Skip to main content

Computational Modeling and Verification of Signaling Pathways in Cancer

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6479))

Abstract

We propose and analyze a rule-based model of the HMGB1 signaling pathway. The protein HMGB1 can activate a number of regulatory networks – the p53, NFκB, Ras and Rb pathways – that control many physiological processes of the cell. HMGB1 has been recently shown to be implicated in cancer, inflammation and other diseases. In this paper, we focus on the NFκB pathway and construct a crosstalk model of the HMGB1-p53-NFκB-Ras-Rb network to investigate how these couplings influence proliferation and apoptosis (programmed cell death) of cancer cells. We first built a single-cell model of the HMGB1 network using the rule-based BioNetGen language. Then, we analyzed and verified qualitative properties of the model by means of simulation and statistical model checking. For model simulation, we used both ordinary differential equations and Gillespie’s stochastic simulation algorithm. Statistical model checking enabled us to verify our model with respect to behavioral properties expressed in temporal logic. Our analysis showed that HMGB1-activated receptors can generate sustained oscillations of irregular amplitude for the NFκB, IκB, A20 and p53 proteins. Also, knockout of A20 can destroy the IκB-NFκB negative feedback loop, leading to the development of severe inflammation or cancer. Our model also predicted that the knockout or overexpression of the IκB kinase can influence the cancer cell’s fate – apoptosis or survival – through the crosstalk of different pathways. Finally, our work shows that computational modeling and statistical model checking can be effectively combined in the study of biological signaling pathways.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. HMGB1-NFkB BioNetGen Code, http://www.cs.cmu.edu/~haijung/research/HMGB1ANB.bngl

  2. Online Supplementary Materials, http://www.cs.cmu.edu/~haijung/research/ANBSupplement.pdf

  3. Bardeesy, N., DePinho, R.A.: Pancreatic cancer biology and genetics. Nature Reviews Cancer 2(12), 897–909 (2002)

    Article  Google Scholar 

  4. Brezniceanu, M.L., Volp, K., Bosser, S., Solbach, C., Lichter, P., et al.: HMGB1 inhibits cell death in yeast and mammalian cells and is abundantly expressed in human breast carcinoma. FASEB Journal 17, 1295–1297 (2003)

    Google Scholar 

  5. Cascinu, S., Scartozzi, M., et al.: COX-2 and NF-kB overexpression is common in pancreatic cancer but does not predict for COX-2 inhibitors activity in combination with gemcitabine and oxaliplatin. American Journal of Clinical Oncology 30(5), 526–530 (2007)

    Article  Google Scholar 

  6. Ciliberto, A., Novak, B., Tyson, J.: Steady states and oscillations in the p53/Mdm2 network. Cell Cycle 4(3), 488–493 (2005)

    Article  Google Scholar 

  7. Clarke, E.M., Emerson, E.A., Sifakis, J.: Model checking: algorithmic verification and debugging. Commun. ACM 52(11), 74–84 (2009)

    Article  Google Scholar 

  8. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press (1999)

    Google Scholar 

  9. Downward, J.: Targeting RAS signalling pathways in cancer therapy. Nature Reviews Cancer 3, 11–22 (2003)

    Article  Google Scholar 

  10. Dumitriu, I.E., Baruah, P., Valentinis, B., et al.: Release of high mobility group box 1 by dendritic cells controls T cell activation via the receptor for advanced glycation end products. The Journal of Immunology 174, 7506–7515 (2005)

    Article  Google Scholar 

  11. Eddy, S.F., Guo, S., et al.: Inducible IkB kinase/IkB kinase expression is induced by CK2 and promotes aberrant Nuclear Factor-kB activation in breast cancer cells. Cancer Research 65, 11375–11383 (2005)

    Article  Google Scholar 

  12. Ellerman, J.E., Brown, C.K., de Vera, M., Zeh, H.J., Billiar, T., et al.: Masquerader: high mobility group box-1 and cancer. Clinical Cancer Research 13, 2836–2848 (2007)

    Article  Google Scholar 

  13. Faeder, J.R., Blinov, M.L., Hlavacek, W.S.: Rule-based modeling of biochemical systems with BioNetGen. Methods in Molecular Biology 500, 113–167 (2009)

    Article  Google Scholar 

  14. Geva-Zatorsky, N., Rosenfeld, N., Itzkovitz, S., Milo, R., Sigal, A., Dekel, E., Yarnitzky, T., Liron, Y., Polak, P., Lahav, G., Alon, U.: Oscillations and variability in the p53 system. Molecular Systems Biology, 2:2006.0033 (2006)

    Google Scholar 

  15. Gillespie, D.T.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. Journal of Computational Physics 22(4), 403–434 (1976)

    Article  MathSciNet  Google Scholar 

  16. Gong, H., Guo, Y., Linstedt, A., Schwartz, R.: Discrete, continuous, and stochastic models of protein sorting in the Golgi apparatus. Physical Review E 81(1), 011914 (2010)

    Article  Google Scholar 

  17. Gong, H., Sengupta, H., Linstedt, A., Schwartz, R.: Simulated de novo assembly of Golgi compartments by selective cargo capture during vesicle budding and targeted vesicle fusion. Biophysical Journal 95, 1674–1688 (2008)

    Article  Google Scholar 

  18. Gong, H., Zuliani, P., Komuravelli, A., Faeder, J.R., Clarke, E.M.: Analysis and verification of the HMGB1 signaling pathway. BMC Bioinformatics (2010) (to appear)

    Google Scholar 

  19. Hanahan, D., Weinberg, R.A.: The hallmarks of cancer. Cell 100(1), 57–70 (2000)

    Article  Google Scholar 

  20. Hinz, M., Krappmann, D., Eichten, A., Heder, A., Scheidereit, C., Strauss, M.: NF-κB function in growth control: regulation of cyclin D1 expression and G0/G1-to-S-phase transition. Mol. Cell Biol. 19, 2690–2698 (1999)

    Article  Google Scholar 

  21. Hlavacek, W.S., Faeder, J.R., Blinov, M.L., Posner, R.G., Hucka, M., Fontana, W.: Rules for modeling signal-transduction system. Science STKE 2006 re6 (2006)

    Google Scholar 

  22. Hoffmann, A., Levchenko, A., Scott, M.L., Baltimore, D.: The IκB-NFκB signaling module: Temporal control and selective gene activation. Science 298, 1241–1245 (2002)

    Article  Google Scholar 

  23. Huang, Z.: Bcl-2 family proteins as targets for anticancer drug design. Oncogene 19, 6627–6631 (2000)

    Article  Google Scholar 

  24. Idel, S., Dansky, H.M., Breslow, J.L.: A20, a regulator of NFκB, maps to an atherosclerosis locus and differs between parental sensitive C57BL/6J and resistant FVB/N strains. Proceedings of the National Academy of Sciences 100, 14235–14240 (2003)

    Article  Google Scholar 

  25. Jha, S.K., Clarke, E.M., Langmead, C.J., Legay, A., Platzer, A., Zuliani, P.: A Bayesian Approach to Model Checking Biological Systems. In: Degano, P., Gorrieri, R. (eds.) CMSB 2009. LNCS, vol. 5688, pp. 218–234. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  26. Kang, R., Tang, D., Schapiro, N.E., Livesey, K.M., Farkas, A., Loughran, P., Bierhaus, A., Lotze, M.T., Zeh, H.J.: The receptor for advanced glycation end products (RAGE) sustains autophagy and limits apoptosis, promoting pancreatic tumor cell survival. Cell Death and Differentiation 17(4), 666–676 (2009)

    Article  Google Scholar 

  27. Krishna, S., Jensen, M.H., Sneppen, K.: Minimal model of spiky oscillations in NF-kB signaling. Proceedings of the National Academy of Sciences 103, 10840–10845 (2006)

    Article  Google Scholar 

  28. Langmead, C.J.: Generalized queries and bayesian statistical model checking in dynamic bayesian networks: Application to personalized medicine. In: CSB, pp. 201–212 (2009)

    Google Scholar 

  29. Larris, S., Levine, A.J.: The p53 pathway: positive and negative feedback loops. Oncogene 24, 2899–2908 (2005)

    Article  Google Scholar 

  30. Lee, D.F., Huang, M.C.: Advances in targeting IKK and IKK-related kinases for cancer therapy. Clinical Cancer Research 14, 5656 (2008)

    Article  Google Scholar 

  31. Lipniacki, T., Hat, T., Faeder, J.R., Hlavacek, W.S.: Stochastic effects and bistability in T cell receptor signaling. Journal of Theoretical Biology 254, 110–122 (2008)

    Article  MathSciNet  Google Scholar 

  32. Lipniacki, T., Paszek, P., Brasier, A., Luxon, B., Kimmel, M.: Crosstalk between p53 and nuclear factor-kB systems: pro-and anti-apoptotic functions of NF-kB. Journal of Theoretical Biology 228, 195–215 (2004)

    Article  MathSciNet  Google Scholar 

  33. Lotze, M.T., Tracey, K.: High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nature Reviews Immunology 5, 331–342 (2005)

    Article  Google Scholar 

  34. McInnes, C.: Progress in the evaluation of CDK inhibitors as anti-tumor agents. Drug Discovery Today 13(19-20), 875–881 (2008)

    Article  Google Scholar 

  35. Mengel, B., Krishna, S., Jensen, M.H., Trusina, A.: Theoretical analyses predict A20 regulates period of NF-κB oscillation. arXiv: bio-ph 0911.0529 (2009)

    Google Scholar 

  36. Nelson, D.E., Ihekwaba, A.E.C., et al.: Oscillations in NF-κB signaling control the dynamics of gene expression. Science 306, 704–708 (2004)

    Article  Google Scholar 

  37. Nevins, J.R.: The Rb/E2F pathway and cancer. Human Molecular Genetics 10, 699–703 (2001)

    Article  Google Scholar 

  38. Puszynski, K., Hat, B., Lipniacki, T.: Oscillations and bistability in the stochastic model of p53 regulation. Journal of Theoretical Biology 254, 452–465 (2008)

    Article  Google Scholar 

  39. Rizk, A., Batt, G., Fages, F., Soliman, S.: On a Continuous Degree of Satisfaction of Temporal Logic Formulae with Applications to Systems Biology. In: Heiner, M., Uhrmacher, A.M. (eds.) CMSB 2008. LNCS (LNBI), vol. 5307, pp. 251–268. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  40. Rotblat, B., Ehrlich, M., Haklai, R., Kloog, Y.: The Ras inhibitor farnesylthiosalicylic acid (salirasib) disrupts the spatiotemporal localization of active Ras: a potential treatment for cancer. Methods in Enzymology 439, 467–489 (2008)

    Article  Google Scholar 

  41. Semino, C., Angelini, G., Poggi, A., Rubartelli, A.: NK/iDC interaction results in IL-18 secretion by DCs at the synaptic cleft followed by NK cell activation and release of the DC maturation factor HMGB1. Blood 106, 609–616 (2005)

    Article  Google Scholar 

  42. Sherr, C.J., McCormick, F.: The Rb and p53 pathways in cancer. Cancer Cell 2, 103–112 (2002)

    Article  Google Scholar 

  43. Tang, X., Liu, D., Shishodia, S., Ozburn, N., Behrens, C., Lee, J.J., Hong, W.K., Aggarwal, B.B., Wistuba, I.I.: Nuclear factor-κB (NF-κB) is frequently expressed in lung cancer and preneoplastic lesions. Cancer 107, 2637–2646 (2006)

    Article  Google Scholar 

  44. Vakkila, J., Lotze, M.T.: Inflammation and necrosis promote tumour growth. Nature Reviews Immunology 4, 641–648 (2004)

    Article  Google Scholar 

  45. van Beijnum, J.R., Buurman, W.A., Griffioen, A.W.: Convergence and amplification of toll-like receptor (TLR) and receptor for advanced glycation end products (RAGE) signaling pathways via high mobility group B1. Angiogenesis 11, 91–99 (2008)

    Article  Google Scholar 

  46. Vogelstein, B., Lane, D., Levine, A.J.: Surfing the p53 network. Nature 408, 307–310 (2000)

    Article  Google Scholar 

  47. Wee, K.B., Aguda, B.D.: Akt versus p53 in a network of oncogenes and tumor suppressor genes regulating cell survival and death. Biophysical Journal 91, 857–865 (2006)

    Article  Google Scholar 

  48. Wu, H., Lozano, G.: NF-κB activation of p53. a potential mechanism for suppressing cell growth in response to stress. J. Biol. Chem. 269, 20067–20074 (1994)

    Google Scholar 

  49. Yao, G., Lee, T.J., Mori, S., Nevins, J., You, L.: A bistable Rb-E2F switch underlies the restriction point. Nature Cell Biology 10, 476–482 (2008)

    Article  Google Scholar 

  50. Younes, H.L.S., Simmons, R.G.: Statistical probabilistic model checking with a focus on time-bounded properties. Information and Computation 204(9), 1368–1409 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  51. Zuliani, P., Platzer, A., Clarke, E.M.: Bayesian statistical model checking with application to simulink/stateflow verification. In: HSCC, pp. 243–252 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gong, H., Zuliani, P., Komuravelli, A., Faeder, J.R., Clarke, E.M. (2012). Computational Modeling and Verification of Signaling Pathways in Cancer. In: Horimoto, K., Nakatsui, M., Popov, N. (eds) Algebraic and Numeric Biology. Lecture Notes in Computer Science, vol 6479. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28067-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28067-2_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28066-5

  • Online ISBN: 978-3-642-28067-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics