Skip to main content

A Component-by-Component Construction for the Trigonometric Degree

  • Conference paper
  • First Online:
Monte Carlo and Quasi-Monte Carlo Methods 2010

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 23))

Abstract

We propose an alternative to the algorithm from Cools, Kuo, Nuyens (Computing 87(1–2):63–89, 2010), for constructing lattice rules with good trigonometric degree. The original algorithm has construction cost \(O(\vert {\mathcal{A}}_{d}(m)\vert + dN\log N)\) for an N-point lattice rule in d dimensions having trigonometric degree m, where the set \({\mathcal{A}}_{d}(m)\) has exponential size in both d and m (in the “unweighted degree” case, which is what we consider here). We reduce the cost to \(O(dN{(\log N)}^{2})\) with an implicit constant governing the needed precision (which is dependent on N and d).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Beckers and R. Cools. A relation between cubature formulae of trigonometric degree and lattice rules. In H. Brass and G. Hämmerlin, editors, Numerical integration IV (Oberwolfach, 1992), pages 13–24. Birkhäuser Verlag, 1993.

    Google Scholar 

  2. R. Cools. More about cubature formulas and densest lattice packings. East Journal on Approximations, 12(1):37–42, 2006.

    Google Scholar 

  3. R. Cools and H. Govaert. Five- and six-dimensional lattice rules generated by structured matrices. J. Complexity, 19(6):715–729, 2003.

    Google Scholar 

  4. R. Cools, F. Y. Kuo, and D. Nuyens. Constructing embedded lattice rules for multivariate integration. SIAM J. Sci. Comput., 28(6):2162–2188, 2006.

    Google Scholar 

  5. R. Cools, F. Y. Kuo, and D. Nuyens. Constructing lattice rules based on weighted degree of exactness and worst case error. Computing, 87(1–2):63–89, 2010.

    Google Scholar 

  6. R. Cools and J. N. Lyness. Three- and four-dimensional K-optimal lattice rules of moderate trigonometric degree. Math. Comp., 70(236):1549–1567, 2001.

    Google Scholar 

  7. R. Cools, E. Novak, and K. Ritter. Smolyak’s construction of cubature formulas of arbitrary trigonometric degree. Computing, 62(2):147–162, 1999.

    Google Scholar 

  8. R. Cools and D. Nuyens. A Belgian view on lattice rules. In A. Keller, S. Heinrich, and H. Niederreiter, editors, Monte Carlo and Quasi-Monte Carlo Methods 2006, pages 3–21. Springer-Verlag, 2008.

    Google Scholar 

  9. R. Cools and D. Nuyens. Extensions of Fibonacci lattice rules. In P. L’Écuyer and A. B. Owen, editors, Monte Carlo and Quasi-Monte Carlo Methods 2008, pages 1–12. Springer-Verlag, 2009.

    Google Scholar 

  10. R. Cools and A. V. Reztsov. Different quality indexes for lattice rules. J. Complexity, 13(2):235–258, 1997.

    Google Scholar 

  11. R. Cools and I. H. Sloan. Minimal cubature formulae of trigonometric degree. Math. Comp., 65(216):1583–1600, 1996.

    Google Scholar 

  12. J. A. De Loera, J. Rambau, and F. Santos. Triangulations, volume 25 of Algorithms and Computation in Mathematics. Springer-Verlag, 2010.

    Google Scholar 

  13. J. Dick, F. Pillichshammer, G. Larcher, and H. Woźniakowski. Exponential convergence and tractability of multivariate integration for Korobov spaces. Math. Comp., 80(274):905–930, 2011.

    Google Scholar 

  14. I. S. Gradshteyn and I. M. Ryzhik. Table of Integrals, Series and Products. Academic Press, 7th edition, 2007.

    Google Scholar 

  15. F. J. Hickernell. Lattice rules: How well do they measure up? In P. Hellekalek and G. Larcher, editors, Random and Quasi-Random Point Sets, pages 109–166. Springer-Verlag, Berlin, 1998.

    Google Scholar 

  16. J. N. Lyness. Notes on lattice rules. J. Complexity, 19(3):321–331, 2003.

    Google Scholar 

  17. J. N. Lyness and T. Sørevik. Four-dimensional lattice rules generated by skew-circulant matrices. Math. Comp., 73(245):279–295, 2004.

    Google Scholar 

  18. J. N. Lyness and T. Sørevik. Five-dimensional K-optimal lattice rules. Math. Comp., 75(255):1467–1480, 2006.

    Google Scholar 

  19. H. Niederreiter. Random Number Generation and Quasi-Monte Carlo Methods. Number 63 in Regional Conference Series in Applied Mathematics. SIAM, 1992.

    Google Scholar 

  20. D. Nuyens and R. Cools. Fast algorithms for component-by-component construction of rank-1 lattice rules in shift-invariant reproducing kernel Hilbert spaces. Math. Comp., 75(254):903–920, 2006.

    Google Scholar 

  21. D. Nuyens and R. Cools. Fast component-by-component construction, a reprise for different kernels. In H. Niederreiter and D. Talay, editors, Monte Carlo and Quasi-Monte Carlo Methods 2004, pages 371–385. Springer-Verlag, 2006.

    Google Scholar 

  22. D. Nuyens and R. Cools. Fast component-by-component construction of rank-1 lattice rules with a non-prime number of points. J. Complexity, 22(1):4–28, 2006.

    Google Scholar 

  23. N. N. Osipov, R. Cools, and M. V. Noskov. Extremal lattices and the construction of lattice rules. Appl. Math. Comput., 217(9):4397–4407, 2011.

    Google Scholar 

  24. I. H. Sloan and S. Joe. Lattice Methods for Multiple Integration. Oxford Science Publications, 1994.

    Google Scholar 

  25. I. H. Sloan and A. V. Reztsov. Component-by-component construction of good lattice rules. Math. Comp., 71(237):263–273, 2002.

    Google Scholar 

  26. I. H. Sloan and H. Woźniakowski. When are quasi-Monte Carlo algorithms efficient for high dimensional integrals? J. Complexity, 14(1):1–33, 1998.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the two anonymous referees for useful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nico Achtsis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Achtsis, N., Nuyens, D. (2012). A Component-by-Component Construction for the Trigonometric Degree. In: Plaskota, L., Woźniakowski, H. (eds) Monte Carlo and Quasi-Monte Carlo Methods 2010. Springer Proceedings in Mathematics & Statistics, vol 23. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27440-4_10

Download citation

Publish with us

Policies and ethics