Skip to main content

Plant Peptide Signaling: An Evolutionary Adaptation

  • Chapter
  • First Online:
Book cover Plant Signaling Peptides

Part of the book series: Signaling and Communication in Plants ((SIGCOMM,volume 16))

Abstract

Peptide signaling molecules are well characterized in animal systems, but it is only over the last three decades that they have been recognized in plants. In this chapter, we compare some of the major features of animal peptide signaling molecules with the new classes that have been identified in plants. We introduce the concept of modular signaling and discuss how this adaptable feature can be evolutionarily advantageous to multicellular organisms. Most signaling peptides have been identified in angiosperms (both monocot and dicot) although representative signaling peptides occur in moss and green algae. Some classes contain peptides with highly diverse sequences (within and across species) while other peptide signaling classes are small or represented by a single peptide or only found in a single family of plants. The different classes of plant signaling peptides are not phylogenetically related indicating that they have been independently selected to enable modular or mix and match signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrash EB, Bergmann DC (2010) Regional specification of stomatal production by the putative ligand CHALLAH. Development 137:447–455

    PubMed  CAS  Google Scholar 

  • Abrash EB, Lampard GR (2010) A view from the top: new ligands controlling stomatal development in Arabidopsis. New Phytol 186:561–564

    PubMed  CAS  Google Scholar 

  • Acquisti C, Elser JJ, Kumar S (2009) Ecological nitrogen limitation shapes the DNA composition of plant genomes. Mol Biol Evol 26:953–956

    PubMed  CAS  Google Scholar 

  • Amano Y, Tsubouchi H, Shinohara H, Ogawa M, Matsubayashi Y (2007) Tyrosine-sulfated glycopeptide involved in cellular proliferation and expansion in Arabidopsis. Proc Natl Acad Sci U S A 104:18333–18338

    PubMed  CAS  Google Scholar 

  • Antunes LCM, Ferreira RBR, Buckner MMC, Finlay BB (2010) Quorum sensing in bacterial virulence. Microbiology 156:2271–2282

    PubMed  CAS  Google Scholar 

  • Atzal AJ, Wood AJ, Lightfoot DA (2008) Plant receptor-like serine threonine kinases: roles in signalling and plant defense. Mol Plant Microbe Interact 21:507–517

    Google Scholar 

  • Banting FG, Best CH, Collip JB, Macleod JJR, Noble EC (1922a) The effects of insulin on experimental hyperglycaemia in rabbits. Am J Physiol 62:559–580

    CAS  Google Scholar 

  • Banting FG, Best CH, Collip JB, Macleod JJR, Noble EC (1922b) The effect of pancretic extract (insulin) on normal rabbits. Am J Physiol 62:162–176

    CAS  Google Scholar 

  • Bardwell L (2004) A walk-through of the yeast mating pheromone response pathway. Peptides 25:1465–1476

    PubMed  CAS  Google Scholar 

  • Boller T, Felix G (2009) A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60:379–406

    PubMed  CAS  Google Scholar 

  • Butenko MA, Patterson SE, Grini PE, Stenvik G-E, Amundsen SS, Mandal A, Aalen RB (2003) Inflorescence deficient in abscission controls floral organ abscission in Arabidopsis and identifies a novel family of putative ligands in plants. Plant Cell 15:2296–2307

    PubMed  CAS  Google Scholar 

  • Butenko MA, Vie AK, Brembu T, Aalen RB, Bones AM (2009) Plant peptides in signalling: looking for new partners. Trends Plant Sci 14:255–263

    PubMed  CAS  Google Scholar 

  • Casson SA, Chilley PM, Topping JF, Evans M, Souter MA, Lindsey K (2002) The POLARIS gene of Arabidopsis encodes a predicted peptide required for correct root growth and leaf vascular patterning. Plant Cell 14:1705–1721

    PubMed  CAS  Google Scholar 

  • Chilley PM, Casson SA, Tarkowski P, Hawkins N, Wang KL-C, Hussey PJ, Beale M, Ecker JR, Sandberg GK, Lindsey K (2006) The POLARIS peptide of Arabidopsis regulates auxin transport and root growth via effects on ethylene signaling. Plant Cell 18:3058–3072

    PubMed  CAS  Google Scholar 

  • Clark SE, Running MP, Meyerowitz EM (1995) CLAVATA3 is a specific regulator of shoot and floral meristem development affecting the same processes as CLAVATA1. Development 121:2057–2067

    CAS  Google Scholar 

  • Clark SE, Williams RW, Meyerowitz EM (1997) The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis. Cell 89:575–585

    PubMed  CAS  Google Scholar 

  • Clouse SD (2011) Brassinosteroid signal transduction: from receptor kinase activation to transcriptional networks regulating plant development. Plant Cell 23:1219–1230

    PubMed  CAS  Google Scholar 

  • Cock JM, McCormack S (2001) A large family of genes that share homology with CLAVATA3. Plant Physiol 126:939–942

    PubMed  CAS  Google Scholar 

  • Combier J-P, Küster H, Journet E-P, Natalija Hohnjec H, Gamas P, Niebel A (2008) Evidence for the involvement in nodulation of the two small putative regulatory peptide-encoding genes MtRALFL1 and MtDVL1. Mol Plant Microbe Interact 21:1118–1127

    PubMed  CAS  Google Scholar 

  • Denecke J, Botterman J, Deblaere R (1990) Protein secretion in plant cells can occur via a default pathway. Plant Cell 2:51–59

    PubMed  CAS  Google Scholar 

  • DeYoung BJ, Clark SE (2008) BAM receptors regulate stem cell specification and organ development through complex interactions with CLAVATA signaling. Genetics 180:895–904

    PubMed  CAS  Google Scholar 

  • Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurlin JB, Smith JE (2007) Global analysis of nitrogen and phosphorous limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett 10:1135–1142

    PubMed  Google Scholar 

  • Farmer EE, Ryan CA (1992) Octadecanoid precursors of jasmonic acid activate the synthesis of wound-inducible proteinase inhibitors. Plant Cell 4:129–134

    PubMed  CAS  Google Scholar 

  • Farmer EE, Johnson RR, Ryan CA (1992) Regulation of expression of proteinase inhibitor genes by methyl jasmonates and jasmonic acid. Plant Physiol 98:995–1002

    PubMed  CAS  Google Scholar 

  • Fiers M, Golemiec E, van der Schors R, van der Geest L, Li KW, Stiekema WJ, Liu C-M (2006) The CLAVATA3/ESR motif of CLAVAT3 is functionally independent from the nonconserved flanking regions. Plant Physiol 141:1284–1292

    PubMed  CAS  Google Scholar 

  • Fletcher JC, Brand U, Running MP, Simon R, Meyerowitz EM (1999) Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science 283:1911–1914

    PubMed  CAS  Google Scholar 

  • Floyd S, Bowman JL (2010) Gene expression patterns in seed plant shoot meristems and leaves: homoplasy or homology? J Plant Res 123:43–55

    PubMed  CAS  Google Scholar 

  • Fryxell KJ (1996) The coevolution of gene family trees. Trends Genet 12:364–369

    PubMed  CAS  Google Scholar 

  • Fukuda H, Hirakawa Y, Sawa S (2007) Peptide signaling in vascular development. Curr Opin Plant Biol 10:477–482

    PubMed  CAS  Google Scholar 

  • Gehring CA, Irving HR (2003) Natriuretic peptides – a class of heterologous molecules in plants. Int J Biochem Cell Biol 35:1318–1322

    PubMed  CAS  Google Scholar 

  • Gehring CA, Md Khalid K, Toop T, Donald JA (1996) Rat natriuretic peptide binds specifically to plant membranes and induces stomatal opening. Biochem Biophys Res Commun 228:739–744

    PubMed  CAS  Google Scholar 

  • Germain H, Chevalier E, Caron S, Matton DP (2005) Characterization of five RALF-like genes from Solanum chacoense provides support for a developmental role in plants. Planta 220:447–454

    PubMed  CAS  Google Scholar 

  • Gottig N, Garavaglia BS, Daurelio LD, Valentine A, Gehring C, Orellano EG, Ottado J (2008) Xanthomonas axonopodis pv. citri uses a plant natriuretic peptide-like protein to modify host homeostasis. Proc Natl Acad Sci U S A 105:18631–18636

    PubMed  CAS  Google Scholar 

  • Hanai H, Nakayama D, Yang H, Matsubayashi Y, Hirota Y, Sakagami Y (2000) Existence of a plant tyrosylprotein sulfotransferase: novel plant enzyme catalyzing tyrosine O-sulfation of preprophytosulfokine variants in vitro. FEBS Lett 470:97–101

    PubMed  CAS  Google Scholar 

  • Hara K, Kajita R, Torii KU, Bergmann DC, Kakimoto T (2007) The secretory peptide gene EPF1 enforces the stomatal one-cell-spacing rule. Genes Dev 21:1720–1725

    PubMed  CAS  Google Scholar 

  • Hara K, Yokoo T, Kajita R, Onishi T, Yahata S, Peterson KM, Torii KU, Kakimoto T (2009) Epidermal cell density is autoregulated via a secretory peptide, EPIDERMAL PATTERNING FACTOR 2 in Arabidopsis leaves. Plant Cell Physiol 50:1019–1031

    PubMed  CAS  Google Scholar 

  • Haruta M, Constabel CP (2003) Rapid alkalinization factors in poplar cell cultures. Peptide isolation, cDNA cloning and differential expression in leaves and methyl jasmonate-treated cells. Plant Physiol 131:814–823

    PubMed  CAS  Google Scholar 

  • Hawkesford MJ, De Kok LJ (2006) Managing sulphur metabolism in plants. Plant Cell Environ 29:382–395

    PubMed  CAS  Google Scholar 

  • Hibbing ME, Fuqua C, Parsek MR, Peterson SB (2010) Bacterial competition: surviving and thriving in the microbial jungle. Nat Rev Microbiol 8:15–25

    PubMed  CAS  Google Scholar 

  • Higashiyama T (2010) Peptide signaling in pollen-pistil interactions. Plant Cell Physiol 51:177–189

    PubMed  CAS  Google Scholar 

  • Huffaker A, Pearce G, Ryan CA (2006) An endogenous peptide signal in Arabidopsis activates components of the innate immune response. Proc Natl Acad Sci U S A 103:10098–10103

    PubMed  CAS  Google Scholar 

  • Hunt L, Gray JE (2009) The signaling peptide EPF2 controls asymmetric cell divisions during stomatal development. Curr Biol 19:864–869

    PubMed  CAS  Google Scholar 

  • Ikeuchi M, Yamaguchi Y, Kazama T, Ito T, Horiguchi G, Tsukaya H (2011) ROTUNDIFOLIA4 regulates cell proliferation along the body axis in Arabidopsis shoot. Plant Cell Physiol 52:59–69

    PubMed  CAS  Google Scholar 

  • Ito Y, Nakanoyo I, Motose H, Iwamoto K, Sawa S, Dohmae N, Fukuda H (2006) Dodeca-CLE peptides as suppressors of plant stem cell differentiation. Science 313:842–845

    PubMed  CAS  Google Scholar 

  • Jia G, liu X, Owen HA, Zhao D (2008) Signaling of cell fate determination by the TPD1 small protein and EMS1 receptor kinase. Proc Natl Acad Sci U S A 105:2220–2225

    PubMed  CAS  Google Scholar 

  • Jun JH, Fiume E, Fletcher JC (2008) The CLE family of plant polypeptide signaling molecules. Cell Mol Life Sci 65:743–755

    PubMed  CAS  Google Scholar 

  • Kim BJ, Gibson DM, Shuler ML (2006) Effect of the plant peptide regulator, phytosulfokine-a, on the growth and taxol production from Taxus sp. suspension cultures. Biotechnol Bioeng 95:8–14

    PubMed  CAS  Google Scholar 

  • Kinoshita A, Nakamura Y, Sasaki E, Kyozuka J, Fukuda H, Sawa S (2007) Gain-of-function phenotypes of chemically synthetic CLAVATA3/ESR-related (CLE) peptides in Arabidopsis thaliana and Oryza sativa. Plant Cell Physiol 48:1821–1825

    PubMed  CAS  Google Scholar 

  • Kinoshita A, Betsuyaku S, Osakabe Y, Mizuno S, Nagawa S, Stahl Y, Simon R, Yamaguchi-Shinozaki K, Fukuda H, Sawa S (2010) RPK2 is an essential receptor-like kinase that transmits the CLV3 signal in Arabidopsis. Development 137:3911–3920

    PubMed  CAS  Google Scholar 

  • Kobayashi T, Eun C-H, Hanai H, Matsubayashi Y, Sakagami Y, Kamada H (1999) Phytosulfokine-a, a peptidyl plant growth factor, stimulates somatic embryogenesis in carrot. J Exp Bot 50:1123–1128

    CAS  Google Scholar 

  • Kondo T, Sawa S, Kinoshita A, Mizuno S, Kakimoto T, Fukuda H, Sakagami Y (2006) A plant peptide encoded by CLV3 identified by in situ MALDI-TOF MS analysis. Science 313:845–848

    PubMed  CAS  Google Scholar 

  • Kutschmar A, Rzewuski G, Stührwohldt N, Bemmster GTS, Inzé D, Sauter M (2009) PSK-a promotes root growth in Arabidopsis. New Phytol 181:820–831

    PubMed  CAS  Google Scholar 

  • Kwezi L, Meier S, Mungur L, Ruzvidzo O, Irving H, Gehring C (2007) The Arabidopsis thaliana brassinosteroid receptor (AtBRI1) contains a domain that functions as a guanylyl cyclase in vitro. PLoS One 2:e449. doi:410.1371/journal.pone.0000449

    PubMed  Google Scholar 

  • Kwezi L, Ruzvidzo O, Wheeler JI, Govender K, Iacuone S, Thompson PE, Gehring C, Irving HR (2011) The phytosulfokine (PSK) receptor is capable of guanylate cyclase activity and enabling cyclic GMP-dependant signalling in plants. J Biol Chem 286:22580–22588

    PubMed  CAS  Google Scholar 

  • Lorbiecke R, Sauter M (2002) Comparative analysis of PSK peptide growth factor precursor homologs. Plant Sci 163:321–332

    CAS  Google Scholar 

  • Lorbiecke R, Steffens M, Tomm JM, Scholten S, von Wiegen P, Kranz E, Wienand U, Sauter M (2005) Phytosulphokine gene regulation during maize (Zea mays L.) reproduction. J Exp Bot 56:1805–1819

    PubMed  CAS  Google Scholar 

  • Ludidi NN, Heazlewood JL, Seoighe C, Irving HR, Gehring CA (2002) Expansin-like molecules: novel functions derived from common domains. J Mol Evol 54:587–594

    PubMed  CAS  Google Scholar 

  • Maryani MM, Bradley G, Cahill DM, Gehring CA (2001) Natriuretic peptides and immunoreactants modify osmoticum-dependent volume changes in Solanum tuberosum L. mesophyll cell protoplasts. Plant Sci 161:443–452

    CAS  Google Scholar 

  • Matsubayashi Y, Sakagami Y (1996) Phytosulfokine, sulfated peptides that induce the proliferation of single mesophyll cells of Asparagus officinales L. Proc Natl Acad Sci U S A 93:7623–7627

    PubMed  CAS  Google Scholar 

  • Matsubayashi Y, Takagi L, Sakagami Y (1997) Phytosulfokine-a, a sulfated pentapeptide, stimulates the proliferation of rice cells by means of specific high- and low-affinity binding sites. Proc Natl Acad Sci U S A 94:13357–13362

    PubMed  CAS  Google Scholar 

  • Matsubayashi Y, Takagi L, Omura N, Morita A, Sakagami Y (1999) The endogenous sulfated pentapeptide phytosulfokine-a stimulates tracheary element differentiation of isolated mesophyll cells of Zinnia. Plant Physiol 120:1043–1048

    PubMed  CAS  Google Scholar 

  • Matsubayashi Y, Ogawa M, Morita A, Sakagami Y (2002) An LRR receptor kinase involved in perception of a peptide plant hormone, phytosulfokine. Science 296:1470–1472

    PubMed  CAS  Google Scholar 

  • Matsubayashi Y, Ogawa M, Kihara H, Niwa M, Sakagami Y (2006) Disruption and overexpression of Arabidopsis phytosulokine receptor gene affects cellular longevity and potential for growth. Plant Physiol 142:45–53

    PubMed  CAS  Google Scholar 

  • Matsuzaki Y, Ogawa-Ohnishi M, Mori A, Matsubayashi Y (2010) Secreted peptide signals required for the maintenance of root stem cell niche in Arabidopsis. Science 329:1065–1067

    PubMed  CAS  Google Scholar 

  • McGurl B, Pearce G, Orozco-Cardenas M, Ryan CA (1992) Structure, expression, and antisense inhibition of the systemin precursor gene. Science 255:1570–1573

    PubMed  CAS  Google Scholar 

  • McGurl B, Orozco-Cardenas M, Pearce G, Ryan CA (1994) Overexpression of the prosystemin gene in transgenic tomato plants generates a systemic signal that constitutively induces proteinase inhibitor synthesis. Proc Natl Acad Sci U S A 91:9799–9802

    PubMed  CAS  Google Scholar 

  • Mishima M, Takayama S, Sasaki K, Jee J, Kojima C, Isogari A, Shirakawa M (2003) Structure of the male determinant factor for Brassica self-incompatibility. J Biol Chem 278:36389–36395

    PubMed  CAS  Google Scholar 

  • Miwa H, Kinoshita A, Fukuda H, Sawa S (2009) Plant meristems: CLAVATA3/ESR-related signaling in the shoot apical meristem and the root apical meristem. J Plant Res 122:31–39

    PubMed  CAS  Google Scholar 

  • Morse M, Pironcheva G, Gehring C (2004) AtPNP-A is a systemically mobile natriuretic peptide immunoanalogue with a role in Arabidopsis thaliana cell volume regulation. FEBS Lett 556:99–103

    PubMed  CAS  Google Scholar 

  • Motose H, Iwamoto K, Endo S, Demura T, Sakagami Y, Matsubayashi Y, Moore KI, Fukuda H (2009) Involvement of phytosulfokine in the attenuation of stress response during the transdifferentiation of Zinnia mesophyll cells into tracheary elements. Plant Physiol 150:437–447

    PubMed  CAS  Google Scholar 

  • Müller R, Bleckmann A, Simon R (2008) The receptor kinase CORYNE of Arabidopsis transmits the stem cell-limiting signal CLAVATA3 independently of CLAVATA1. Plant Cell 20:934–946

    PubMed  Google Scholar 

  • Narita NN, Moore S, Horiguchi G, Kubo M, Demura T, Fukuda H, Goodrich J, Tsukaya H (2004) Overexpression of a novel small peptide ROTUNIFOLIA4 decreases cel proliferation and alters leaf shape in Arabidopsis thaliana. Plant J 38:699–713

    PubMed  CAS  Google Scholar 

  • Nembaware V, Seoighe C, Sayed M, Gehring C (2004) A plant natriuretic peptide-like gene in the bacterial pathogen Xanthomonas axonopodis may induce hyper-hydration in the plant host: a hypothesis of molecular mimicry. BMC Evol Biol 4:10

    PubMed  Google Scholar 

  • Ni J, Clark SE (2006) Evidence for functional conservation, sufficiency, and proteolytic processing of the CLAVATA3 CLE domain. Plant Physiol 140:726–733

    PubMed  CAS  Google Scholar 

  • Oelkers K, Goffard N, Weiller GF, Gresshoff PM, Mathesius U, Frickey T (2008) Bioinformatic analysis of the CLE signaling peptide family. BMC Plant Biol 8:1. doi:10.1186/1471-2229-1188-1181

    PubMed  Google Scholar 

  • Ogawa M, Shinohara H, Sakagami Y, Matsubayashi Y (2008) Arabidopsis CLV3 peptide directly binds CLV1 ectodomain. Science 319:294

    PubMed  CAS  Google Scholar 

  • Ohyama K, Ogawa M, Matsubayashi Y (2008) Identification of a biologically active, small secreted peptide in Arabidopsis by in silico gene screening, followed by LC-MS-based structure analysis. Plant J 55:152–160

    PubMed  CAS  Google Scholar 

  • Okuda S, Tsutsui H, Shiina K, Sprunck S, Takeuchi H, Yui R, Kasahara RD, Hamamura Y, Mizukami A, Susaki D, Kawano N, Sakakibara T, Namiki S, Itoh K, Otsuka K, Matsuzaki M, Nozaki H, Kuroiwa T, Nakano A, Kanaoka MM, Dresselhaus T, Sasaki N, Higashiyama T (2009) Defensin-like polypeptide LUREs are pollen tube attractants secreted from synergid cells. Nature 458:357–361

    PubMed  CAS  Google Scholar 

  • Olsen AN, Skriver K (2003) Ligand mimicry? Plant-parasitic nematode polypeptide with similarity to CLAVATA3. Trends Plant Sci 8:55–57

    PubMed  CAS  Google Scholar 

  • Olsen AN, Mundy J, Skriver K (2002) Peptomics, identification of novel cationic Arabidopsis peptides with conserved sequence motifs. In Silico Biol 2:441–451

    PubMed  CAS  Google Scholar 

  • Opshal-Ferstad HG, Le Deunff E, Dumas C, Rogowsky PM (1997) ZmESR, a novel endosperm-specific gene expressed in a restricted region around the maize embryo. Plant J 12:235–246

    Google Scholar 

  • Ozaki K, Leonard WJ (2002) Cytokine and cytokine receptor pleiotrophy and redundancy. J Biol Chem 277:29355–29358

    PubMed  CAS  Google Scholar 

  • Pearce G, Strydom D, Johnson S, Ryan CA (1991) A polypeptide from tomato leaves induces wound-inducible proteinase inhibitor proteins. Science 253:895–898

    PubMed  CAS  Google Scholar 

  • Pearce G, Moura DS, Stratmann J, Ryan CA (2001) RALF, a 5-KDa ubiquitous polypeptide in plants, arrests growth and development. Proc Natl Acad Sci U S A 98:12843–12847

    PubMed  CAS  Google Scholar 

  • Pearce G, Yamaguchi Y, Munske G, Ryan CA (2008) Structure-activity studies of AtPep1, a plant peptide signal involved in the innate immune response. Peptides 29:2083–2089

    PubMed  CAS  Google Scholar 

  • Peterson KM, Rychel AL, Torii KU (2010) Out of the mouths of plants: the molecular basis of the evolution and diversity of stomatal development. Plant Cell 22:296–306

    PubMed  CAS  Google Scholar 

  • Pharmawati M, Billington T, Gehring CA (1998) Stomatal guard cell responses to kinetin and natriuretic peptides are cGMP dependent. Cell Mol Life Sci 54:272–276

    PubMed  CAS  Google Scholar 

  • Qi Z, Verma R, Gehring C, Yamaguchi Y, Zhao Y, Ryan CA, Berkowitz GA (2010) Ca2+ signaling by plant Arabidopsis thaliana Pep peptides depends on AtPepR1, a receptor with guanylyl cyclase activity, and cGMP-activated Ca2+ channels. Proc Natl Acad Sci U S A 107:21193–21198

    PubMed  CAS  Google Scholar 

  • Rafudeen S, Gxaba G, Makgoke G, Bradley G, Pironcheva G, Raitt L, Irving H, Gehring C (2003) A role for plant natriuretic peptide immuno-analogues in NaCl- and drought-stress responses. Physiol Plant 119:554–562

    CAS  Google Scholar 

  • Rojo E, Sharma VK, Kovaleva V, Raikhel NV, Fletcher JC (2002) CLV3 is localized to the extracellular space, where it activates the Arabidopsis CLAVATA stem cell signaling pathway. Plant Cell 14:969–977

    PubMed  CAS  Google Scholar 

  • Ruzvidzo O, Donaldson L, Valentine A, Gehring C (2011) The Arabidopsis thaliana natriuretic peptide AtPNP-A is a systemic regulator of leaf dark respiration and signals via the phloem. J Plant Physiol 168:1710–1714

    PubMed  CAS  Google Scholar 

  • Ryan CA, Pearce G (1998) Systemin: a polypeptide signal for plant defensive genes. Annu Rev Cell Dev Biol 14:1–17

    PubMed  CAS  Google Scholar 

  • Rychel AL, Peterson KM, Torii KU (2010) Plant twitter: ligands under 140 amino acids enforcing stomatal patterning. J Plant Res 123:275–280

    PubMed  CAS  Google Scholar 

  • Schilmiller AL, Howe GA (2005) Systemic signaling in the wound response. Curr Opin Plant Biol 8:369–377

    PubMed  CAS  Google Scholar 

  • Schopfer CR, Nasrallah ME, Nasrallah JB (1999) The male determinant of self-incompatibility in Brassica. Science 286:1697–1700

    PubMed  CAS  Google Scholar 

  • Silverstein KAT, Moskal WJ Jr, Wu HC, Underwood BA, Graham MA, Town CD, VandenBosch KA (2007) Small cysteine-rich peptides resembling antimicrobial peptides have been under-predicted in plants. Plant J 51:262–280

    PubMed  CAS  Google Scholar 

  • Srivastava R, Liu J-X, Howell SH (2008) Proteolytic processing of a precursor protein for a growth-promoting peptide by a subtilsin serine protease in Arabidopsis. Plant J 56:219–227

    PubMed  CAS  Google Scholar 

  • Srivastava R, Liu J-X, Guo H, Yin Y, Howell SH (2009) Regulation and processing of a plant peptide hormone, AtRALF23, in Aradidopsis. Plant J 59:930–939

    PubMed  CAS  Google Scholar 

  • Stenvik G-E, Butenko MA, Rae Urbanowicz B, Rose JKC, Aalen RB (2006) Overexpression of INFLORESCENCE DEFICIENT IN ABSCISSION activates cell separation in vestigial abscission zones in Arabidopsis. Plant Cell 18:1467–1476

    PubMed  CAS  Google Scholar 

  • Stenvik G-E, Tandstad NM, Guo Y, Shi C-L, Kristiansen W, Holmgren A, Clark SE, Aalen RB, Butenko MA (2008) The EPIP peptide of INFLORESCENCE DEFICIENT IN ABSCISSION is sufficient to induce abscission in Arabidopsis through the receptor-like kinases HASEA and HASEA-LIKE2. Plant Cell 20:1805–1817

    PubMed  CAS  Google Scholar 

  • Thoendel M, Horswill AR (2010) Biosynthesis of peptide signals in Gram-positive bacteria. Adv Appl Microbiol 71:91–112

    PubMed  CAS  Google Scholar 

  • Tör M, Lotze MT, Holton N (2009) Receptor-mediated signalling in plants: molecular patterns and programmes. J Exp Bot 60:3645–3654

    PubMed  Google Scholar 

  • Vanoosthuyse V, Miege C, Dumas C, Cock JM (2001) Two large Arabidopsis thaliana gene families are homologous to the Brassica gene superfamily that encodes pollen coat proteins and the male component of the self-incompatibility locus. Plant Mol Biol 16:17–34

    Google Scholar 

  • Vesely DL, Giordano AT (1991) Atrial natriuretic peptide hormonal system in plants. Biochem Biophys Res Commun 179:695–700

    PubMed  CAS  Google Scholar 

  • Wang YH, Gehring C, Cahill DM, Irving HR (2007) Plant natriuretic peptide active site determination and effects on cGMP and cell volume regulation. Funct Plant Biol 34:645–653

    CAS  Google Scholar 

  • Wang YH, Gehring C, Irving HR (2011) Plant natriuretic peptides are apoplastic and paracrine stress response molecule. Plant Cell Physiol 52:837–850

    PubMed  CAS  Google Scholar 

  • Wen J, Lease KA, Walker JC (2004) DVL, a novel class of small polypeptides: overexpression alters Arabidopsis development. Plant J 37:668–677

    PubMed  CAS  Google Scholar 

  • Wheeler JI, Irving HR (2010) Evolutionary advantages of secreted peptide signalling molecules. Funct Plant Biol 37:382–394

    CAS  Google Scholar 

  • Whitford R, Fernandez A, De Groodt R, Ortega E, Hilson P (2008) Plant CLE peptides from two distinct functional classes synergistically induce division of vascular cells. Proc Natl Acad Sci U S A 105:18625–18630

    PubMed  CAS  Google Scholar 

  • Wu J, Kurten EL, Monshausen G, Hummel GM, Gilroy S, Baldwin IT (2007) NaRALF, a peptide signal essential for the regulation of root hair tip apoplastic pH in Nicotiana attenuata, is required for root hair development and plant growth in native soils. Plant J 52:877–890

    PubMed  CAS  Google Scholar 

  • Yamaguchi Y, Pearce G, Ryan CA (2006) The cell surface leucine-rich repeat receptor for AtPep1, an endogenous peptide elicitor in Arabidopsis, is functional in transgenic tobacco cells. Proc Natl Acad Sci U S A 103:10104–10109

    PubMed  CAS  Google Scholar 

  • Yamaoka K, Saharinen P, Pesu M, Holt VET III, Silvennoinen O, O’Shea JO (2004) The Janus kinases (Jaks). Genome Biol 5:253

    PubMed  Google Scholar 

  • Yang H, Matsubayashi Y, Nakamura K, Sakagami Y (2001) Diversity of Arabidopsis genes encoding precursors for phytosulfokine, a peptide growth factor. Plant Physiol 127:842–851

    PubMed  CAS  Google Scholar 

  • Yang S-L, Xie L-F, Mao H-Z, Puah CS, Yang W-C, Jiang L, Sundaresan V (2003) TAPETUM DETERMINANT1 is required for cell specialization in the Arabidopsis anther. Plant Cell 15:2792–2804

    PubMed  CAS  Google Scholar 

  • Zhao X, de Palma J, Oane R, Gamuyao R, Luo M, Chaudhury A, Hervé P, Xue Q, Bennett J (2008) OsTDL1A binds to the LRR domain of rice receptor kinase MSP1, and is required to limit sporocyte numbers. Plant J 54:375–387

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Australian Research Council’s Discovery project funding scheme (DP0557561, DP0878194).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helen R. Irving .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wheeler, J.I., Irving, H.R. (2012). Plant Peptide Signaling: An Evolutionary Adaptation. In: Irving, H., Gehring, C. (eds) Plant Signaling Peptides. Signaling and Communication in Plants, vol 16. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27603-3_1

Download citation

Publish with us

Policies and ethics