Skip to main content

Cardiovascular X-ray Imaging: Physics, Equipment and Techniques

  • Chapter
  • First Online:

Abstract

Interventionists performing catheter-based procedures on the cardiovascular system should be familiar with the basic operations and functions of the employed X-ray imaging equipment. Although palpable differences in X-ray technology between manufacturers exist, the principles and modes of operation are identical across the board. In this chapter, the basic physical and technical principles of X-ray machines dedicated to cardiovascular interventional imaging are reviewed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bushberg JT, Siebert JA, Boone JM, Leidtholdt EM (2002) The essential physics of medical imaging, 2nd edn. Lippincott, Williams & Wilkins, Philadelphia

    Google Scholar 

  2. Dowsett DJ, Kenny PA, Johnston RE (2006) The physics of diagnostic imaging, 2nd edn. Hodder Arnold, London

    Google Scholar 

  3. Momose A, Takeda T, Itai Y (2000) Blood vessels: depiction at phase contrast X-ray imaging with contrast agents in the mouse and rat – feasibility study. Radiology 217:593–596

    PubMed  CAS  Google Scholar 

  4. Partridge MJ, McGahan G, Causton S, Bowers M, Mason M, Dalby M, Mitchell A (2006) Radiation dose reduction without compromise of image quality in cardiac angiography and intervention with the use of a flat panel detector without an antiscatter grid. Heart 92:507–510

    Article  PubMed  CAS  Google Scholar 

  5. Boone JM, Seibert JA (1994) A figure of merit comparison between bremsstrahlung and monoenergetic X-ray sources for angiography. J Xray Sci Technol 4:334–345

    PubMed  CAS  Google Scholar 

  6. Gislason AJ, Davies AG, Cowen AR (2010) Dose optimization in paediatric cardiac x-ray imaging. Med Phys 37(10):5258–5269

    Article  PubMed  Google Scholar 

  7. Lin PJ (2008) Technical advances of interventional and flat panel image receptor. Health Phys 95(5):650–657

    Article  PubMed  CAS  Google Scholar 

  8. Seibert JA (2006) Flat-panel detectors: how much better are they? Pediatr Radiol 36(Suppl 2):173–181

    Article  PubMed  Google Scholar 

  9. Holmes DR, Laskey WK, Wondrow MA, Cusma JT (2004) Flat-panel detectors in the cardiac catheterization laboratory: revolution or evolution – what are the issues? Catheter Cardiovasc Interv 63:324–330

    Article  PubMed  Google Scholar 

  10. Balter S (2001) Interventional fluoroscopy: physics, technology and safety. Wiley-Liss, New York

    Google Scholar 

  11. Mistretta CA, Crummy AB (1981) Diagnosis of cardiovascular disease by digital subtraction angiography. Science 214:761–765

    Article  PubMed  CAS  Google Scholar 

  12. Mistretta CA, Kruger RA, Ergun DL, Shaw CG, Crummy AB, Strother CM, Sackett JF, Myerowitz PD, Turnipseed WD, Zarnstorff WC, van Lysel MS, Lancaster JC, Ruzicka FF (1981) Digital vascular imaging. Medicamundi 26(1):1–10

    Google Scholar 

  13. Ludwig JW, Verhoeven LHJ, Engels PHC (1982) Digital video subtraction angiography (DVSA) equipment: angiographic technique in comparison with conventional angiography in different in different vascular areas. Br J Radiol 55:545–553

    Article  PubMed  CAS  Google Scholar 

  14. Verhoeven LAJ (1985) DSA imaging: some physical and technical aspects. Medicamundi 30:46–55

    Google Scholar 

  15. Brody WR (1981) Hybrid subtraction for improved arteriography. Radiology 141:828–831

    PubMed  CAS  Google Scholar 

  16. Hoff DJ, Wallace MC, ter Brugge KG, Gentili F (1994) Rotational angiography assessment of cerebral aneurysms. AJNR Am J Neuroradiol 15(10): 1945–1948

    PubMed  CAS  Google Scholar 

  17. Tu RT, Cohen WA, Maravilla KR, Bush WH, Patel NH, Eskridge J, Winn HR (1996) Digital subtraction rotational angiography for aneurysms of the intracranial anterior circulation: injection method and optimization. AJNR Am J Neuroradiol 17:1127–1136

    PubMed  CAS  Google Scholar 

  18. Seymour HR, Matson MB, Belli A-M, Morgan R, Kyriou J, Patel U (2001) Rotational digital subtraction angiography of the renal arteries: technique and evaluation in the study of native and transplant renal arteries. Br J Radiol 74:134–141

    PubMed  CAS  Google Scholar 

  19. Maddux JT, Wink O, Messenger JC, Groves BM, Liao R, Strzelczyk J, Chen S-YJ, Carroll JD (2004) Rando­mized study of the safety and clinical utility of rotational angiography versus standard angiography in the diagnosis of coronary artery disease. Catheter Cardio­vasc Interv 62:167–174

    Article  PubMed  Google Scholar 

  20. Raman SV, Morford R, Neff M, Attar TT, Kukielka G, Magorien RD, Bush CA (2004) Rotational x-ray coronary angiography. Catheter Cardiovasc Interv 63:201–207

    Article  PubMed  Google Scholar 

  21. Akhtar M, Vakharia KT, Mishell J, Gera A, Ports TA, Yeghiazarians Y, Michaels AD (2005) Randomized study of the safety and clinical utility of rotational vs standard coronary angiography using a flat-panel detector. Catheter Cardiovasc Interv 66:43–49

    Article  PubMed  Google Scholar 

  22. Moret J, Kemkers R, Op de Beek J, Koppe R, Klotz E, Grass M (1998) 2D Rotational angiography: clinical value in endovascular treatment. Medicamundi 42(3):8–14

    Google Scholar 

  23. Hochmuth A, Spetzger U, Schumacher M (2002) Comparison of three dimensional rotational angiography with digital subtraction angiography in the assessment of ruptured cerebral aneurysms. AJNR Am J Neuroradiol 23:1199–1205

    PubMed  Google Scholar 

  24. Feldkamp LA, Davis LC, Kress JW (1984) Practical cone beam algorithm. J Opt Soc Am A1(6):612–619

    Article  Google Scholar 

  25. Scott D, Davies AG, Cowen AR, Workman A (1993) Technique for 3D reconstruction of arteries from angiographic projections. In: Lemke HU, Inamura K, Jaffe CC, Felix R (eds) Proceedings computer assisted radiology. Springer, Berlin, pp 541–546

    Google Scholar 

  26. Grass M, Koppe R, Klotz PR, Kuhn MH, Aerts H, Op de Beek J, Kemkers R (1999) Three-dimensional reconstruction of high contrast objects using C-arm image intensifier projection data. Comput Med Imaging Graph 23:311–321

    Article  PubMed  CAS  Google Scholar 

  27. Siewerdsen JH, Jaffrey DA (2004) Cone-beam computed tomography with a flat-panel imager: magnitude and effects of scatter. Med Phys 28:22–23

    Google Scholar 

  28. Muijderman EA, Roelandse CD, Vetter A, Schreiber P (1989) A diagnostic X-ray tube with spiral-groove bearings. Philips Tech Rev 44(11/12):357–363

    Google Scholar 

  29. Schmidt T, Behling R (2000) MRC: a successful platform for future X-ray tube development. Medicamundi 44(2):50–55

    Google Scholar 

  30. Hahn H, Farber D, Allmendinger H, Brendler J (1997) Grid-controlled fluoroscopy in pediatric radiology. Medicamundi 41(1):12–17

    Google Scholar 

  31. Hernandez RJ, Goodsitt MM (1996) Reduction of radiation dose in pediatric patients using pulsed fluoroscopy. Am J Roentgenol 167(5):1247–1253

    CAS  Google Scholar 

  32. Sobol WT (2002) High frequency x-ray generator basics. Med Phys 29(2):132–144

    Article  PubMed  Google Scholar 

  33. Den Boer AD, de Feyter PJ, Hummel WA, Keane D, Roelandt JRTC (1994) Reduction of radiation exposure while maintaining high-quality fluoroscopic images during interventional cardiology using novel x-ray tube technology extra beam filtering. Circulation 89:2710–2714

    Article  Google Scholar 

  34. Gagne RM, Quinn PW (1995) X-ray spectral considerations in fluoroscopy. In: Balter S, Shope TB (eds) RSNA categorical course in physics. RSNA, Oak Brook, Illinois USA, pp 49–58

    Google Scholar 

  35. Baldazzi G, Corazza I, Rossi PL, Testoni G, Bernardi T, Zannoli R (2002) In vivo effectiveness of gadolinium filter for paediatric cardiac angiography in terms of image quality and radiation exposure. Phys Med 28:109–113

    Google Scholar 

  36. Rossi PL, Mariselli M, Corazza I, Bianchini D, Biffi M, Martignani C, Zannoli R, Boriani G (2009) Decrease in patient radiation exposure by a tantalum filter during electrophysiological procedures. Pacing Clin Electrophysiol 32(Suppl 1):S109–S112

    Article  PubMed  Google Scholar 

  37. Geise RA (2001) Fluoroscopy: recording of fluoroscopic images and automatic exposure control. Radiographics 21:227–236

    PubMed  CAS  Google Scholar 

  38. Lin PP (2007) The operation logic of automatic dose control of fluoroscopy system in conjunction with spectral filters. Med Phys 34:3169–3172

    Article  PubMed  Google Scholar 

  39. Krohmer JS (1989) Radiography and fluoroscopy, 1920 to the present. Radiographics 9:1129–1153

    PubMed  CAS  Google Scholar 

  40. Schueler BA (2000) General overview of fluoroscopic imaging. Radiographics 20:1115–1126

    PubMed  CAS  Google Scholar 

  41. Wang J, Blackburn TJ (2000) X-ray image intensifiers for fluoroscopy. Radiographics 20:1471–1477

    PubMed  CAS  Google Scholar 

  42. Van Lysel MS (2000) Fluoroscopy: optical coupling and the video system. Radiographics 20:1769–1786

    PubMed  Google Scholar 

  43. Snoeren RM, ten Caat RB, Dillen BGM, Gieles P, van der Veen JCT (1991) Solid state image sensor in X-ray television. Medicamundi 36:203–211

    Google Scholar 

  44. Pooley RA, McKinney JM, Miller DA (2001) Digital fluoroscopy. Radiographics 21:521–534

    PubMed  CAS  Google Scholar 

  45. Neitzel U (2000) Recent technological develop­ments and their influence. Radiat Prot Dosimetry 90(1–2):15–20

    Article  Google Scholar 

  46. Powell A, Katzen B (1999) First experiences with a CCD system in interventional radiology: the Integris V5000. Medicamundi 43(4):38–44

    Google Scholar 

  47. Cowen AR, Kengyelics SM, Davies AG (2008) Solid-state flat-panel digital radiography detectors and their physical imaging characteristics. Clin Radiol 63:487–498

    Article  PubMed  CAS  Google Scholar 

  48. Schiebel U, Conrads N, Jung N, Weibrecht M, Wieczorek H, Zaengel T (1994) Fluoroscopic X-ray imaging with amorphous silicon thin-film arrays. SPIE Proc Phys Med Imaging 2162:129–140

    Google Scholar 

  49. Antonuk LE, Yorkston J, Huang W, Siewerdsen JH, Boudry JM, El-Mohri Y (1995) A real-time, flat-panel amorphous silicon digital X-ray imager. Radiographics 15:993–1000

    PubMed  CAS  Google Scholar 

  50. Chabbal J, Chaussat T, Ducourant T, Fritsch L, Michailos J, Spinnler V, Vieux G, Arques M, Hahm G, Hoheisel M, Horbaschek H, Schulz RF, Spahn MF (1996) Amorphous silicon x-ray image sensor. SPIE Proc Phys Med Imaging 2708:499–510

    CAS  Google Scholar 

  51. Colbeth RE, Allen MJ, Day DJ, Gilblom DL, Klaus Meijer-Brown ME, Pavkovich J, Seppi EJ, Shapiro EG (1997) Characterisation of an amorphous silicon fluoroscopic imager. SPIE Proc Phys Med Imaging 3032:42–51

    Google Scholar 

  52. Colbeth RE, Allen MJ, Day DJ, Gilblom DL, Harris R, Job ID, Klausmeier-Brown ME, Pavkovich JM, Seppi EJ, Shapiro EG, Wright MD, Jm Yu (1998) Flat panel imaging system for fluoroscopy applications. SPIE Proc Phys Med Imaging 3336:376–387

    Google Scholar 

  53. Bruijns TJ, Alving PL, Baker EL, Bury RF, Cowen AR, Jung N, Luijendijk HA, Meulenbrugge HJ, Stouten HJ (1998) Technical and clinical results of an experimental flat dynamic (digital) X-ray image detector (FDXD) systems with real-time correction. SPIE Proc Phys Med Imaging 3336:33–44

    Google Scholar 

  54. Bury RF, Cowen AR, Davies AG, Baker EL, Hawkridge P, Bruijns AJC, Reitsma H (1998) Technical report: initial experiences with an experimental solid-state universal digital X-ray detector. Clin Radiol 53:923–928

    Article  PubMed  CAS  Google Scholar 

  55. Bruijns AJC, Bury R, Busse F, Davies AG, Cowen AR, Rutten W, Reitsma H (1999) Technical and clinical assessments of an experimental flat dynamic X-ray image detector system. SPIE Proc Phys Med Imaging 3659:324–335

    Google Scholar 

  56. Jung N, Alving PL, Busse F, Conrads N, Meulenbrugge HM, Rutten W, Schiebel UW, Weibrecht M, Wieczorek HK (1998) Dynamic X-ray imaging based on an amorphous silicon thin-film array. SPIE Proc Phys Med Imaging 3336:974–985

    Google Scholar 

  57. Busse F, Rutten W, Sandkamp B, Alving PL, Bastiaens RJM, Ducourant T (2002) Design and performance of a high quality cardiac flat panel detector. SPIE Proc Phys Med Imaging 4682:819–827

    Google Scholar 

  58. Granfors PR, Aufrichtig R, Netel H, Brunst G, Boudry JM, Luo D, Albagli D, Tkaczyk JE (2001) Performance of a flat cardiac detector. SPIE Proc Phys Med Imaging 4320:77–86

    Google Scholar 

  59. Sivananthan UM, Moore J, Cowan JC, Pepper CB, Hunter S, Cowen AR, Davies AG, Kengyelics SM (2004) A flat-detector cardiac cath lab system in clinical practice. Medicamundi 48:4–12

    Google Scholar 

  60. Granfors PR, Aufrichtig R, Possin GE, Giambattista BW, Huang ZS, Liu J, Ma B (2003) Performance of a 41 x 41 cm2 amorphous silicon flat panel x-ray detector designed for angiographic and R&F imaging applications. Med Phys 30:2715–2726

    Article  PubMed  CAS  Google Scholar 

  61. Ducourant T, Couder D, Wirth T, Trochet JC, Bastiaens R, Bruijns T, Luijendijk HA, Sandkamp B, Davies AG, Didier D, Gonzalez A, Terraz S, Ruefenacht D et al (2003) Image quality of digital subtraction angiography using flat detector technology. SPIE Proc Phys Med Imaging 5030:203–214

    Google Scholar 

  62. Bruijns AJC, Bastiaens R, Hoornaert B, von Reth E, Busse F, Heer VK, Ducourant T, Cowen AR, Davies AG, Terrier F (2002) Image quality of a large-area dynamic flat detector: comparison with a state-of-the-art IITV system. SPIE Proc Phys Med Imaging 4682:332–343

    Google Scholar 

  63. Colbeth RE, Boyce S, Fong R, Gray K, Harris R, Job ID, Mollov IP, Nepo B, Pakovich JM, Taie-Nobarie N, Seppi EJ, Shapiro EG, Wright MD, Webb C, Yu JM (2001) 40 x 30 cm2 flat imager for angiography, R&F and cone-beam CT applications. SPIE Proc Phys Med Imaging 4320:94–102

    Google Scholar 

  64. Choquette M, Demers Y, Shukri Z, Tousignant O, Aoki K, Honda M, Takahashi A, Tsukamoto A (2001) Real time performance of a selenium based detector for fluoroscopy. SPIE Proc Phys Med Imaging 4320:501–508

    CAS  Google Scholar 

  65. Tousignant O, Demers Y, Laperriere L, Nishiki M, Nagai S, Tomisaki T, Takahashi A, Aoki K (2003) Clinical performances of a 14″ x 14″ real time amorphous selenium flat panel detector. SPIE Proc Phys Med Imaging 5030:71–76

    CAS  Google Scholar 

  66. Asahina H (1999) Selenium-based flat panel X-ray detector for digital fluoroscopy and radiography. Toshiba Med Rev 69:1–7

    Google Scholar 

  67. Tousignant O, Demers Y, Lapierre L, Marcovici S (2007) A-Se flat panel detectors for medical applications. Sensors applications symposium, IEEE San Diego, California USA

    Google Scholar 

  68. Spahn M (2005) Flat detectors and their clinical applications. Eur Radiol 15:1934–1947

    Article  PubMed  Google Scholar 

  69. Nikoloff EL (2011) Survey of modern fluoroscopy imaging: flat-panel detectors versus image intensifiers and more. Radiographics 31:591–602

    Article  Google Scholar 

  70. Roos PG, Colbeth RE, Mollov I, Munro P, Pavkovich J, Seppi EJ, Shapiro EG, Tognina CA, Virshup GF, Yu M, Zentai G, Kaissi W, Matsinos A, Richters J, Riehm H (2004) Multiple-gain-ranging readout method to extend the dynamic range of amorphous silicon flat-panel imagers. SPIE Proc Phys Med Imaging 5368:139–149

    Google Scholar 

  71. Boyce SJ, Chawla A, Samei E (2005) Physical evaluation of a high frame rate, extended dynamic range flat panel detector for real-time cone beam computed tomography applications. SPIE Proc Phys Med Imaging 5745:591–599

    Google Scholar 

  72. Fahrig R, Wen Z, Ganguly A, DeCrescenzo G, Rowlands JA, Stevens GM, Saunders RF, Pelc NJ (2005) Performance of a static-anode/flat-panel x-ray fluoroscopy system in a diagnostic strength magnetic field: truly hybrid X-ray/MR imaging system. Med Phys 32:1775–1784

    Article  PubMed  CAS  Google Scholar 

  73. Achenbach S, Ropers D, Holle J, Muschol G, Daniel WG, Moshage W (2000) In-plane coronary arterial motion velocity: measurement with electron-beam CT. Radiology 216:457–463

    PubMed  CAS  Google Scholar 

  74. Zhao W, DeCresenzo G, Rowlands JA (2003) Investigation of lag and ghosting in amorphous selenium flat-panel x-ray detectors. SPIE Proc Phys Med Imaging 4682:9–20

    Google Scholar 

  75. Siewerdsen JH, Jaffray DA (1999) A ghost story: spatio-temporal response characteristics of an indirect-detection flat-panel imager. Med Phys 26:1624–1641

    Article  PubMed  CAS  Google Scholar 

  76. Overdick M, Solf T, Wischmann H-A (2001) Temporal artefacts in flat dynamic X-ray detectors. SPIE Proc Phys Med Imaging 4320:47–58

    Google Scholar 

  77. Ducourant T, Michel M, Vieux G, Peppler T, Trochet JC, Schulz RF, Bastiaens RJM, Busse F (2000) Optimization of key building blocks for a large area radiographic and fluoroscopic dynamic X-ray detector based on a-Si:H/CsI:Tl flat panel technology. SPIE Proc Phys Med Imaging 3977:14–25

    Google Scholar 

  78. Dainty JC, Shaw R (1975) Image science. Academic Press, London

    Google Scholar 

  79. Tognina CA, Mollov I, Yu JM, Webb C, Roos PG, Batts M, Trinh D, Fong R, Taie-Nobriae N, Nepo B, Job IS, Gray K, Boyce S, Colbeth RE (2004) Design and performance of a new a-Si flat panel imager for use in cardiovascular and mobile C-arm imaging systems. SPIE Proc Phys Med Imaging 5368:648–656

    Google Scholar 

  80. Davies AG, Cowen AR, Kengyelics SM, Bury RF, Bruijns TJ (2001) Threshold contrast detail detectability measurement of the fluoroscopic image quality of a dynamic solid-state digital x-ray image detector. Med Phys 28:11–15

    Article  PubMed  CAS  Google Scholar 

  81. Spekowius G, Boerner H, Eckenbach W, Quadflieg P, Laurenssen GJ (1995) Simulation of the imaging performance of X-ray image intensifier TV camera chains. SPIE Proc Phys Med Imaging 2432:12–23

    Google Scholar 

  82. Baker EL, Cowen AR, Kemner R, Bastiaens R (1998) A physical evaluation of a CCD-based x-ray II fluorography system for cardiac applications. SPIE Proc Phys Med Imaging 3336:430–441

    Google Scholar 

  83. Vano E, Geiger B, Schreiner A, Back C, Beissel J (2005) Dynamic flat panel detector versus image intensifier in cardiac: dose and image quality. Phys Med Biol 50:5731–5742

    Article  PubMed  CAS  Google Scholar 

  84. Davies AG, Cowen AR, Kengyelics SM, Moore J, Pepper C, Cowen C, Sivananthan UM (2006) X-ray dose reduction in fluoroscopically guided electrophysiology procedures. Pacing Clin Electrophysiol 29:262–271

    Article  PubMed  Google Scholar 

  85. Prasan AM, Ison G, Rees DM (2008) Radiation exposure during elective coronary angioplasty: the effect of flat-panel detection. Heart Lung Circ 17:215–219

    Article  PubMed  Google Scholar 

  86. Trianni A, Bernardi G, Padovani R (2005) Are new technologies always reducing patient doses in ­cardiac procedures. Radiat Prot Dosimetry 117:97–101

    Article  PubMed  CAS  Google Scholar 

  87. Tsapaki V, Kottou S, Kollaros N, Dafnomili P, Kyriakidis Z, Neofotistou V (2004) Dose performance evaluation of charge coupled device and a flat-panel digital fluoroscopy system recently installed in an interventional cardiology laboratory. Radiat Prot Dosimetry 111(3):297–304

    Article  PubMed  Google Scholar 

  88. Davies AG, Cowen AR, Kengyelics SM, Moore J, Sivananthan MU (2007) Do flat detector cardiac X-ray systems convey advantages over image intensifier-based systems? Study comparing X-ray dose and image quality. Eur Radiol 17:1787–1794

    Article  PubMed  Google Scholar 

  89. Nikoloff EL, Lu ZF, Dutta A, So J, Balter S, Moses J (2007) Influence of flat-panel fluoroscopic equipment variables on cardiac radiation doses. Cardiovasc Intervent Radiol 30:169–176

    Article  Google Scholar 

  90. Cowen AR (1994) Image processing in digital radiography. Imaging 6:77–99

    Google Scholar 

  91. Cowen AR, Hartley PJ, Workman A (1988) The computer enhancement of digital grey-scale fluorography images. Br J Radiol 61(726):492–500

    Article  PubMed  CAS  Google Scholar 

  92. Aach T, Mayntz C, Rongen P, Schmitz G, Stegehuis H (2002) Spatiotemporal multiscale vessel enhancement for coronary angiograms. SPIE Proc Phys Med Imaging 4684:1010–1021

    Google Scholar 

  93. Wu Z, Fang M, Qian J, Schramm H (1997) A multi-scale adaptive method for blood vessel enhancement in x-ray angiography. SPIE Proc Phys Med Imaging 3036:326–335

    Google Scholar 

  94. Koolen JJ, Van Het Veer M, Hanekamp CEE (2005) Stentboost image enhancement: first clinical experience. Medicamundi 49(2):4–8

    Google Scholar 

  95. Mishell JM, Vakharia KT, Ports TA, Yeghiazians Y, Michaels AD (2007) Determination of adequate coronary stent expansion using stentboost, a novel fluoroscopic image processing technique. Catheter Cardiovasc Interv 69:84–93

    Article  PubMed  Google Scholar 

  96. Sivananthan UM, Blackburn M, Cowan JC, Mclenachan J, Pepper CB, Hunter S, Moore J, Cowen AR, Davies AG, Kengyelics SM (2006) Cardiac cath lab upgrade improves efficiency and reduces dose. Medicamundi 50(2):1–9

    Google Scholar 

  97. Agostini P, Verheye S (2007) Bifurcation stenting with dedicated biolimus-eluting stent: x-ray visual enhancement of the angiographic result with “StentBoost”. Catheter Cardiovasc Interv 70:233–236

    Article  Google Scholar 

  98. Eng MH, Klein AP, Wink O, Hansgen A, Carroll JD, Garcia JA (2010) Enhanced stent visualization: a case series demonstrating practical applications during PCI. Int J Cardiol 141(1):e8–e16

    Article  PubMed  Google Scholar 

  99. Schoonenberg G, Florent R (2009) Advanced visibility enhancement for stents and other devices: image processing aspects. Cardiol Clin 27:477–490

    Article  PubMed  Google Scholar 

  100. Fahrig R, Fox AJ, Lownie S, Holdsworth DW (1997) Use of a C-arm system to generate true three-dimensional computed rotational angiograms: preliminary in vitro and in vivo results. AJNR Am J Neuroradiol 18:1507–1514

    PubMed  CAS  Google Scholar 

  101. Fahrig R, Moreau M, Holdsworth DW (1997) Three dimensional computed tomographic reconstruction using C-arm mounted XRII: correction of image intensifier distortion. Med Phys 24:1097–1106

    Article  PubMed  CAS  Google Scholar 

  102. Baba R, Konno Y, Ueda K, Ikeda S (2002) Comparison of flat-panel detector and image intensifier detector for cone-beam CT. Comput Med Imaging Graph 6:153–158

    Article  Google Scholar 

  103. Hirota S, Nakao N, Yamamoto S, Kobayashi K, Maeda H, Ishikura R, Miura K, Sakamoto K, Ueda K, Baba R (2006) Cone-beam CT with flat-panel detector digital angiography system: early experiences in abdominal interventional procedures. Cardiovasc Intervent Radiol 29:1034–1038

    Article  PubMed  Google Scholar 

  104. Hirai T, Korogi Y, Ono K, Yamura M, Uemara S, Yamashita Y (2004) Pseudostenosis phenomenon at volume-rendered three-dimensional digital angiography of intracranial arteries: frequency, location and effect on image evaluation. Radiology 232:882–887

    Article  PubMed  Google Scholar 

  105. Kakeda S, Korogi Y, Ohnari N, Hatakeyama Y, Moriya J, Oda N, Nishino K, Miyamoto W (2007) 3D digital subtraction angiography of intracranial aneurysms: comparison of flat panel detector with conventional IITV system using a vascular phantom. AJNR Am J Neuroradiol 28:839–843

    Article  PubMed  CAS  Google Scholar 

  106. Sugahara T, Korogi Y, Nakashima K, Hamatake S, Honda S, Takahashi M (2002) Comparison of 2D and 3D digital subtraction angiography in evaluation of intracranial aneurysms. AJNR Am J Neuroradiol 23:1545–1552

    PubMed  Google Scholar 

  107. Hatakeyama Y, Kakeda S, Korogi Y, Ohnari N, Moriya J, Oda N, Nishino K, Miyamoto W (2006) Intracranial 2D and 3D DSA with flat panel detector of the direct conversion type: initial experience. Eur Radiol 16:2594–2602

    Article  PubMed  Google Scholar 

  108. Schueler BA, Kallmes DF, Cloft HJ (2005) 3D cerebral angiography: radiation dose comparison with digital subtraction angiography. AJNR Am J Neuroradiol 26:1898–1901

    PubMed  Google Scholar 

  109. Bridcut RR, Murphy E, Workman A, Flynn P, Winder RJ (2007) Patient dose from 3D rotational neurovascular studies. Br J Radiol 80:362–366

    Article  PubMed  CAS  Google Scholar 

  110. Tsapaki V, Vano E, Mavrikou I, Neofotistou V, Gallego JJ, Fernandez JM, Santos E, Mendez J (2008) Comparison of patient dose in teo-dimensional carotid arteriography and three-dimensional rotational angiography. Cardiovasc Intervent Radiol 31:477–482

    Article  PubMed  Google Scholar 

  111. Gupta R, Cheung AC, Bartling SH, Lisauskas J, Grasruck M, Leidecker C, Schmidt B, Flohr T, Brady TJ (2008) Flat-panel CT: fundamental principles, technology & applications. Radiographics 28:2009–2022

    Article  PubMed  Google Scholar 

  112. Smyth JM, Sutton DG, Houston JG (2006) Evaluation of the quality of CT-like images obtained using a commercial flat panel detector system. Biomed Imaging Interv J 2(4):e48

    Article  PubMed  Google Scholar 

  113. Wallace MJ, Kuo M, Glaiberman C, Binkert CA, Orh RC, Soulez G (2008) Three dimensional C-arm cone-beam CT: applications in the interventional suite. J Vasc Interv Radiol 19:799–813

    Article  PubMed  Google Scholar 

  114. Miracle AC, Mukherji SK (2009) Conebeam CT of the head and neck, part 1: physical principles. AJNR Am J Neuroradiol 30:1088–1095

    Article  PubMed  CAS  Google Scholar 

  115. Orth RC, Wallace MJ, Kuo MD (2008) C-arm cone-beam CT: general principles and technical considerations for use in interventional radiology. J Vasc Interv Radiol 19:814–821

    Article  PubMed  Google Scholar 

  116. Struffert T, Eyopglu IY, Huttner HB, Engelhorn T, Doelken M, Saake M, Ganslandt O, Doerfler A (2010) Clinical evaluation of flat-panel detector compared with multi-slice computed tomography in 65 patients with acute intracranial haemorrhage: initial results. J Neurosurg 113:901–907

    Article  PubMed  Google Scholar 

  117. Heran NS, Song JK, Mamba K, Smith W, Niimi Y, Berenstein A (2006) The utility of DynaCT in neurovascular procedures. AJNR Am J Neuroradiol 27:330–332

    PubMed  CAS  Google Scholar 

  118. Kamran M, Nagaraja S, Byrne JV (2010) C-arm flat detector computed tomography: the technique and its application in interventional neuro-radiology. Neuroradiology 52:319–327

    Article  PubMed  Google Scholar 

  119. Kyriakou Y, Richter DA, Kalendar WA (2008) Neuroradiologic applications with routine C-arm flat panel detector CT: evaluation of patient dose measurements. AJNR Am J Neuroradiol 29:1930–1936

    Article  PubMed  CAS  Google Scholar 

  120. Soderman M, Babic D, Homan R, Andersson T (2005) 3D roadmap in neuroangiography: technique and clinical interest. Neuroradiology 47:735–740

    Article  PubMed  Google Scholar 

  121. Wilhelm K, Babic D (2006) 3D angiography in the interventional clinical routine. Medicamundi 50:24–31

    Google Scholar 

  122. Turski PA, Stieghorst MF, Strother CM, Crummy AB, Lieberman RP, Mistretta CA (1982) Digital subtraction angiography “road map”. Am J Roentgenol 139:1233–1234

    CAS  Google Scholar 

  123. Racadio JM, Babic D, Homan R, Rampton JW, Patel MN, Racadio JM, Johnson ND (2007) Live 3D guidance in the interventional radiology suite. Am J Roentgenol 189:357–364

    Article  Google Scholar 

  124. Badano A (2004) AAPM/RSNA tutorial on equipment selection: PACS equipment overview. Display systems. Radiographics 24(3):879–889

    Article  PubMed  Google Scholar 

  125. The Royal College of Radiologists (2008) Picture archiving and communication systems (PACS) and guidelines on diagnostic display devices. This guidance is only available electronically from: www.rcr.ac.uk (accessed March 2012)

  126. Drost MM (2009) Evaluation of a recently developed 56″ monitor in CV interventions. Medicamundi 53(3):24–28

    Google Scholar 

  127. Gurley JC (2009) Flat detectors and new safety aspects of radiation safety. Cardiol Clin 27:385–394

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Section 14.12 of this chapter, entitled ‘Technique Considerations’, was written by Peter Lanzer, M.D. Health Care Center, Bitterfeld-Wolfen, Germany.

The author gratefully acknowledges many helpful discussions during the preparation of this chapter with my colleagues Amber Gislason and Andrew Davies (at the University of Leeds) and Professor Mohan Sivananthan (of the Yorkshire Heart Centre, LGI Leeds).

Amber Gislason kindly provided the X-ray spectra shown in Figs. 14.1 and 14.13. Mr. Davies and Professor Sivananthan kindly provided the images used in Figs. 14.20 and 14.21. The images used in Figs. 14.11, 14.15, 14.16, 14.18, 14.22, 14.23 and 14.24 are reproduced courtesy of Dr. Eric A. von Reth, senior director of Clinical Sciences at Philips Healthcare (Best, the Netherlands).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnold R. Cowen Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cowen, A.R. (2013). Cardiovascular X-ray Imaging: Physics, Equipment and Techniques. In: Lanzer, P. (eds) Catheter-Based Cardiovascular Interventions. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27676-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27676-7_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27675-0

  • Online ISBN: 978-3-642-27676-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics