Skip to main content

Quantitative Subsurface Imaging by Acoustic AFM Techniques

  • Chapter
  • First Online:
Acoustic Scanning Probe Microscopy

Part of the book series: NanoScience and Technology ((NANO))

Abstract

We review the modeling techniques developed for analyzing the effects of 2-D and 3-D subsurface structures on the stiffness measurements by acoustic AFM. Starting from the analytical Hertzian model, we describe important parameters such as penetration depth and subsurface resolution for acoustic AFM imaging. These definitions point to the need for analytical–numerical models based on mechanical surface impedance method and finite element modeling of arbitrary 2-D and 3-D structures buried under the surface. By using the 2-D and 3-D models, the dependence of penetration depth and subsurface resolution on material properties, subsurface structure geometry, and imaging parameters are investigated. It has been shown that high contrast between subsurface structure and substrate increases the detectability of the structure and the visible depth of the structure depends highly on the contact radius. Soft subsurface structures or voids can be detected with appropriate tip radius and force even if they are as deep as 450 nm. However, the sensitivity is higher while detecting stiff structures under thin soft layers. These results can be extrapolated for different applications using the presented guidelines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V.V. Tsukruk, Surface Nanomechanical Properties of Polymer Nanocomposite Layers. Langmuir 17(21), 6715–6719 (2001)

    Article  Google Scholar 

  2. G.G. Yaralioglu, Contact stiffness of layered materials for ultrasonic atomic force microscopy. J. Appl. Phys. 87(10), 7491–7496 (2000)

    Article  ADS  Google Scholar 

  3. U. Rabe, K. Janser, W. Arnold, Vibrations of free and surface-coupled atomic force microscope cantilevers: Theory and experiment. Rev. Sci. Instrum. 67(9), 3281–3293 (1996)

    Article  ADS  Google Scholar 

  4. U. Rabe et al., Quantitative determination of contact stiffness using atomic force acoustic microscopy. Ultrasonics 38(1–8), 430–437 (2000)

    Article  Google Scholar 

  5. K.B. Crozier, Thin film characterization by atomic force microscopy at ultrasonic frequencies. Appl. Phys. Lett. 76(14), 1950–1952 (2000)

    Article  ADS  Google Scholar 

  6. A.F. Sarioglu, A. Atalar, F.L. Degertekin, Modeling the effect of subsurface interface defects on contact stiffness for ultrasonic atomic force microscopy. Appl. Phys. Lett. 84, 5368 (2004)

    Article  ADS  Google Scholar 

  7. M. Kopycinska-Muller et al., Elastic-property measurements of ultrathin films using atomic force acoustic microscopy. Nanotechnology 16, 703 (2005)

    Article  ADS  Google Scholar 

  8. D.C Hurley et al., Mapping substrate/film adhesion with contact-resonance-frequency atomic force microscopy. Appl. Phys. Lett. 89(2), 021911 (2006)

    Google Scholar 

  9. K. Yamanaka, H. Ogiso, O. Kolosov, Ultrasonic force microscopy for nanometer resolution subsurface imaging. Appl. Phys. Lett. 64(2), 178–180 (1994)

    Article  ADS  Google Scholar 

  10. K.L. Johnson, Contact Mechanics (Cambridge University Press, Cambridge, 1985)

    Google Scholar 

  11. B. Bhushan, in Nanotribology and Nanomechanics: An Introduction, ed. by B. Bhushan (Springer, Berlin, 2005)

    Google Scholar 

  12. J.A. Turner et al., High-frequency response of atomic-force microscope cantilevers. J. Appl. Phys. 82, 966 (1997)

    Article  ADS  Google Scholar 

  13. U. Rabe, J. Turner, W. Arnold, Analysis of the high-frequency response of atomic force microscope cantilevers. Appl. Phys. A Mater. Sci. Process. 66(7), S277 (1998)

    Article  ADS  Google Scholar 

  14. Z. Parlak, F.L. Degertekin, Contact stiffness of finite size subsurface defects for atomic force microscopy: Three-dimensional finite element modeling and experimental verification. J. Appl. Phys. 103(11), 114910–8 (2008)

    Article  ADS  Google Scholar 

  15. T. Tsuji, K. Yamanaka, Observation by ultrasonic atomic force microscopy of reversible displacement of subsurface dislocations in highly oriented pyrolytic graphite. Nanotechnology 12(3), 301–307 (2001)

    Article  ADS  Google Scholar 

  16. D.C. Hurley, J.A. Turner, Humidity effects on the determination of elastic properties by atomic force acoustic microscopy. J. Appl. Phys. 95, 2403 (2004)

    Article  ADS  Google Scholar 

  17. D. Passeri, A. Bettucci, M. Rossi, Acoustics and atomic force microscopy for the mechanical characterization of thin films. Anal. Bioanal. Chem. 396(8), 2769–2783 (2010)

    Google Scholar 

  18. S. Amelio, Measurements of elastic properties of ultra-thin diamond-like carbon coatings using atomic force acoustic microscopy. Thin Solid Films 392(1), 75–84 (2001)

    Article  ADS  Google Scholar 

  19. M. Prasad et al., Measurement of Young’s modulus of clay minerals using atomic force acoustic microscopy. Geophys. Res. Lett. 29, 1172 (2002)

    Article  ADS  Google Scholar 

  20. T. Vanorio, M. Prasad, A. Nur, Elastic properties of dry clay mineral aggregates, suspensions and sandstones. Geophys. J. Int. 155, 319 (2003)

    Article  ADS  Google Scholar 

  21. D. Passeri et al., Atomic force acoustic microscopy characterization of nanostructured selenium-tin thin films. Superlattices Microstruct. 44(4–5), 641–649 (2008)

    Google Scholar 

  22. K. Yamanaka, S. Nakano, Quantitative elasticity evaluation by contact resonance in an atomic force microscope. Appl. Phys. a-Mater. Sci. Process. 66, S313–S317 (1998)

    Article  ADS  Google Scholar 

  23. E. Kester et al., Measurement of mechanical properties of nanoscaled ferrites using atomic force microscopy at ultrasonic frequencies. Nanostruct. Mater. 12, 779 (1999)

    Article  Google Scholar 

  24. H. Cunfu, Subsurface defect of the SiOx film imaged by atomic force acoustic microscopy. Opt. Lasers Eng. 48(11), 1108–1112 (2010)

    Article  Google Scholar 

  25. J.P. Killgore et al., Quantitative subsurface contact resonance force microscopy of model polymer nanocomposites. Nanotechnology 22(17), 175706 (2011)

    Article  ADS  Google Scholar 

  26. U. Rabe, Imaging and measurement of local mechanical material properties by atomic force acoustic microscopy. Surf. Interface Anal. 33(2), 65–70 (2002)

    Article  Google Scholar 

  27. G.S. Batog et al., Calculation of the thicknesses and elastic properties of thin-film coatings using atomic-force acoustic microscopy data. Tech. Phys. 51(8), 1084–1089 (2006)

    Google Scholar 

  28. G. Huajian, C. Cheng-Hsin, L. Jin, Elastic contact versus indentation modeling of multi-layered materials. Int. J. Solid. Struct. 29(20), 2471–2492 (1992)

    Article  Google Scholar 

  29. A. Kovalev et al., Nanomechanical probing of layered nanoscale polymer films with atomic force microscopy. J. Mater. Res. 19(3), 716–728 (2003)

    Article  ADS  Google Scholar 

  30. G.S. Kino, C.S. DeSilets, Design of slotted transducer arrays with matched backings. Ultrason. Imaging 1(3), 189–209 (1979)

    Article  ADS  Google Scholar 

  31. B. Honein et al., Wave Propagation in Piezoelectric Layered Media with Some Applications. J. Intell. Mater. Syst. Struct. 2(4), 542–557 (1991)

    Google Scholar 

  32. H. Geisler, et al., in Elastic Mapping of Sub-surface Defects by Ultrasonic Force Microscopy: Limits of Depth Sensitivity, in Microscopy of Semiconducting Materials 2001, ed. by A.G. Cullis, J.L. Hutchison (Iop Publishing, Bristol, 2001), pp. 527–530

    Google Scholar 

  33. G. Batog et al., Calculation of the thicknesses and elastic properties of thin-film coatings using atomic-force acoustic microscopy data. Tech. Phys. 51(8), 1084–1089 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Levent F. Degertekin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Parlak, Z., Degertekin, L.F. (2013). Quantitative Subsurface Imaging by Acoustic AFM Techniques. In: Marinello, F., Passeri, D., Savio, E. (eds) Acoustic Scanning Probe Microscopy. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27494-7_15

Download citation

Publish with us

Policies and ethics