Skip to main content

Optical Properties of Metallic Semishells: Breaking the Symmetry of Plasmonic Nanoshells

  • Chapter
  • First Online:
Book cover UV-VIS and Photoluminescence Spectroscopy for Nanomaterials Characterization
  • 5236 Accesses

Abstract

Symmetric metal colloids, for example, nanospheres and nanoshells, are very well-studied plasmonic nanostructures. Breaking the symmetry of originally symmetric nanostructures induces many interesting changes of optical properties and local near-field distribution. In this chapter, we present the fabrication and optical properties of symmetry-broken nanoshells, namely, semishells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Neutens P, Van Dorpe P, De Vlaminck I, Lagae L, Borghs G (2009) Electrical detection of confined gap plasmons in metal-insulator-metal waveguides. Nat Photonics 3(5):283–286

    Article  ADS  Google Scholar 

  2. Sutherland DS, Larsson EM, Alegret J, Kall M (2007) Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors. Nano Lett 7(5):1256–1263

    Article  ADS  Google Scholar 

  3. Nie SM, Emery SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275(5303):1102–1106

    Article  Google Scholar 

  4. Prodan E, Radloff C, Halas NJ, Nordlander P (2003) A hybridization model for the plasmon response of complex nanostructures. Science 302(5644):419–422

    Article  ADS  Google Scholar 

  5. Xia YN, Sun YG (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298(5601):2176–2179

    Article  ADS  Google Scholar 

  6. Oldenburg SJ, Averitt RD, Westcott SL, Halas NJ (1998) Nanoengineering of optical resonances. Chem Phys Lett 288(2–4):243–247

    Article  ADS  Google Scholar 

  7. Halas NJ, Jackson JB (2001) Silver nanoshells: variations in morphologies and optical properties. J Phys Chem B 105(14):2743–2746

    Article  Google Scholar 

  8. Halas NJ, Wang H, Tam F, Grady NK (2005) Cu nanoshells: effects of interband transitions on the nanoparticle plasmon resonance. J Phys Chem B 109(39):18218–18222

    Article  Google Scholar 

  9. Aydin K, Cakmak AO, Sahin L, Li Z, Bilotti F, Vegni L, Ozbay E (2009) Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture. Phys Rev Lett 102(1):013904

    Google Scholar 

  10. Shumaker-Parry JS, Bukasov R (2007) Highly tunable infrared extinction properties of gold nanocrescents. Nano Lett 7(5):1113–1118

    Article  ADS  Google Scholar 

  11. Ye J, Van Dorpe P, Van Roy W, Lodewijks K, De Vlaminck I, Maes G, Borghs G (2009) Fabrication and optical properties of gold semishells. J Phys Chem C 113(8):3110–3115

    Article  Google Scholar 

  12. Ye J, Van Dorpe P, Van Roy W, Borghs G, Maes G (2009) Fabrication, characterization, and optical properties of gold nanobowl submonolayer structures. Langmuir 25(3):1822–1827

    Article  Google Scholar 

  13. Ye JA, Chen C, Lagae L, Maes G, Borghs G, Van Dorpe P (2010) Strong location dependent surface enhanced Raman scattering on individual gold semishell and nanobowl particles. Phys Chem Chem Phys 12(37):11222–11224

    Article  Google Scholar 

  14. Lassiter JB, Knight MW, Mirin NA, Halas NJ (2009) Reshaping the plasmonic properties of an individual nanoparticle. Nano Lett 9(12):4326–4332

    Article  ADS  Google Scholar 

  15. Love JC, Gates BD, Wolfe DB, Paul KE, Whitesides GM (2002) Fabrication and wetting properties of metallic half-shells with submicron diameters. Nano Lett 2(8):891–894

    Article  ADS  Google Scholar 

  16. Lu Y, Liu GL, Kim J, Mejia YX, Lee LP (2005) Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect. Nano Lett 5(1):119–124

    Article  ADS  Google Scholar 

  17. Liu JQ, McBean KE, Harris N, Cortie MB (2007) Optical properties of suspensions of gold half-shells. Mat Sci Eng B-Solid 140(3):195–198

    Article  Google Scholar 

  18. Liu JQ, Maaroof AI, Wieczorek L, Cortie MB (2005) Fabrication of hollow metal "nanocaps" and their red-shifted optical absorption spectra. Adv Mater 17(10):1276

    Article  Google Scholar 

  19. Maaroof AL, Cortie MB, Harris N, Wieczorek L (2008) Mie and Bragg plasmons in subwavelength silver semi-shells. Small 4(12):2292–2299

    Article  Google Scholar 

  20. Liu JQ, Cankurtaran B, Wieczorek L, Ford MJ, Cortie M (2006) Anisotropic optical properties of semitransparent coatings of gold nanocaps. Adv Funct Mater 16(11):1457–1461

    Article  Google Scholar 

  21. Zhang Y, Barhoum A, Lassiter JB, Halas NJ (2011) Orientation-preserving transfer and directional light scattering from individual light-bending nanoparticles. Nano Lett 11(4):1838–1844

    Article  ADS  Google Scholar 

  22. Farcau C, Astilean S (2007) Probing the unusual optical transmission of silver films deposited on two-dimensional regular arrays of polystyrene microspheres. J Opt a-Pure Appl Op 9(9):S345–S349

    Article  Google Scholar 

  23. Jensen TR, Malinsky MD, Haynes CL, Van Duyne RP (2000) Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles. J Phys Chem B 104(45):10549–10556

    Article  Google Scholar 

  24. Baia L, Baia M, Popp J, Astilean S (2006) Gold films deposited over regular arrays of polystyrene nanospheres as highly effective SERS substrates from visible to NIR. J Phys Chem B 110(47):23982–23986

    Article  Google Scholar 

  25. Ye J, Verellen N, Van Roy W, Lagae L, Maes G, Borghs G, Van Dorpe P (2010) Plasmonic modes of metallic semishells in a polymer film. ACS Nano 4(3):1457–1464

    Article  Google Scholar 

  26. Mirin NA, Halas NJ (2009) Light-bending nanoparticles. Nano Lett 9(3):1255–1259

    Article  ADS  Google Scholar 

  27. Mirin NA, Ali TA, Nordlander P, Halas NJ (2010) Perforated semishells: far-field directional control and optical frequency magnetic response. ACS Nano 4(5):2701–2712

    Article  Google Scholar 

  28. Correa-Duarte MA, Salgueirino-Maceira V, Rodriguez-Gonzalez B, Liz-Marzan LM, Kosiorek A, Kandulski W, Giersig M (2005) Asymmetric functional colloids through selective hemisphere modification. Adv Mater 17(16):2014

    Article  Google Scholar 

  29. Chen Z, Dong H, Pan J, Zhan P, Tang CJ, Wang ZL (2010) Monolayer rigid arrays of cavity-controllable metallic mesoparticles: electrochemical preparation and light transmission resonances. Appl Phys Lett 96(5):051904

    Google Scholar 

  30. Charnay C, Lee A, Man SQ, Moran CE, Radloff C, Bradley RK, Halas NJ (2003) Reduced symmetry metallodielectric nanoparticles: chemical synthesis and plasmonic properties. J Phys Chem B 107(30):7327–7333

    Article  Google Scholar 

  31. Khlebtsov BN, Khanadeyev VA, Ye J, Mackowski DW, Borghs G, Khlebtsov NG (2008) Coupled plasmon resonances in monolayers of metal nanoparticles and nanoshells. Phys Rev B 77(3):035440

    Article  ADS  Google Scholar 

  32. Nordlander P, Le F, Brandl DW, Urzhumov YA, Wang H, Kundu J, Halas NJ, Aizpurua J (2008) Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption. ACS Nano 2(4):707–718

    Article  Google Scholar 

  33. Halas NJ, Wang H, Fu K, Drezek RA (2006) Light scattering from spherical plasmonic nanoantennas: effects of nanoscale roughness. Appl Phys B-Lasers O 84(1–2):191–195

    ADS  Google Scholar 

  34. Halas NJ, Wang H, Brandl DW, Nordlander P (2007) Plasmonic nanostructures: artificial molecules. Accounts Chem Res 40(1):53–62

    Article  Google Scholar 

  35. Ye J, Van Dorpe P, Lagae L, Maes G, Borghs G (2009) Observation of plasmonic dipolar anti-bonding mode in silver nanoring structures. Nanotechnology 20(46):465203

    Article  ADS  Google Scholar 

  36. Halas NJ (2005) Playing with plasmons. Tuning the optical resonant properties of metallic nanoshells. Mrs Bull 30(5):362–367

    Article  Google Scholar 

  37. Wang F, Shen YR (2006) General properties of local plasmons in metal nanostructures. Phys Rev Lett 97(20):206806

    Google Scholar 

  38. Kelf TA, Sugawara Y, Cole RM, Baumberg JJ, Abdelsalam ME, Cintra S, Mahajan S, Russell, Bartlett PN (2006) Localized and delocalized plasmons in metallic nanovoids. Phys Rev B 74(24):245415

    Google Scholar 

  39. Johnson PB, Christy RW (1972) Optical-constants of noble-metals. Phys Rev B 6(12):4370–4379

    Article  ADS  Google Scholar 

  40. Halas NJ, Wang H, Goodrich GP, Tam F, Oubre C, Nordlander P (2005) Controlled texturing modifies the surface topography and plasmonic properties of au nanoshells. J Phys Chem B 109(22):11083–11087

    Article  Google Scholar 

  41. Ehrenreich H, Philipp HR, Segall B (1963) Optical properties of aluminum. Phys Rev 132(5):1918

    Article  ADS  Google Scholar 

  42. Langhammer C, Schwind M, Kasemo B, Zoric I (2008) Localized surface plasmon resonances in aluminum nanodisks. Nano Lett 8(5):1461–1471

    Article  ADS  Google Scholar 

  43. Cortie M, Ford M (2007) A plasmon-induced current loop in gold semi-shells. Nanotechnology 18(23):235704

    Google Scholar 

  44. Liu GL, Lu Y, Kim J, Doll JC, Lee LP (2005) Magnetic nanocrescents as controllable surface-enhanced Raman scattering nanoprobes for biomolecular imaging. Adv Mater 17(22):2683

    Article  Google Scholar 

  45. Liu XF, Linn NC, Sun CH, Jiang P (2010) Templated fabrication of metal half-shells for surface-enhanced Raman scattering. Phys Chem Chem Phys 12(6):1379–1387

    Article  Google Scholar 

  46. Chen L, Liu FX, Zhan P, Pan J, Wang ZL (2011) Ordered gold nanobowl arrays as substrates for surface-enhanced Raman spectroscopy. Chinese Phys Lett 28(5):057801

    Google Scholar 

  47. Chen C, Hutchison JA, Clemente F, Kox R, Uji-I H, Hofkens J, Lagae L, Maes G, Borghs G, Van Dorpe P (2009) Direct evidence of high spatial localization of hot spots in surface-enhanced raman scattering. Angew Chem Int Edit 48(52):9932–9935

    Article  Google Scholar 

  48. Ferrari AC, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B 61(20):14095–14107

    Article  ADS  Google Scholar 

  49. Ye J, Lagae L, Maes G, Borghs G, Van Dorpe P (2009) Symmetry breaking induced optical properties of gold open shell nanostructures. Opt Express 17(26):23765–23771

    Article  Google Scholar 

  50. Ye J, Chen C, Lagae L, Maes G, Borghs G, Van Dorpe P (2010) Strong location dependent surface enhanced raman scattering on individual gold semishell and nanobowl particles. Phys Chem Chem Phys 12:11222–11224

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Ye .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ye, J., Van Dorpe, P. (2013). Optical Properties of Metallic Semishells: Breaking the Symmetry of Plasmonic Nanoshells. In: Kumar, C. (eds) UV-VIS and Photoluminescence Spectroscopy for Nanomaterials Characterization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27594-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27594-4_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27593-7

  • Online ISBN: 978-3-642-27594-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics