Skip to main content

Polymer Material Characterization by Acoustic Force Microscopy

  • Chapter
  • First Online:
  • 1805 Accesses

Part of the book series: NanoScience and Technology ((NANO))

Abstract

Acoustic force microscopy has been used for the measurement of the nanomechanical response in a number of materials and applications in materials science and engineering. The use of acoustic techniques to study polymeric materials has only recently drawn interest from the technique. Here, a review of recent accomplishments in the use of acoustic techniques to measure polymer nanomechanical properties will be discussed and the measurements of polymer fibers and bulk materials will be presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. U. Rabe, S. Amelio, E. Kester, V. Scherer, S. Hirsekorn, W. Arnold, Quantitative determination of contact stiffness using atomic force acoustic microscopy. Ultrasonics 38(1–8), 430–437 (2000)

    Article  Google Scholar 

  2. G. Stan, R.F. Cook, Mapping the elastic properties of granular Au films by contact resonance atomic force microscopy. Nanotechnology 19, 235701 (2008)

    Article  ADS  Google Scholar 

  3. K. Yamanaka, S. Nakano, Ultrasonic atomic force microscopy with overtone excitation of cantilever. Jpn. J. Appl. Phys. 35, 3787–3792 (1996)

    Article  ADS  Google Scholar 

  4. K. Yamanaka, H. Ogiso, S. Nakano, Ultrasonic force microscopy for nanometer resolution subsurface imaging. Appl. Phys. Lett. 64, 178–180 (1994)

    Article  ADS  Google Scholar 

  5. S.A. Cantrell, J.H. Cantrell, P.T. Lillehei, Nanoscale subsurface imaging via resonant difference-frequency atomic force ultrasonic microscopy. J. Appl. Phys. 101, 114324 (2007)

    Article  ADS  Google Scholar 

  6. J. Le Rouzic, P. Vairac, B. Cretin, P. Delobelle, Sensitivity optimization of the scanning microdeformation microscope and application to mechanical characterization of soft materials. Rev. Sci. Instrum. 79, 033707 (2008)

    Article  ADS  Google Scholar 

  7. G.S. Shekhawat, V.P. Dravid, Nanoscale imaging of buried structures via scanning near-field ultrasound holography. Science 310, 89–92 (2005)

    Article  ADS  Google Scholar 

  8. O. Sahin, S. Magonov, C. Su, C.F. Quate, O. Solgaard, An atomic force microscope tip designed to measure time-varying nanomechanical forces. Nat. Nanotechnol. 2, 507–514 (2007)

    Article  Google Scholar 

  9. S. Hirsekorn, W. Arnold, High-resolution materials characterization by conventional and near-field acoustic microscopy. Ultrasonics 36(1–5), 491–498 (1998)

    Article  Google Scholar 

  10. W. Ngwa, W. Luo, A. Kamanyi, K.W. Fomba, W. Grill, Characterization of polymer thin films by phase-sensitive acoustic microscopy and atomic force microscopy: a comparative review. J. Microsc. 218, 208–218 (2005)

    Article  MathSciNet  Google Scholar 

  11. U. Rabe, W. Arnold, Acoustic microscopy by atomic-force microscopy. Appl. Phys. Lett. 64(12), 1493–1495 (1994)

    Article  ADS  Google Scholar 

  12. E. Kester, U. Rabe, L. Presmanes, P. Tailhades, W. Arnold, Measurement of mechanical properties of nanoscaled ferrites using atomic force microscopy at ultrasonic frequencies. Nanostruct. Mater. 12(5–8), 779–782 (1999)

    Article  Google Scholar 

  13. D.C. Hurley, R.H. Geiss, M. Kopycinska-Muller, J. Muller, D.T. Read, J.E. Wright, N.M. Jennett, A.S. Maxwell, Anisotropic elastic properties of nanocrystalline nickel thin films. J. Mater. Res. 20(5), 1186–1193 (2005)

    Article  ADS  Google Scholar 

  14. V. Nalladega, S. Sathish, A.S. Brar, Characterization of defects in flexible circuits with ultrasonic atomic force microscopy. Microelectr. Reliab. 48, 1683–1688 (2008)

    Article  Google Scholar 

  15. Y. Liu, S. Chen, E. Zussman, C.S. Korach, W. Zhao, M.H. Rafailovich, Diameter-dependent modulus and melting point behavior in electrospun semi-crystalline polymer fibers. Macromolecules 44(11), 4439–4444 (2011)

    Article  ADS  Google Scholar 

  16. S. Ge, Y. Pu, W. Zhang, M. Rafailovich, J. Sokolov, C. Buenviaje, R. Buckmaster, R.M. Overney, Phys. Rev. Lett. 85(11), 2340–2343 (2000)

    Article  ADS  Google Scholar 

  17. W. Zhao, R.P. Singh, C.S. Korach, Near-fiber nanomechanical properties of environmentally degraded carbon fiber epoxy composites. Compos. Part A 40, 675–678 (2009)

    Google Scholar 

  18. J.L. Hutter, J. Bechhoefer, Calibration of atomic-force microscope tips. Rev. Sci. Instrum. 64(7), 1868–1873 (1993)

    Article  ADS  Google Scholar 

  19. A. Arinstein, M. Burman, O. Gendelman, E. Zussman, Nat. Nanotechnol. 2(1), 59–62 (2007)

    Article  ADS  Google Scholar 

  20. T. Kikutani, J. Radhakrishnan, S. Arikawa, A. Takaku, N. Okui, X. Jin, F. Niwa, Y. Kudo, Highspeed melt spinning of bicomponent fibers: mechanism of fiber structure development in poly(ethylene terephthalate)/polypropylene system. J. Appl. Polym. Sci. 62, 1913–1924 (1996)

    Article  Google Scholar 

  21. K. Liao, C.R. Shultheisz, D.L. Hunston, L.K. Brinson, Long-term durability of fiber-reinforced polymer-matrix composite materials for infrastructure applications: a review. SAMPE J. Adv. Mater. 30(4), 3–40 (1998)

    Google Scholar 

  22. F.R. Jones, Durability of Reinforced Plastics in Liquid Environments. in Reinforced Plastics Durability, ed. by G. Pritchard (Woodhead Publishing Company, Cambridge, 1999), pp. 70–110

    Google Scholar 

  23. G.S. Springer, Environmental Effects on Composite Materials (Technomic, Lancaster, 1984)

    Google Scholar 

  24. A. Hodzic, Z.H. Stachurski, J.K. Kim, Nano-indentation of polymer-glass interfaces Part I. Experimental and mechanical analysis. Polymer 41(18), 6895–6905 (2000)

    Google Scholar 

  25. A. Hodzic, J.K. Kim, A.E. Lowe, Z.H. Stachurski, The effects of water aging on the interphase region and interlaminar fracture toughness in polymer-glass composites. Compos. Sci. Technol. 64(13–14), 2185–2195 (2004)

    Article  Google Scholar 

  26. D.C. Hurley, K. Shen, N.M. Jennett, J.A. Turner, Atomic force acoustic microscopy methods to determine thin-film elastic properties. J. Appl. Phys. 94(4), 2347–2354 (2003)

    Article  ADS  Google Scholar 

  27. L. Holliday, Composite Materials (Elsevier, Amsterdam, 1966)

    Google Scholar 

  28. U. Rabe, K. Janser, W. Arnold, Vibrations of free and surface-coupled atomic force microscope cantilevers: theory and experiment. Rev. Sci. Instrum. 67(9), 3281–3293 (1996)

    Article  ADS  Google Scholar 

  29. O.B. Wright, N. Nishiguchi, Vibrational dynamics of force microscopy: effect of tip dimensions. Appl. Phys. Lett. 71(5), 626–628 (1997)

    Article  ADS  Google Scholar 

  30. K. Yamanaka, S. Nakano, Quantitative elasticity evaluation by contact resonance in an atomic force microscope. Appl. Phys. A Mater. Sci. Process. 66, S313–S317 (1998)

    Article  ADS  Google Scholar 

  31. S. Hirsekorn, U. Rabe, W. Arnold, Theoretical description of the transfer of vibrations from a sample to the cantilever of an atomic force microscope. Nanotechnology 8(2), 57–66 (1997)

    Article  ADS  Google Scholar 

  32. U. Rabe, M. Kopycinska, S. Hirsekorn, J.M. Saldana, G.A. Schneider, W. Arnold, High-resolution characterization of piezoelectric ceramics by ultrasonic scanning force microscopy techniques. J. Phys. D Appl. Phys. 35(20), 2621–2635 (2002)

    Article  ADS  Google Scholar 

  33. K.L. Johnson, Contact Mechanics (Cambridge University Press, Cambridge, 1985)

    Google Scholar 

  34. W. Zhao, Quantitative measurement of nanomechanical properties in composite materials. Doctoral Dissertation, (State University of New York at Stony Brook, 2010)

    Google Scholar 

  35. P. Vaddadi, T. Nakamura, R.P. Singh, Inverse analysis to determine hygrothermal properties in fiber reinforced composites. J. Compos. Mater. 41, 309–334 (2007)

    Article  Google Scholar 

  36. S.-L. Gao, E. Mäder, Characterisation of interphase nanoscale property variations in glass fiber reinforced polypropylene and epoxy resin composites. Compos. Part A 33, 559–576 (2002)

    Google Scholar 

  37. M. Preghenella, A. Pegoretti, C. Migliaresi, Atomic force acoustic microscopy analysis of epoxy-silica nanocomposites. Polym. Test. 25, 443–451 (2006)

    Article  Google Scholar 

  38. D. Passeri, M. Rossi, A. Alippi, A. Bettucci, M.L. Terranova, E. Tamburri, F. Toschi, Characterization of epoxy/single-walled carbon nanotubes composite samples via atomic force acoustic microscopy. Physica E 40, 2419–2424 (2008)

    Article  ADS  Google Scholar 

  39. J.P. Killgore, J.Y. Kelly, C.M. Stafford, M.J. Fasolka, D.C. Hurley, Quantitative subsurface contact resonance force microscopy of model polymer nanocomposites. Nanotechnology 22, 175706 (2011)

    Article  ADS  Google Scholar 

  40. K. Porfyrakis, H.E. Assender, I.M. Robinson, The interrelationship between processing conditions, microstructure and mechanical properties for injection moulded rubber-toughened poly(methyl methacrylate) (RTPMMA) samples. Polymer 43, 4769–4781 (2002)

    Article  Google Scholar 

  41. P. Vairac, B. Cretin, R. Boucenna, Imaging contrast in SMM: the mechanical approaches. J. Phys. Conf. Ser. 61, 209–213 (2007)

    Google Scholar 

  42. F. Iwata, Y. Suzuki, Y. Moriki, S. Koike, A. Sasaki, Nanowearing property of a fatigued polycarbonate surface studied by atomic force microscopy. J. Vac. Sci. Tech. B 19(3), 666–670 (2001)

    Article  Google Scholar 

  43. P. Ihalainen, J. Järnström, A. Määttänen, J. Peltonen, Nano-scale mapping of mechanical and chemical surface properties of pigment coated surfaces by torsional harmonic atomic force microscopy. Colloids Surf. A Physiochem. Eng. Aspects 373, 138–144 (2011)

    Article  Google Scholar 

  44. W. Zhao, C.S. Korach, Measurement of epoxy stiffness by atomic force acoustic microscopy. in Proceedings ASME 2009 International Mechanical Engineering Congress and Exposition, vol. 12, Micro and Nano Systems, Part A and B, pp. 85–87 (2009)

    Google Scholar 

  45. D. Passeri, A. Bettucci, M. Germano, M. Rossi, A. Alippi, S. Orlanducci, M.L. Terranova, M. Ciavarella, Effect of tip geometry on local indentation modulus measurement via atomic force acoustic microscopy technique. Rev. Sci. Instrum. 76, 093904 (2005)

    Article  ADS  Google Scholar 

  46. M. Kopycinska-Müller, R.H. Geiss, D.C. Hurley, Contact mechanics and tip-shape in AFM-based nanomechanical measurements. Ultramicroscopy 106, 466–474 (2006)

    Article  Google Scholar 

  47. P.A. Yuya, D.C. Hurley, J.A. Turner, Relationship between Q-factor and sample damping for contact resonance atomic force microscope measurement of viscoelastic properties. J. Appl. Phys. 109, 113528 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The author is grateful for the support of the U.S. National Science Foundation award CMMI-0626025, and Drs. Yapa D.S. Rajapakse and Airan Perez of the U.S. Office of Naval Research for partially funding this work through grant #N0000141110816, and to Ms. Soshana Smith and Prof. Juan Hinestroza of Cornell University for the Islands-on-the-sea image.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chad S. Korach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Korach, C.S. (2013). Polymer Material Characterization by Acoustic Force Microscopy. In: Marinello, F., Passeri, D., Savio, E. (eds) Acoustic Scanning Probe Microscopy. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27494-7_16

Download citation

Publish with us

Policies and ethics