Skip to main content

Ultrasonic Atomic Force Microscopy UAFM

  • Chapter
  • First Online:
Book cover Acoustic Scanning Probe Microscopy

Part of the book series: NanoScience and Technology ((NANO))

Abstract

A version of scanning probe acoustic technique was developed as ultrasonic atomic force microscopy (UAFM), where higher order mode cantilever vibration is excited at its base (support). It enables precise imaging of both topography and elasticity of stiff samples such as metals and ceramics, without a need for bonding a transducer to the sample. By virtue of this advantage, a range of unique analysis and hardware has been developed. In this chapter, after briefly summarizing the concept of UAFM, basic mathematical analysis, mechanical, and electronic instrumentation are described, including a noise-free cantilever holder and analogue/digital fast resonance frequency tracking circuit. The final section describes illustrative examples first realized by this technique as an introduction for later chapters of applications (e.g. subsurface defects).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Binnig, C.F. Quate, Ch. Gerber, Phys. Rev. Lett. 12, 930 (1986)

    Article  ADS  Google Scholar 

  2. O. Kolosov, K. Yamanaka, Jpn. J. Appl. Phys. 32, L1095 (1993)

    Article  ADS  Google Scholar 

  3. K. Yamanaka, H. Ogiso, O. Kolosov, Appl. Phys. Lett. 64, 178 (1994)

    Article  ADS  Google Scholar 

  4. U. Rabe, W. Arnold, Ann. Physik 3, 589 (1994)

    Article  ADS  Google Scholar 

  5. U. Rabe, K. Janser, W. Arnold, Rev. Sci. Instrum. 67, 3281 (1996)

    Article  ADS  Google Scholar 

  6. M. Radmacher, R.W. Tillmann, H.E. Gaub, Biophys. J. 64, 735 (1993)

    Article  Google Scholar 

  7. K. Yamanaka, E. Tomita, Jpn. J. Appl. Phys. 34, 2879 (1995)

    Article  ADS  Google Scholar 

  8. K. Yamanaka, S. Nakano, Jpn. J. Appl. Phys. 35, 3787 (1996)

    Article  ADS  Google Scholar 

  9. K. Yamanaka, S. Nakano, Appl. Phys. A 66, 313 (1998)

    Article  ADS  Google Scholar 

  10. K. Yamanaka, A. Noguchi, T. Tsuji, T. Koike, T. Goto, Surf. Interface Anal. 27, 600 (1999)

    Article  Google Scholar 

  11. K. Yamanaka, U.S. Patent 6,006,593, 1999

    Google Scholar 

  12. T. Tsuji, K. Yamanaka, Nanotechnology 12, 301 (2001)

    Article  ADS  Google Scholar 

  13. K. Yamanaka, Y. Maruyama, T. Tsuji, K. Nakamoto, Appl. Phys. Lett. 78, 1939 (2001)

    Article  ADS  Google Scholar 

  14. T. Tsuji, H. Irihama, K. Yamanaka, Jpn. J. Appl. Phys. 41, 832 (2002)

    Article  ADS  Google Scholar 

  15. K. Yamanaka, T. Tsuji, H. Irihama, T. Mihara, Proc. of SPIE 5045, 104 (2003)

    Article  ADS  Google Scholar 

  16. K. Yamanaka, T. Mihara, T. Tsuji, Jpn. J. Appl. Phys. 43, 3082 (2004)

    Article  ADS  Google Scholar 

  17. T. Tsuji, H. Ogiso, J. Akedo, S. Saito, K. Fukuda, K. Yamanaka, Jpn. J. Appl. Phys. 43, 2907 (2004)

    Article  ADS  Google Scholar 

  18. T. Tsuji, S. Saito, K. Fukuda, K. Yamanaka, H. Ogiso, J. Akedo, K. Kawakami, Appl. Phys. Lett. 87, 071909 (2005)

    Article  ADS  Google Scholar 

  19. T. Tsuji, K. Kobari, S. Ide, K. Yamanaka, Rev. Sci. Instrum. 78, 103703 (2007)

    Google Scholar 

  20. S. Ide, K. Kobari, T. Tsuji, K. Yamanaka, Jpn. J. Appl. Phys. 46, 4446 (2007)

    Article  ADS  Google Scholar 

  21. K. Yamanaka, K. Kobari, T. Tsuji, Jpn. J. Appl. Phys. 47, 6070 (2008)

    Article  ADS  Google Scholar 

  22. O. Wright, N. Nishiguchi, Appl. Phys. Lett. 71, 626 (1997)

    Article  ADS  Google Scholar 

  23. U. Rabe, J. Turner, W. Arnold, Appl. Phys. A. 66, S277 (1998)

    Article  ADS  Google Scholar 

  24. M. Reinstadtler, T. Kasai, U. Rabe, W. Arnold, J. Phys. D: Appl. Phys. 38, R269 (2005)

    Article  ADS  Google Scholar 

  25. Y. Song, B. Bhushan, J. Appl. Phys. 99, 094911 (2006)

    Article  ADS  Google Scholar 

  26. J.D. Adams, D. York, N. Whisman, Rev. Sci. Instrum. 75, 2903 (2004)

    Article  ADS  Google Scholar 

  27. K. Kobayashi, H. Yamada, K. Matsushige, Surf. Interface Anal. 33, 89 (2002)

    Article  Google Scholar 

  28. M.E. Lines, A.M. Glass, Principle and Applications of Ferroelectrics and Related Materials (Clarendon, Oxford, 1977), p. 100

    Google Scholar 

  29. S. Stemmer, S.K. Streiffer, F. Ernst, M. Ruhle, Philos. Mag. A 71, 713 (1995)

    Article  ADS  Google Scholar 

  30. K. Matsuura, Y. Cho, R. Ramesh, Appl. Phys. Lett. 83, 2650 (2003)

    Article  ADS  Google Scholar 

  31. D. Shilo, G. Ravichandran, K. Bhattacharya, Nat. Mater. 3, 453 (2004)

    Article  ADS  Google Scholar 

  32. A. Gruverman, Nanoscale Characterization of Ferroelectric Materials, ed. by M. Alexe, A, Gruverman (Springer, New York, 2004)

    Google Scholar 

  33. U. Rabe, M. Kopycinska, S. Hirsekorn, J. Munoz Saldana, G.A. Schneider, W. Arnold, J. Phys. D: Appl. Phys. 35, 2621 (2002)

    Article  ADS  Google Scholar 

  34. S.K.U. Kuno, Micromechanics of Composites (Hanser, New York, 1996), p. 15

    Google Scholar 

  35. T. Ikeda, Fundamentals of Piezoelectricity (Oxford University Press, New York, 2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazushi Yamanaka .

Editor information

Editors and Affiliations

Appendix A

Appendix A

The deflection vibration of a cantilever is expressed in the \(x--z\) plane as

$$\begin{aligned} \rho A\frac{{\text{ d}}^{2}z}{{\text{ d}}t^{2}}+EI\frac{{\text{ d}}^{4}z}{{\text{ d}}x^{4}}=0 \end{aligned}$$
(A1)

where \(E\) is Young’s modulus, \(\rho \) is the density, \(A\) is the cross-section and \(I\) is the area moment of inertia. In the case of a rectangular lever of width \(a\) and thickness \(b\), \(I=ab^{3}/12\). At the end of the lever where \(x=L_1 \) , the deflection of the lever \(z\left({x,t} \right)\) produces a displacement of the apex of the tip of length \(h\) as \(\left[{h(\partial z/\partial x),z} \right]\) and the \(-z\) component of the shear force \(EI(\partial ^{3}z/\partial x^{3})\) caused by the vertical (out-of-plane) contact stiffness \(k^{*}\) of sample is

$$\begin{aligned} F_{v} =k^{*}\left({-h\frac{\partial z}{\partial x}\sin \varphi \cos \varphi +z\cos ^{2}\varphi } \right) \end{aligned}$$
(A2)

and the bending moment \(EI(\partial ^{2}z/\partial x^{2})\) is

$$\begin{aligned} M_{V} =-hk^{*}\left({h\frac{\partial z}{\partial x}\sin ^{2}\varphi -z\sin \varphi \cos \varphi } \right) \end{aligned}$$
(A3)

when the tip is in contact with the sample with oblique angle \(\varphi \) with respect to the x-axis. Similarly, those forces caused by the lateral (in-plane) contact stiffness \(k_\text{ Lat}^*\) are

$$\begin{aligned} F_{1}=k_\text{ Lat}^{*} \left({h\frac{\partial z}{\partial x}\sin \varphi \cos \varphi +z\sin ^{2}\varphi } \right) \end{aligned}$$
(A4)

and

$$\begin{aligned} M_1=-hk_\text{ Lat}^{*} \left({h\frac{\partial z}{\partial x}\cos ^{2}\varphi -z\sin \varphi \cos \varphi } \right) \end{aligned}$$
(A5)

Then the boundary conditions at \(x=L_1 \) are

$$\begin{aligned} EI\frac{\partial ^{3}z}{\partial x^{3}}=\hat{{k}}_V^{*} z+\hat{{k}}_{\text{ LatV}}^*h\frac{\partial z}{\partial x} \end{aligned}$$
(A6)
$$\begin{aligned} EI\frac{\partial ^{2}z}{\partial x^{2}}=-\hat{{k}}_\text{ Lat}^{*} h^{2}\frac{\partial z}{\partial x}-\hat{{k}}_{\text{ LatV}}^{*} hz \end{aligned}$$
(A7)

where \(\hat{{k}}_V^{*}=k^{*}\cos ^{2}\theta +k_\text{ Lat}^{*} \text{ sin}^{{2}}\varphi \), \(\hat{{k}}_\text{ Lat}^{*} =k_\text{ Lat}^{*} \cos ^{2}\varphi +k^{{*}}{sin}^{{2}}\varphi \) and \(\hat{{k}}_{\text{ LatV}}^{*}=(k_\text{ Lat}^{*}-k^{*})\cos \varphi \sin \varphi \). It is noted that if the vertical and lateral stiffness are identical \((k^{*}=k_\text{ Lat}^*)\) then \(\hat{{k}}_{\text{ LatV}}^{*} =0\) and \(\hat{{k}}_V^{*} =\hat{{k}}_\text{ Lat}^{*}=k^{*}\) and Eqs. (A6) and (A7) do not depend on the tilt angle \(\varphi \). This is in contrast to Ref. [6] where \(\hat{{k}}_{\text{ LatV}}^*=0\) does not hold when \(\hat{{k}}_V^*=\hat{{k}}_\text{ Lat}^*\). Equation (6.4) is obtained by substituting a solution of Eq. (A1) into the boundary conditions (A6) and (A7).

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yamanaka, K., Tsuji, T. (2013). Ultrasonic Atomic Force Microscopy UAFM. In: Marinello, F., Passeri, D., Savio, E. (eds) Acoustic Scanning Probe Microscopy. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27494-7_6

Download citation

Publish with us

Policies and ethics