Skip to main content

Desquamation: It Is Almost All About Proteases

  • Chapter
  • First Online:

Abstract

This chapter reviews the structure, function, and formation of the stratum corneum, how it is perturbed in a variety of conditions. In particular it discusses the role of proteases such as the kallikreins, plasmin, and urokinase and their inhibitors that play a role in desquamation of healthy and pathological skin. Faulty desquamation is the accumulation of corneocytes on the surface of the stratum corneum that leads ultimately to the cosmetic condition commonly termed as “dry skin.” This can be flaky skin as is normally seen on the body or rough skin observed on the face. Changes in the proteolytic balance of the skin can also result in inflammation, which leads to the typical clinical signs of redness, scaling, and itching. Reduced protease activity is known in soap-induced dry skin, but increased serine protease activity occurs in most, if not all, inflammatory dermatoses, ranging from genetic disorders, such as Netherton syndrome, psoriasis, and atopic dermatitis, to subclinical barrier abnormalities induced, e.g., surfactants, or by environmental influences. Serine proteases might represent key markers for underlying and sometimes nonobservable skin abnormalities. The biology of skin moisturization, of which hydration is only one benefit, is highly complex. The future of all new moisturizers lies in the fully understanding of the control and impairment of desquamation. Better understanding of the multistep proteolytic events and of the regulatory mechanisms involved in desquamation should enable the design of new treatments for the skin disorders associated with disturbance in the stratum corneum turnover. This will be the ultimate approach to corneocare.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kligman AM (2011) Corneobiology and corneotherapy – a final chapter. Int J Cosmet Sci 33(3):197–209

    Article  PubMed  CAS  Google Scholar 

  2. Elias PM (2005) Stratum corneum defensive functions: an integrated view. J Invest Dermatol 125(2):183–200

    PubMed  CAS  Google Scholar 

  3. Chaturvedi V et al (2006) Defining the caspase-containing apoptotic machinery contributing to cornification in human epidermal equivalents. Exp Dermatol 15(1):14–22

    Article  PubMed  CAS  Google Scholar 

  4. Egelrud T (1993) Purification and preliminary characterization of stratum corneum chymotryptic enzyme: a proteinase that may be involved in desquamation. J Invest Dermatol 101(2):200–204

    Article  PubMed  CAS  Google Scholar 

  5. Haftek M, Simon M, Serre G (2006) Corneodesmosomes: Pivotal Actors in the Stratum Corneum Cohesion and Desquamation. In: Elias PM, Feingold KR (eds) Skin barrier. Taylor & Francis, New York, pp 171–189

    Google Scholar 

  6. Marks R (2004) The stratum corneum barrier: the final frontier. J Nutr 134(8 Suppl):2017S–2021S

    PubMed  CAS  Google Scholar 

  7. Jonca N et al (2002) Corneodesmosin, a component of epidermal corneocyte desmosomes, displays homophilic adhesive properties. J Biol Chem 277(7):5024–5029

    Article  PubMed  CAS  Google Scholar 

  8. Michaels AS, Chandrasekaran SK, Shaw JE (1975) Drug permeation through human skin: Theory and invitro experimental measurement. AIChE J 21(5):985–996

    Article  CAS  Google Scholar 

  9. Elias PM (1983) Epidermal lipids, barrier function, and desquamation. J Invest Dermatol 80(Suppl):44s–49s

    Article  CAS  Google Scholar 

  10. Wepf R et al (2007) Multimodal imaging of skin structures: imagining imaging of the skin. In: Wilhelm K-P et al (eds) Bioengineering of the skin: skin imaging and analysis. Informa Healthcare, New York

    Google Scholar 

  11. Cork MJ et al (2009) Epidermal barrier dysfunction in atopic dermatitis. J Invest Dermatol 129(8):1892–1908

    Article  PubMed  CAS  Google Scholar 

  12. Serre G et al (1991) Identification of late differentiation antigens of human cornified epithelia, expressed in re-organized desmosomes and bound to cross-linked envelope. J Invest Dermatol 97(6):1061–1072

    Article  PubMed  CAS  Google Scholar 

  13. Lundström A et al (1994) Evidence for a role of corneodesmosin, a protein which may serve to modify desmosomes during cornification, in stratum corneum cell cohesion and desquamation. Arch Dermatol Res 286(7):369–375

    Article  PubMed  Google Scholar 

  14. Brandner JM, Haftek M, Niessen CM (2010) Adherens junctions, desmosomes and tight junctions in epidermal barrier function. Open Dermatol J 4:14–20

    Article  CAS  Google Scholar 

  15. Egelrud T (1999) Desquamation. In: Loden M, Maibach H (eds) Dry skin and moisturizers. CRC Press, Boca Raton, pp 109–117

    Google Scholar 

  16. Chapman SJ, Walsh A (1990) Desmosomes, corneosomes and desquamation. An ultrastructural study of adult pig epidermis. Arch Dermatol Res 282(5):304–310

    Article  PubMed  CAS  Google Scholar 

  17. Fartasch M, Bassukas ID, Diepgen TL (1993) Structural relationship between epidermal lipid lamellae, lamellar bodies and desmosomes in human epidermis: an ultrastructural study. Br J Dermatol 128(1):1–9

    Article  PubMed  CAS  Google Scholar 

  18. Neubert RHH, Wepf R (2008) Das stratum corneum – struktur und morphologie einer hoch effizienten barriere. Medicos 4:21–28

    Google Scholar 

  19. Stokes DL (2007) Desmosomes from a structural perspective. Curr Opin Cell Biol 19(5):565–571

    Article  PubMed  CAS  Google Scholar 

  20. Green KJ, Simpson CL (2007) Desmosomes: new perspectives on a classic. J Invest Dermatol 127(11):2499–2515

    Article  PubMed  CAS  Google Scholar 

  21. Green KJ, Gaudry CA (2000) Are desmosomes more than tethers for intermediate filaments? Nat Rev Mol Cell Biol 1(3):208–216

    Article  PubMed  CAS  Google Scholar 

  22. Kottke MD, Delva E, Kowalczyk AP (2006) The desmosome: cell science lessons from human diseases. J Cell Sci 119(5):797–806

    Article  PubMed  CAS  Google Scholar 

  23. Garrod D, Chidgey M, North A (1996) Desmosomes: differentiation, development, dynamics and disease. Curr Opin Cell Biol 8(5):670–678

    Article  PubMed  CAS  Google Scholar 

  24. Watkinson A et al (2001) Water modulation of stratum corneum chymotryptic enzyme activity and desquamation. Arch Dermatol Res 293(9):470–476

    Article  PubMed  CAS  Google Scholar 

  25. Naoe Y et al (2010) Bidimensional analysis of desmoglein 1 distribution on the outermost corneocytes provides the structural and functional information of the stratum corneum. J Dermatol Sci 57(3):192–198

    Article  PubMed  CAS  Google Scholar 

  26. Horikoshi T et al (1999) Role of endogenous cathepsin D-like and chymotrypsin-like proteolysis in human epidermal desquamation. Br J Dermatol 141(3):453–459

    Article  PubMed  CAS  Google Scholar 

  27. Ekholm IE, Brattsand M, Egelrud T (2000) Stratum corneum tryptic enzyme in normal epidermis: a missing link in the desquamation process? J Invest Dermatol 114(1):56–63

    Article  PubMed  CAS  Google Scholar 

  28. Watkinson A (1999) Stratum corneum thiol protease (SCTP): a novel cysteine protease of late epidermal differentiation. Arch Dermatol Res 291(5):260–268

    Article  PubMed  CAS  Google Scholar 

  29. Skerrow CJ, Clelland DG, Skerrow D (1989) Changes to desmosomal antigens and lectin-binding sites during differentiation in normal human epidermis: a quantitative ultrastructural study. J Cell Sci 92(4):667–677

    PubMed  Google Scholar 

  30. Chapman SJ et al (1991) Lipids, proteins and corneocyte adhesion. Arch Dermatol Res 283(3):167–173

    Article  PubMed  CAS  Google Scholar 

  31. Harding CR et al (2000) Dry skin, moisturization and corneodesmolysis. Int J Cosmet Sci 22(1):21–52

    Article  PubMed  CAS  Google Scholar 

  32. Caubet C et al (2004) Degradation of corneodesmosome proteins by two serine proteases of the kallikrein family, SCTE//KLK5//hK5 and SCCE//KLK7//hK7. J Invest Dermatol 122(5):1235–1244

    Article  PubMed  CAS  Google Scholar 

  33. Öhman H, Vahlquist A (1998) The pH gradient over the stratum corneum differs in X-linked recessive and autosomal dominant ichthyosis: a clue to the molecular origin of the “acid skin mantle”? J Invest Dermatol 111(4):674–677

    Article  PubMed  Google Scholar 

  34. Komatsu N et al (2007) Aberrant human tissue kallikrein levels in the stratum corneum and serum of patients with psoriasis: dependence on phenotype, severity and therapy. Br J Dermatol 156(5):875–883

    Article  PubMed  CAS  Google Scholar 

  35. Simon M et al (2002) Abnormal proteolysis of corneodesmosin in psoriatic skin. Br J Dermatol 147(5):1053

    Google Scholar 

  36. Komatsu N et al (2005) Multiple tissue kallikrein mRNA and protein expression in normal skin and skin diseases. Br J Dermatol 153(2):274–281

    Article  PubMed  CAS  Google Scholar 

  37. Komatsu N et al (2007) Human tissue kallikrein expression in the stratum corneum and serum of atopic dermatitis patients. Exp Dermatol 16(6):513–519

    Article  PubMed  CAS  Google Scholar 

  38. Voegeli R et al (2009) Increased stratum corneum serine protease activity in acute eczematous atopic skin. Br J Dermatol 161:70–77

    Article  PubMed  CAS  Google Scholar 

  39. Cork MJ et al (2006) New perspectives on epidermal barrier dysfunction in atopic dermatitis: gene-environment interactions. J Allergy Clin Immunol 118(1):3–21, quiz 22–3

    Article  PubMed  CAS  Google Scholar 

  40. Haftek M et al (1997) Expression of corneodesmosin in the granular layer and stratum corneum of normal and diseased epidermis. Br J Dermatol 137(6):864–873

    Article  PubMed  CAS  Google Scholar 

  41. Simon M et al (2008) Alterations in the desquamation-related proteolytic cleavage of corneodesmosin and other corneodesmosomal proteins in psoriatic lesional epidermis. Br J Dermatol 159(1):77–85

    Article  PubMed  CAS  Google Scholar 

  42. Rawlings AV et al (1994) Abnormalities in stratum corneum structure, lipid composition, and desmosome degradation in soap-induced winter xerosis. J Soc Cosmet Chem 45:203–220

    CAS  Google Scholar 

  43. Rawlings AV et al (1995) The effect of glycerol and humidity on desmosome degradation in stratum corneum. Arch Dermatol Res 287(5):457–464

    Article  PubMed  CAS  Google Scholar 

  44. Simon M et al (2001) Persistence of both peripheral and non-peripheral corneodesmosomes in the upper stratum corneum of winter xerosis skin versus only peripheral in normal skin. J Invest Dermatol 116(1):23–30

    Article  PubMed  CAS  Google Scholar 

  45. Brandner JM (2009) Tight junctions and tight junction proteins in mammalian epidermis. Eur J Pharm Biopharm 72(2):289–294

    Article  PubMed  CAS  Google Scholar 

  46. Schlüter H et al (2004) Sealing the live part of the skin: the integrated meshwork of desmosomes, tight junctions and curvilinear ridge structures in the cells of the uppermost granular layer of the human epidermis. Eur J Cell Biol 83(11–12):655–665

    Article  PubMed  Google Scholar 

  47. Haftek M et al (2011) Compartmentalization of the human stratum corneum by persistent tight junction-like structures. Exp Dermatol 20(8):617–621

    Article  PubMed  CAS  Google Scholar 

  48. Igawa S et al (2011) Tight junctions in the stratum corneum explain spatial differences in corneodesmosome degradation. Exp Dermatol 20(1):53–57

    Article  PubMed  Google Scholar 

  49. Hachem JP et al (2005) Sustained serine proteases activity by prolonged increase in pH leads to degradation of lipid processing enzymes and profound alterations of barrier function and stratum corneum integrity. J Invest Dermatol 125(3):510–520

    Article  PubMed  CAS  Google Scholar 

  50. Parra JL, Paye M (2003) EEMCO guidance for the in vivo assessment of skin surface pH. Skin Pharmacol Appl Skin Physiol 16(3):188–202

    PubMed  CAS  Google Scholar 

  51. Öhman H, Vahlquist A (1994) In vivo studies concerning a pH gradient in human stratum corneum and upper epidermis. Acta Derm Venereol 74(5):375–379

    PubMed  Google Scholar 

  52. Behne MJ et al (2002) NHE1 regulates the stratum corneum permeability barrier homeostasis. Microenvironment acidification assessed with fluorescence lifetime imaging. J Biol Chem 277(49):47399–47406

    Article  PubMed  CAS  Google Scholar 

  53. Behne MJ et al (2003) Neonatal development of the stratum corneum pH gradient: localization and mechanisms leading to emergence of optimal barrier function. J Invest Dermatol 120(6):998–1006

    Article  PubMed  CAS  Google Scholar 

  54. Suzuki Y et al (1993) Detection and characterization of endogenous protease associated with desquamation of stratum corneum. Arch Dermatol Res 285(6):372–377

    Article  PubMed  CAS  Google Scholar 

  55. Ovaere P et al (2009) The emerging roles of serine protease cascades in the epidermis. Trends Biochem Sci 34(9):453–463

    Article  PubMed  CAS  Google Scholar 

  56. Morizane S et al (2010) Kallikrein expression and cathelicidin processing are independently controlled in keratinocytes by calcium, vitamin D(3), and retinoic acid. J Invest Dermatol 130(5):1297–1306

    Article  PubMed  CAS  Google Scholar 

  57. Menon GK et al (1992) Localization of calcium in murine epidermis following disruption and repair of the permeability barrier. Cell Tissue Res 270(3):503–512

    Article  PubMed  CAS  Google Scholar 

  58. Hachem J-P et al (2006) Serine protease signaling of epidermal permeability barrier homeostasis. J Invest Dermatol 126(9):2074–2086

    Article  PubMed  CAS  Google Scholar 

  59. Demerjian M et al (2008) Acute modulations in permeability barrier function regulate epidermal cornification. Role of caspase-14 and the protease-activated receptor type 2. Am J Pathol 172(1):86–97

    Article  PubMed  CAS  Google Scholar 

  60. Sexsmith E, Petersen WF (1918) Skin ferments. J Exp Med 27(2):273–282

    PubMed  CAS  Google Scholar 

  61. Di Cera E (2009) Serine proteases. IUBMB Life 61(5):510–515

    Article  PubMed  CAS  Google Scholar 

  62. Emami N, Diamandis EP (2007) Human tissue kallikreins: a road under construction. Clin Chim Acta 381(1):78–84

    Article  PubMed  CAS  Google Scholar 

  63. Bissett DL, McBride JF, Patrick LF (1987) Role of protein and calcium in stratum corneum cell cohesion. Arch Dermatol Res 279(3):184–189

    Article  PubMed  CAS  Google Scholar 

  64. Egelrud T, Hofer PA, Lundstrom A (1988) Proteolytic degradation of desmosomes in plantar stratum corneum leads to cell dissociation in vitro. Acta Derm Venereol 68(2):93–97

    PubMed  CAS  Google Scholar 

  65. Lundström A, Egelrud T (1988) Cell shedding from human plantar skin in vitro: evidence of its dependence on endogenous proteolysis. J Invest Dermatol 91(4):340–343

    Article  PubMed  Google Scholar 

  66. Egelrud T, Lundstrom A (1990) The dependence of detergent-induced cell dissociation in non-palmo-plantar stratum corneum on endogenous proteolysis. J Invest Dermatol 95(4):456–459

    Article  PubMed  CAS  Google Scholar 

  67. Lundström A, Egelrud T (1990) Evidence that cell shedding from plantar stratum corneum in vitro involves endogenous proteolysis of the desmosomal protein desmoglein I. J Invest Dermatol 94(2):216–220

    Article  PubMed  Google Scholar 

  68. Lundström A, Egelrud T (1990) Cell shedding from human plantar skin in vitro: evidence that two different types of protein structures are degraded by a chymotrypsin-like enzyme. Arch Dermatol Res 282(4):234–237

    Article  PubMed  Google Scholar 

  69. Egelrud T, Lundström A (1991) A chymotrypsin-like proteinase that may be involved in desquamation in plantar stratum corneum. Arch Dermatol Res 283(2):108–112

    Article  PubMed  CAS  Google Scholar 

  70. Lundström A, Egelrud T (1991) Stratum corneum chymotryptic enzyme: a proteinase which may be generally present in the stratum corneum and with a possible involvement in desquamation. Acta Derm Venereol 71(6):471–474

    PubMed  Google Scholar 

  71. Paliouras M, Diamandis EP (2006) The kallikrein world: an update on the human tissue kallikreins. Biol Chem 387(6):643–652

    Article  PubMed  CAS  Google Scholar 

  72. Clements JA et al (2004) The tissue kallikrein family of serine proteases: functional roles in human disease and potential as clinical biomarkers. Crit Rev Clin Lab Sci 41(3):265–312

    Article  PubMed  CAS  Google Scholar 

  73. Brattsand M et al (2005) A proteolytic cascade of kallikreins in the stratum corneum. J Invest Dermatol 124(1):198–203

    Article  PubMed  CAS  Google Scholar 

  74. Stefansson K et al (2006) Kallikrein-related peptidase 14 may be a major contributor to trypsin-like proteolytic activity in human stratum corneum. Biol Chem 387(6):761–768

    Article  PubMed  CAS  Google Scholar 

  75. Komatsu N et al (2005) Quantification of human tissue kallikreins in the stratum corneum: dependence on age and gender. J Invest Dermatol 125(6):1182–1189

    Article  PubMed  CAS  Google Scholar 

  76. Komatsu N et al (2006) Quantification of eight tissue kallikreins in the stratum corneum and sweat. J Invest Dermatol 126(4):927–931

    Article  CAS  Google Scholar 

  77. Kishibe M et al (2007) Kallikrein 8 is involved in skin desquamation in cooperation with other kallikreins. J Biol Chem 282(8):5834–5841

    Article  PubMed  CAS  Google Scholar 

  78. Yoon H et al (2008) Activation profiles of human kallikrein-related peptidases by proteases of the thrombostasis axis. Protein Sci 17:1998–2007

    Article  PubMed  CAS  Google Scholar 

  79. Debela M et al (2008) Structures and specificity of the human kallikrein-related peptidases KLK 4, 5, 6, and 7. Biol Chem 389(6):623

    Article  PubMed  CAS  Google Scholar 

  80. Alfano D et al (2005) The urokinase plasminogen activator and its receptor: role in cell growth and apoptosis. Thromb Haemost 93(2):205–211

    PubMed  CAS  Google Scholar 

  81. Rockway TW, Nienaber V, Giranda VL (2002) Inhibitors of the protease domain of urokinase-type plasminogen activator. Curr Pharm Des 8(28):2541–2558

    Article  PubMed  CAS  Google Scholar 

  82. Mondino A, Resnati M, Blasi F (1999) Structure and function of the urokinase receptor. Thromb Haemost 82(Suppl 1):19–22

    PubMed  Google Scholar 

  83. Ogura Y et al (2008) Plasmin induces degradation and dysfunction of laminin 332 (laminin 5) and impaired assembly of basement membrane at the dermal-epidermal junction. Br J Dermatol 159(1):49–60

    Article  PubMed  CAS  Google Scholar 

  84. Rosenberg S (2001) New developments in the urokinase-type plasminogen activator system. Expert Opin Ther Targets 5(6):711–722

    Article  PubMed  CAS  Google Scholar 

  85. Schaefer BM et al (1995) Differential expression of urokinase-type plasminogen activator (uPA), its receptor (uPA-R), and inhibitor type-2 (PAI-2) during differentiation of keratinocytes in an organotypic coculture system. Exp Cell Res 220(2):415–423

    Article  PubMed  CAS  Google Scholar 

  86. Jensen PJ, Lavker RM (1999) Urokinase is a positive regulator of epidermal proliferation in vivo. J Invest Dermatol 112(2):240–244

    Article  PubMed  CAS  Google Scholar 

  87. Spiers EM, Lazarus GS, Lyons-Giordano B (1994) Expression of plasminogen activator enzymes in psoriatic epidermis. J Invest Dermatol 102(3):333–338

    Article  PubMed  CAS  Google Scholar 

  88. Katsuta Y et al (2003) Urokinase-type plasminogen activator is activated in stratum corneum after barrier disruption. J Dermatol Sci 32(1):55–57

    Article  PubMed  CAS  Google Scholar 

  89. Denda M et al (1997) trans-4-(aminomethyl)cyclohexane carboxylic acid (T-AMCHA), an anti-fibrinolytic agent, accelerates barrier recovery and prevents the epidermal hyperplasia induced by epidermal injury in hairless mice and humans. J Invest Dermatol 109(1):84–90

    Article  PubMed  CAS  Google Scholar 

  90. Marschall C et al (1999) UVB increases urokinase-type plasminogen activator receptor (uPAR) expression. J Invest Dermatol 113(1):69–76

    Article  PubMed  CAS  Google Scholar 

  91. Miralles F et al (1998) UV irradiation induces the murine urokinase-type plasminogen activator gene via the c-Jun N-terminal kinase signaling pathway: requirement of an AP1 enhancer element. Mol Cell Biol 18(8):4537–4547

    PubMed  CAS  Google Scholar 

  92. Oxholm A et al (1988) Immunohistological detection of interleukin I-like molecules and tumour necrosis factor in human epidermis before and after UVB-irradiation in vivo. Br J Dermatol 118(3):369–376

    Article  PubMed  CAS  Google Scholar 

  93. Sales KU et al (2010) Matriptase initiates activation of epidermal pro-kallikrein and disease onset in a mouse model of Netherton syndrome. Nat Genet 42(8):676–683

    Article  PubMed  CAS  Google Scholar 

  94. List K et al (2002) Matriptase/MT-SP1 is required for postnatal survival, epidermal barrier function, hair follicle development, and thymic homeostasis. Oncogene 21(23):3765–3779

    Article  PubMed  CAS  Google Scholar 

  95. List K et al (2003) Loss of proteolytically processed filaggrin caused by epidermal deletion of Matriptase/MT-SP1. J Cell Biol 163(4):901–910

    Article  PubMed  CAS  Google Scholar 

  96. List K et al (2006) Delineation of matriptase protein expression by enzymatic gene trapping suggests diverging roles in barrier function, hair formation, and squamous cell carcinogenesis. Am J Pathol 168(5):1513–1525

    Article  PubMed  CAS  Google Scholar 

  97. Deraison C et al (2007) LEKTI fragments specifically inhibit KLK5, KLK7, and KLK14 and control desquamation through a pH-dependent interaction. Mol Biol Cell 18(9):3607–3619

    Article  PubMed  CAS  Google Scholar 

  98. Zeeuwen PL et al (2007) Colocalization of cystatin M/E and cathepsin V in lamellar granules and corneodesmosomes suggests a functional role in epidermal differentiation. J Invest Dermatol 127(1):120–128

    Article  PubMed  CAS  Google Scholar 

  99. Igarashi S et al (2004) Cathepsin D, but not cathepsin E, degrades desmosomes during epidermal desquamation. Br J Dermatol 151(2):355–361

    Article  PubMed  CAS  Google Scholar 

  100. Meyer-Hoffert U (2009) Reddish, scaly, and itchy: how proteases and their inhibitors contribute to inflammatory skin diseases. Arch Immunol Ther Exp (Warsz) 57(5):345–354

    Article  CAS  Google Scholar 

  101. Bernard D et al (2001) Purification and characterization of the endoglycosidase heparanase 1 from human plantar stratum corneum: a key enzyme in epidermal physiology? J Invest Dermatol 117(5):1266–1273

    Article  PubMed  CAS  Google Scholar 

  102. Goettig P, Magdolen V, Brandstetter H (2010) Natural and synthetic inhibitors of kallikrein-related peptidases (KLKs). Biochimie 92(11):1546–1567

    Article  PubMed  CAS  Google Scholar 

  103. Borgono CA et al (2007) Expression and functional characterization of the cancer-related serine protease, human tissue kallikrein 14. J Biol Chem 282(4):2405–2422

    Article  PubMed  CAS  Google Scholar 

  104. Debela M et al (2007) Structural basis of the zinc inhibition of human tissue kallikrein 5. J Mol Biol 373(4):1017–1031

    Article  PubMed  CAS  Google Scholar 

  105. Debela M et al (2007) Chymotryptic specificity determinants in the 1.0 A structure of the zinc-inhibited human tissue kallikrein 7. Proc Natl Acad Sci USA 104(41):16086–16091

    Article  PubMed  CAS  Google Scholar 

  106. Sato J et al (1998) Cholesterol sulfate inhibits proteases that are involved in desquamation of stratum corneum. J Invest Dermatol 111(2):189–193

    Article  PubMed  CAS  Google Scholar 

  107. Ishida-Yamamoto A et al (2005) LEKTI is localized in lamellar granules, separated from KLK5 and KLK7, and is secreted in the extracellular spaces of the superficial stratum granulosum. J Invest Dermatol 124(2):360–366

    Article  PubMed  CAS  Google Scholar 

  108. Roelandt T et al (2009) LEKTI-1 in sickness and in health. Int J Cosmet Sci 31(4):247–254

    Article  PubMed  CAS  Google Scholar 

  109. Borgono CA et al (2007) A potential role for multiple tissue kallikrein serine proteases in epidermal desquamation. J Biol Chem 282(6):3640–3652

    Article  PubMed  CAS  Google Scholar 

  110. Egelrud T et al (2005) hK5 and hK7, two serine proteinases abundant in human skin, are inhibited by LEKTI domain 6. Br J Dermatol 153(6):1200–1203

    Article  PubMed  CAS  Google Scholar 

  111. Schechter NM et al (2005) Inhibition of human kallikreins 5 and 7 by the serine protease inhibitor lympho-epithelial Kazal-type inhibitor (LEKTI). Biol Chem 386(11):1173–1184

    Article  PubMed  CAS  Google Scholar 

  112. Meyer-Hoffert U, Wu Z, Schroder JM (2009) Identification of lympho-epithelial Kazal-type inhibitor 2 in human skin as a kallikrein-related peptidase 5-specific protease inhibitor. PLoS One 4(2):e4372

    Article  PubMed  CAS  Google Scholar 

  113. Brattsand M et al (2009) SPINK9: a selective, skin-specific Kazal-type serine protease inhibitor. J Invest Dermatol 129(7):1656–1665

    Article  PubMed  CAS  Google Scholar 

  114. Meyer-Hoffert U et al (2010) Isolation of SPINK6 in human skin: selective inhibitor of kallikrein-related peptidases. J Biol Chem 285(42):32174–32181

    Article  PubMed  CAS  Google Scholar 

  115. Franzke C-W et al (1996) Antileukoprotease inhibits stratum corneum chymotryptic enzyme. Evidence for a regulative function in desquamation. J Biol Chem 271(36):21886–21890

    Article  PubMed  CAS  Google Scholar 

  116. Tian X et al (2004) Expression of human kallikrein 7 (hK7/SCCE) and its inhibitor antileukoprotease (ALP/SLPI) in uterine endocervical glands and in cervical adenocarcinomas. Oncol Rep 12:1001–1006

    PubMed  CAS  Google Scholar 

  117. Molhuizen HO et al (1993) SKALP/elafin: an elastase inhibitor from cultured human keratinocytes. Purification, cDNA sequence, and evidence for transglutaminase cross-linking. J Biol Chem 268(16):12028–12032

    PubMed  CAS  Google Scholar 

  118. Taggart CC et al (2001) Cathepsin B, L, and S cleave and inactivate secretory leucoprotease inhibitor. J Biol Chem 276(36):33345–33352

    Article  PubMed  CAS  Google Scholar 

  119. Galliano MF et al (2006) A novel protease inhibitor of the alpha2-macroglobulin family expressed in the human epidermis. J Biol Chem 281(9):5780–5789

    Article  PubMed  CAS  Google Scholar 

  120. Oji V et al (2006) Plasminogen activator inhibitor-2 is expressed in different types of congenital ichthyosis: in vivo evidence for its cross-linking into the cornified cell envelope by transglutaminase-1. Br J Dermatol 154(5):860–867

    Article  PubMed  CAS  Google Scholar 

  121. Hibino T et al (1999) Suppression of keratinocyte proliferation by plasminogen activator inhibitor-2. J Invest Dermatol 112(1):85–90

    Article  PubMed  CAS  Google Scholar 

  122. Lian X, Yang T (2004) Plasminogen activator inhibitor 2: expression and role in differentiation of epidermal keratinocyte. Biol Cell 96(2):109–116

    Article  PubMed  CAS  Google Scholar 

  123. Chavanas S et al (2000) Mutations in SPINK5, encoding a serine protease inhibitor, cause Netherton syndrome. Nat Genet 25(2):141–142

    Article  PubMed  CAS  Google Scholar 

  124. Hachem J-P et al (2006) Serine protease activity and residual LEKTI expression determine phenotype in Netherton syndrome. J Invest Dermatol 126(7):1609–1621

    Article  PubMed  CAS  Google Scholar 

  125. Komatsu N et al (2002) Elevated stratum corneum hydrolytic activity in Netherton syndrome suggests an inhibitory regulation of desquamation by SPINK5-derived peptides. J Invest Dermatol 118(3):436–443

    Article  PubMed  CAS  Google Scholar 

  126. Sevilla LM et al (2007) Mice deficient in involucrin, envoplakin, and periplakin have a defective epidermal barrier. J Cell Biol 179(7):1599–1612

    Article  PubMed  CAS  Google Scholar 

  127. Eissa A, Diamandis EP (2008) Human tissue kallikreins as promiscuous modulators of homeostatic skin barrier functions. Biol Chem 389(6):669–680

    Article  PubMed  CAS  Google Scholar 

  128. Yoon H et al (2007) Activation profiles and regulatory cascades of the human kallikrein-related peptidases. J Biol Chem 282(44):31852–31864

    Article  PubMed  CAS  Google Scholar 

  129. Simon M et al (2001) Refined characterization of corneodesmosin proteolysis during terminal differentiation of human epidermis and its relationship to desquamation. J Biol Chem 276(23):20292–20299

    Article  PubMed  CAS  Google Scholar 

  130. Bernard D et al (2003) Analysis of proteins with caseinolytic activity in a human stratum corneum extract revealed a yet unidentified cysteine protease and identified the so-called “stratum corneum thiol protease” as cathepsin L2. J Invest Dermatol 120(4):592–600

    Article  PubMed  CAS  Google Scholar 

  131. Stefansson K et al (2008) Activation of proteinase-activated receptor-2 by human kallikrein-related peptidases. J Invest Dermatol 128(1):18–25

    Article  PubMed  CAS  Google Scholar 

  132. Oikonomopoulou K et al (2006) Proteinase-activated receptors. Targets for kallikrein signaling. J Biol Chem 281(43):32095–32112

    Article  PubMed  CAS  Google Scholar 

  133. Egberts F et al (2004) Cathepsin D is involved in the regulation of transglutaminase 1 and epidermal differentiation. J Cell Sci 117(11):2295–2307

    Article  PubMed  CAS  Google Scholar 

  134. Chang-Yi C, Takahashi M, Tezuka T (1997) 30-kDa trypsin-like proteases in the plantar stratum corneum. J Dermatol 24(8):504–509

    CAS  Google Scholar 

  135. Schepky AG et al (2004) Influence of cleansing on stratum corneum tryptic enzyme in human skin. Int J Cosmet Sci 26(5):245–253

    Article  PubMed  CAS  Google Scholar 

  136. Hansson L et al (2002) Epidermal overexpression of stratum corneum chymotryptic enzyme in mice: a model for chronic itchy dermatitis. J Invest Dermatol 118(3):444–449

    Article  PubMed  CAS  Google Scholar 

  137. Koyama J et al (1996) The mechanism of desquamation in the stratum corneum and its relevance to skin care. In: Proceedings of the 19th IFSCC congress, Sydney, 1996

    Google Scholar 

  138. Voegeli R et al (2007) Profiling of serine protease activities in human stratum corneum and detection of a stratum corneum tryptase-like enzyme. Int J Cosmet Sci 29(3):191–200

    Article  PubMed  CAS  Google Scholar 

  139. Sato J et al (1998) Dry condition affects desquamation of stratum corneum in vivo. J Dermatol Sci 18(3):163–169

    Article  PubMed  CAS  Google Scholar 

  140. Sato J (2002) Desquamation and the Role of Stratum Corneum Enzymes. In: Leyden JJ, Rawlings AV (eds) Skin moisturization. Marcel Dekker, New York, pp 81–94

    Google Scholar 

  141. Declercq L et al (2002) Adaptation response in human skin barrier to a hot and dry environment. J Invest Dermatol 119(3):716

    Google Scholar 

  142. Voegeli R et al (2007) Efficient and simple quantification of stratum corneum proteins on tape strippings by infrared densitometry. Skin Res Technol 13(3):242–251

    Article  PubMed  CAS  Google Scholar 

  143. Voegeli R et al (2008) Increased basal transepidermal water loss leads to elevation of some but not all stratum corneum serine proteases. Int J Cosmet Sci 30(6):435–442

    Article  PubMed  CAS  Google Scholar 

  144. Mohammed D et al (2011) Depth profiling of stratum corneum biophysical and molecular properties. Br J Dermatol 164(5):957–965

    Article  PubMed  CAS  Google Scholar 

  145. Hirao T (2003) Involvement of transglutaminase in ex vivo maturation of cornified envelopes in the stratum corneum. Int J Cosmet Sci 25(5):245–257

    Article  PubMed  CAS  Google Scholar 

  146. Harding CR et al (2003) The cornified cell envelope: an important marker of stratum corneum maturation in healthy and dry skin. Int J Cosmet Sci 25(4):157–167

    Article  PubMed  CAS  Google Scholar 

  147. Hadgraft J, Lane ME (2009) Transepidermal water loss and skin site: a hypothesis. Int J Pharm 373(1–2):1–3

    Article  PubMed  CAS  Google Scholar 

  148. Machado M, Hadgraft J, Lane ME (2010) Assessment of the variation of skin barrier function with anatomic site, age, gender and ethnicity. Int J Cosmet Sci 32:397–409

    Google Scholar 

  149. Proksch E (2008) Protection against dryness of facial skin: a rational approach. Skin Pharmacol Physiol 22(1):3–7

    Article  PubMed  Google Scholar 

  150. Van Overloop L, Declercq L, Maes D (2001) Visual scaliness of human skin correlates to decreased ceramide levels and decreased stratum corneum protease activity. J Dermatol 117(3):811

    Google Scholar 

  151. Nina M et al (2009) Dichotomous effect of ultraviolet B on the expression of corneodesmosomal enzymes in human epidermal keratinocytes. J Dermatol Sci 54(1):17–24

    Article  CAS  Google Scholar 

  152. Kitamura K (2002) Advances in dry skin care technology extend beyond the category of cosmetic products. IFSCC Mag 5(3):177–187

    Google Scholar 

  153. Kawai E et al (2002) Can inorganic powders provide any biological benefit in stratum corneum, while residing on skin surface. IFSCC Mag 5(4):269–275

    Google Scholar 

  154. Suzuki Y et al (1996) The role of two endogenous proteases of the stratum corneum in degradation of desmoglein-1 and their reduced activity in the skin of ichthyotic patients. Br J Dermatol 134(3):460–464

    Article  PubMed  CAS  Google Scholar 

  155. Bowcock AM, Krueger JG (2005) Getting under the skin: the immunogenetics of psoriasis. Nat Rev Immunol 5(9):699–711

    Article  PubMed  CAS  Google Scholar 

  156. Ekholm E, Egelrud T (1999) Stratum corneum chymotryptic enzyme in psoriasis. Arch Dermatol Res 291(4):195–200

    Article  PubMed  CAS  Google Scholar 

  157. Vasilopoulos Y et al (2004) Genetic association between an AACC insertion in the 3′UTR of the stratum corneum chymotryptic enzyme gene and atopic dermatitis. J Invest Dermatol 123(1):62–66

    Article  PubMed  CAS  Google Scholar 

  158. Rawlings AV, Matts PJ (2005) Stratum corneum moisturization at the molecular level: an update in relation to the dry skin cycle. J Invest Dermatol 124(6):1099–1110

    Article  PubMed  CAS  Google Scholar 

  159. Choi MJ, Maibach HI (2005) Role of ceramides in barrier function of healthy and diseased skin. Am J Clin Dermatol 6(4):215–223

    Article  PubMed  Google Scholar 

  160. Holleran WM, Takagi Y, Uchida Y (2006) Epidermal sphingolipids: metabolism, function, and roles in skin disorders. FEBS Lett 580(23):5456–5466

    Article  PubMed  CAS  Google Scholar 

  161. Redoules D et al (1999) Characterisation and assay of five enzymatic activities in the stratum corneum using tape-strippings. Skin Pharmacol Appl Skin Physiol 12(4):182–192

    PubMed  CAS  Google Scholar 

  162. Tarroux R et al (2002) Variability of enzyme markers during clinical regression of atopic dermatitis. Skin Pharmacol Appl Skin Physiol 15:55–62

    PubMed  CAS  Google Scholar 

  163. Voegeli R et al (2011) Increased mass levels of serine proteases in the stratum corneum in acute eczematous atopic skin. Int J Cosmet Sci 33(6):560–565

    Article  PubMed  CAS  Google Scholar 

  164. Kalia YN et al (2001) Assessment of topical bioavailability in vivo: the importance of stratum corneum thickness. Skin Pharmacol Appl Skin Physiol 14(suppl 1):82–86

    PubMed  CAS  Google Scholar 

  165. Roedl D et al (2009) Serine protease inhibitor lymphoepithelial Kazal type-related inhibitor tends to be decreased in atopic dermatitis. J Eur Acad Dermatol Venereol 23(11):1263–1266

    Article  PubMed  CAS  Google Scholar 

  166. Descargues P et al (2006) Corneodesmosomal cadherins are preferential targets of stratum corneum trypsin- and chymotrypsin-like hyperactivity in Netherton syndrome. J Invest Dermatol 126(7):1622–1632

    Article  PubMed  CAS  Google Scholar 

  167. Kikuchi K et al (2006) Impairment of skin barrier function is not inherent in atopic dermatitis patients: a prospective study conducted in newborns. Pediatr Dermatol 23(2):109–113

    Article  PubMed  Google Scholar 

  168. Cork MJ et al (2006) Interaction of topical corticosteroids and pimecrolimus with the skin barrier: Implications for efficacy and safety of treatment for atopic dermatitis. J Am Acad Dermatol 54(suppl S):AB3 P10

    Google Scholar 

  169. Sugarman JL (2008) The epidermal barrier in atopic dermatitis. Semin Cutan Med Surg 27(2):108–114

    Article  PubMed  CAS  Google Scholar 

  170. Rawlings AV (2009) 50 years of stratum corneum and moisturization research. IFSCC Mag 12(3):169–172

    Google Scholar 

  171. Jonca N et al (2009) Corneodesmosomal Proteins. In: Rawlings AV, Leyden JJ (eds) Skin moisturization. Informa Healthcare, New York, pp 99–123

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer Voegeli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Voegeli, R., Rawlings, A.V. (2012). Desquamation: It Is Almost All About Proteases. In: Lodén, M., Maibach, H. (eds) Treatment of Dry Skin Syndrome. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27606-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27606-4_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27605-7

  • Online ISBN: 978-3-642-27606-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics