wave enhancement inside passive metamaterials. Phys. Rev. E 73, 016617 (2006)

    ADS  Google Scholar 

  159. N. Fang, H. Lee, C. Sun, X. Zhang, Subdiffraction-limited optical imaging with a silver superlens. Science 308, 534–537 (2005)

    ADS  Google Scholar 

  160. D.O. Melville, R.J. Blaikie, Super-resolution-limited diffraction imaging through a planar silver layer. Opt. Express 13, 2127–2134 (2005)

    ADS  Google Scholar 

  161. T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, R. Hillenbrand, Near-field microscopy through a SiC superlens. Science 313, 1595 (2006)

    Google Scholar 

  162. S.A. Ramakrishna, J.B. Pendry, M.C.K. Wiltshire, W.J. Stewart, Imaging the near field. J. Mod. Opt. 50, 1419–1430 (2003)

    ADS  Google Scholar 

  163. P.A. Belov, H. Yang, Subwavelength imaging at optical frequencies using a transmission device formed by a period layered metal-dielectric structure operating in the canalization regime. Phys. Rev. B 73, 113110 (2006)

    ADS  Google Scholar 

  164. H. Shin, S.H. Fan, All-angle negative refraction and evanescent wave amplification using one-dimensional metallodielectric photonic crystals. Appl. Phys. Lett. 89, 151102 (2006)

    ADS  Google Scholar 

  165. M. Scalora, G. D’Aguanno, N. Mattiucci, M.J. Bloemer, D. de Ceglia, M. Centini, A. Mandatori, C. Sibilia, N. Akozbek, M.G. Cappeddu, M. Fowler, J.W. Haus, Negative refraction and sub-wavelength focusing in the visible range using transparent metallo-dielectric stacks. Opt. Express 15, 508–523 (2007)

    ADS  Google Scholar 

  166. J. Zhang, H. Jiang, B. Gralak, S. Enoch, G. Tayeb, M. Lequime, Towards -1 effective index with one-dimensional metal-dielectric metamaterial: a quantitative analysis of the role of absorption losses. Opt. Express 15, 7720–7729 (2007)

    ADS  Google Scholar 

  167. N. Grigorenko, A.K. Geim, H.F. Gleeson, Y. Zhang, A.A. Firsov, I.Y. Krushchev, J. Petrovic, Nanofabricated media with negative permeability at visible frequencies. Nature 438, 335–338 (2005)

    ADS  Google Scholar 

  168. V.M. Shalaev, W. Cai, U.K. Chettiar, H.-K. Yuan, A.K. Sarychev, V.P. Drashev, A.V. Kildishev, Negative index of refraction in optical metamaterials. Opt. Lett. 30, 3356–3358 (2005)

    ADS  Google Scholar 

  169. W. Cai, V. Shalaev, Optical Metamaterials: Fundamentals and Applications (Springer, Berlin, 2009)

    Google Scholar 

  170. J. Aizpurua, A. Rivacoba, N. Zabala, F.J. García de Abajo, Collective excitations in an infinite set of aligned spheres. Surf. Sci. 402–404, 418–423 (1998)

    Google Scholar 

  171. J. Aizpurua, P. Hanarp, D.S. Sutherland, M. Käll, G.W. Bryant, F.J. García de Abajo, Optical properties of gold nanorings. Phys. Rev. Lett. 90, 057401 (2003)

    ADS  Google Scholar 

  172. J. Aizpurua, G.W. Bryant, L.J. Richter, F.J. García de Abajo, B.K. Kelly, T. Mallouk, Optical properties of coupled metallic nanorods for field-enhanced spectroscopy. Phys. Rev. B 71, 235420 (2005)

    ADS  Google Scholar 

  173. I. Romero, J. Aizpurua, G.W. Bryant, F.J. García De Abajo, Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimmers, Opt. Express 14, 9988–9999 (2006)

    Google Scholar 

  174. A.V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G.A. Wurtz, R. Atkinson, R. Pollard, V.A. Podolskiy, A.V. Zayats, Plasmonic nanorod metamaterials for biosensing. Nat. Mater. 8, 867–871 (2009)

    ADS  Google Scholar 

  175. E.H. Synge, A suggested method for extending microscopy resolution into the ultra-microscopic region. Phil. Mag. 6, 356–362 (1928)

    Google Scholar 

  176. E.A. Ash, G. Nichols, Super-resolution aperture scanning microscope. Nature 237, 510–516 (1972)

    ADS  Google Scholar 

  177. D.W. Pohl, W. Denk, M. Lanz, Optical stethoscopy-image recording with resolution \(\lambda \)/20. Appl. Phys. Lett. 44, 651–653 (1984)

    ADS  Google Scholar 

  178. D.W. Pohl, W. Denk, U. Durig, Optical stethoscopy: imaging with \(\lambda \)/20, in Micron and submicron integrated integrated circuit metrology, in Proceedings of the SPIE, vol. 565, 1985, ed. by K.M. Monahan, pp. 56–61

    Google Scholar 

  179. U. Durig, D.W. Pohl, F. Rohner, Near-field optical scanning microscopy. J. Appl. Phys. 59, 3318–3327 (1986)

    ADS  Google Scholar 

  180. A. Lewis, M. Isaacson, A. Harootunian, A. Murray, Development of a 500-A spatial-resolution light-microscope.1. Light is efficiently transmitted through gamma-16 diameter apertures. Ultramicroscopy 13, 227–231 (1984)

    Google Scholar 

  181. R. Bachelot, P. Gleyzes, A.C. Boccara, Near-field optical microscope based on local perturbation of a diffraction spot. Opt. Lett. 20, 1924–1926 (1995)

    ADS  Google Scholar 

  182. R. Bachelot, F. H’Dhili, D. Barchiesi, G. Lerondel, R. Fikri, P. Royer, N. Landraud, J. Peretti, F. Chaput, G. Lampel, G.P. Boilot, K. Lahli, Apertureless near-field optical microscopy: a study of the local tip enhancement using photosensitive azo-benzene containing films. J. Appl. Phys. 94, 2060–2072 (2003)

    ADS  Google Scholar 

  183. A. Bouhelier, M.R. Beversluis, L. Novotny, Near-field scattering of longitudinal fields. Appl. Phys. Lett. 82, 4596–4598 (2003)

    ADS  Google Scholar 

  184. Y. Gilbert, R. Bachelot, A. Vial, G. Lerondel, P. Royer, A. Bouhelier, G. Wiederrecht, Photoresponsive polymers for topographic simulation of the optical near-field of a nanometer sized gold tip in a highly focused laser beam. Opt. Express 13, 3619–3624 (2005)

    ADS  Google Scholar 

  185. G. Lévêque, R. Quidant, Channeling light along a chain of near-field coupled gold nanoparticles near a metallic film. Opt. Express 16, 22029–22038 (2008)

    Google Scholar 

  186. D.W. Pohl, D. Courjon (eds.), Near Field Optics (Kluwer, Dordrecht, 1992)

    Google Scholar 

  187. D. Courjon, Near Field microscopy and Near Field Optics (Imperial College Press, London, 2003)

    Google Scholar 

  188. J.P. Fillard, Near Field Optics and Nanoscopy (World Scientific Publishing Company, Singapore, 1996)

    Google Scholar 

  189. M.A. Paesler, J.P. Moyer, Near Field Optics: Theory, Instrumentation and Applications (Wiley Interscience, New York, 1996)

    Google Scholar 

  190. U.Ch. Fischer, Scanning near-field Optical Microscopy, in Scanning Probe Microscopy. Analytical Methods ed. by R. Wiesendanger (Springer, Berlin, 1998), pp. 161–210

    Google Scholar 

  191. M. Ohtsu, M. Hori, Near Field Optics (Kluwer Academic, New York, 1999)

    Google Scholar 

  192. L. Novotny, The history of near-field optics, in Progress in Optics, vol. 50, Chap. 5, ed. by E. Wolf (Elsevier, Amsterdam, 2007), pp. 137–184

    Google Scholar 

  193. D. Richards, A.V. Zayats (eds.), Nano-Optics and Near-Field Optical Microscopy (Artech, Boston, 2008)

    Google Scholar 

  194. M.P. Van Albada, A. Lagendijk, Observation of weak localization of light in a random médium. Phys. Rev. Lett. 55, 2692–2695 (1985)

    ADS  Google Scholar 

  195. P.E. Wolf, G. Maret, Weak localization and coherent backscattering of photons in disordered media. Phys. Rev. Lett. 55, 2696–2699 (1985)

    ADS  Google Scholar 

  196. Y.N. Barabanenkov, Y.A. Kravtsov, V.D. Ozrin, A.I. Saichev, Enhanced backscattering in optics. in Progress in Optics, vol. 29, ed. by E. Wolf (Elsevier, New York, 1991), pp. 65–197

    Google Scholar 

  197. B.A. Van Tiggelen, A. Lagendijk, A. Tip, Problem of light diffusion in strongly scattering medium-comment. Phys. Rev. Lett. 71, 1284–1284 (1993)

    ADS  Google Scholar 

  198. E.R. Mendez, K.A. O’Donnell, Observation of depolarization and backscattering enhancement in light scattering from gaussian random surfaces. Opt. Commun. 61, 91–95 (1987)

    ADS  Google Scholar 

  199. A.A. Maradudin, E.R. Mendez, T. Michel, Backscattering effects in the elastic scattering of p-polarized light from a large amplitude random metallic grating. Opt. Lett. 14, 151–153 (1989)

    ADS  Google Scholar 

  200. J.A. Sanchez-Gil, M. Nieto-Vesperinas, Light scattering from random rough dielectric surfaces. J. Opt. Soc. Am. A 8, 1270–1286 (1991)

    ADS  Google Scholar 

  201. A. Ishimaru, J.S. Chen, P. Phu, K. Yoshitomi, Numerical, analytical, and experimental studies of scattering from very rough surfaces and backscattering enhancement. Waves Random Media 3, S91–S107 (1991)

    Google Scholar 

  202. E. Jakeman, Enhanced backscattering through a deep random phase screen. J. Opt. Soc. Am. A 5, 1638–1648 (1988)

    ADS  Google Scholar 

  203. D. Maystre, M. Saillard, Enhanced backscattering and blazing effect from gratings, quasi-gratings and randomly rough surfaces. Waves Random Media 4, 467–485 (1994)

    ADS  Google Scholar 

  204. M. Saillard, D. Maystre, Scattering from metallic and dielectric rough surfaces. J. Opt. Soc. Am. A 7, 982–990 (1990)

    ADS  Google Scholar 

  205. M. Saillard, D. Maystre, Scattering from random rough surfaces. J. Opt. 19, 173–176 (1988)

    ADS  Google Scholar 

  206. P.W. Anderson, Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492–1505 (1958)

    ADS  Google Scholar 

  207. N.F. Mott, E.A. Davis, Electronic Processes in Non Crystalline Materials, 2nd edn. (Clarendon, Oxford, 1979)

    Google Scholar 

  208. S. John, Electromagnetic absorption in a disordered medium near a photon mobility edge. Phys. Rev. Lett. 53, 2169–2172 (1984)

    ADS  Google Scholar 

  209. P.W. Anderson, The question of classical localization/ A theory of white paint. Phil. Mag. B 52, 505–509 (1985)

    Google Scholar 

  210. A.Z. Genack, Optical transmission in disordered media. Phys. Rev. Lett. 58, 2043–2046 (1987)

    ADS  Google Scholar 

  211. P. Sheng, B. White, Z.Q. Zhang, G. Papanicolaou, Wave localization and multiple scattering in randomly-layered media, in Scattering and Localization of Classical Waves in Random Media, ed. by P. Sheng (World Scientific, Singapore, 1990), pp. 563–619

    Google Scholar 

  212. V.D. Freilikher, S.A. Gredeskul, Localization of waves in media with one-dimensional disorder, in Progress in Optics, vol. 30, ed. by E. Wolf (North-Holland, Amsterdam, 1992), pp. 137–203

    Google Scholar 

  213. D. Maystre, M. Saillard, Localization of light by randomly rough surfaces: concept of localiton. J. Opt. Soc. Am. A 11, 680–690 (1994)

    ADS  Google Scholar 

  214. M. Saillard, Random rough surfaces—numerical study of localized electromagnetic surface modes. Appl. Opt. 32, 3354–3361 (1993)

    ADS  Google Scholar 

  215. A.R. McGurn, A.A. Maradudin, V. Celli, Localization effects in the scattering of light from a randomly rough grating. Phys. Rev. B 31, 4866–4871 (1985)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Maystre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Maystre, D. (2012). Survey of Surface Plasmon Polariton History. In: Enoch, S., Bonod, N. (eds) Plasmonics. Springer Series in Optical Sciences, vol 167. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28079-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28079-5_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28078-8

  • Online ISBN: 978-3-642-28079-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics