Skip to main content

Polarization Sensitivity

  • Chapter
  • First Online:
Optical Coherence Tomography

Abstract

Optical coherence tomography (OCT) (Huang et al. Science 254(5035): 1178–1181, 1991; Fercher et al. Rep Prog Phys 66:239–303, 2003; Drexler and Fujimoto Prog Retin Eye Res 27(1):45–88, 2008) is a well-established tool for high-resolution cross-sectional imaging of human ocular structures. Despite its great success in improving ocular diagnostic imaging, conventional OCT cannot directly differentiate between different tissues. However, polarization-sensitive (PS) OCT is able to generate tissue-specific contrast that can be further used to segment ocular structures and to obtain quantitative information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, Optical coherence tomography. Science 254(5035), 1178–1181 (1991)

    Google Scholar 

  2. A.F. Fercher, W. Drexler, C.K. Hitzenberger, T. Lasser, Optical coherence tomography—principles and applications. Rep. Prog. Phys. 66, 239–303 (2003)

    Article  ADS  Google Scholar 

  3. W. Drexler, J.G. Fujimoto, State-of-the-art retinal optical coherence tomography. Prog. Retin. Eye Res. 27(1), 45–88 (2008)

    Article  Google Scholar 

  4. A.F. Fercher, C.K. Hitzenberger, G. Kamp, S.Y. Elzaiat, Measurement of intraocular distances by backscattering spectral interferometry. Opt. Commun. 117(1–2), 43–48 (1995)

    Article  ADS  Google Scholar 

  5. G. Häusler, M.W. Lindner, “Coherence radar” and “spectral radar”—New tools for dermatological diagnosis. J. Biomed. Opt. 3, 21–31 (1998)

    Article  Google Scholar 

  6. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, A.F. Fercher, In vivo human retinal imaging by Fourier domain optical coherence tomography. J. Biomed. Opt. 7(3), 457–463 (2002)

    Article  ADS  Google Scholar 

  7. R. Leitgeb, C.K. Hitzenberger, A.F. Fercher, Performance of fourier domain vs. time domain optical coherence tomography. Opt. Express. 11(8), 889–894 (2003)

    Google Scholar 

  8. J.F. de Boer, B. Cense, B.H. Park, M.C. Pierce, G.J. Tearney, B.E. Bouma, Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Opt. Lett. 28(21), 2067–2069 (2003)

    Article  ADS  Google Scholar 

  9. M.A. Choma, M.V. Sarunic, C.H. Yang, J.A. Izatt, Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt. Express. 11(18), 2183–2189 (2003)

    Article  ADS  Google Scholar 

  10. T.C. Chen, B. Cense, M.C. Pierce, N. Nassif, B.H. Park, S.H. Yun, B.R. White, B.E. Bouma, G.J. Tearney, J.F. de Boer, Spectral domain optical coherence tomography—Ultra-high speed, ultra-high resolution ophthalmic imaging. Arch. Ophthalmol. 123(12), 1715–1720 (2005)

    Article  Google Scholar 

  11. U. Schmidt-Erfurth, R.A. Leitgeb, S. Michels, B. Povazay, S. Sacu, B. Hermann, C. Ahlers, H. Sattmann, C. Scholda, A.F. Fercher, W. Drexler, Three-dimensional ultrahigh-resolution optical coherence tomography of macular diseases. Invest. Ophthalmol. Vis. Sci. 46(9), 3393–3402 (2005)

    Article  Google Scholar 

  12. M. Wojtkowski, V. Srinivasan, J.G. Fujimoto, T. Ko, J.S. Schuman, A. Kowalczyk, J.S. Duker, Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography. Ophthalmology 112(10), 1734–1746 (2005)

    Article  Google Scholar 

  13. M.R. Hee, D. Huang, E.A. Swanson, J.G. Fujimoto, Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging. J. Opt. Soc. Am. B Opt. Phys. 9(6), 903–908 (1992)

    Article  ADS  Google Scholar 

  14. J.F. de Boer, T.E. Milner, M.J.C. van Gemert, J.S. Nelson, Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography. Opt. Lett. 22(12), 934–936 (1997)

    Article  ADS  Google Scholar 

  15. J.F. de Boer, T.E. Milner, J.S. Nelson, Determination of the depth-resolved Stokes parameters of light backscattered from turbid media by use of polarization-sensitive optical coherence tomography. Opt. Lett. 24(5), 300–302 (1999)

    Article  ADS  Google Scholar 

  16. G. Yao, L.V. Wang, Two-dimensional depth-resolved Mueller matrix characterization of biological tissue by optical coherence tomography. Opt. Lett. 24(8), 537–539 (1999)

    Article  ADS  Google Scholar 

  17. S.L. Jiao, L.H.V. Wang, Jones-matrix imaging of biological tissues with quadruple-channel optical coherence tomography. J. Biomed. Opt. 7(3), 350–358 (2002)

    Article  ADS  Google Scholar 

  18. C.K. Hitzenberger, E. Götzinger, M. Sticker, M. Pircher, A.F. Fercher, Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography. Opt. Express. 9(13), 780–790 (2001)

    Article  ADS  Google Scholar 

  19. B.H. Park, M.C. Pierce, B. Cense, J.F. de Boer, Jones matrix analysis for a polarization-sensitive optical coherence tomography system using fiber-optic components. Opt. Lett. 29(21), 2512–2514 (2004)

    Article  ADS  Google Scholar 

  20. M. Todorovi, S. Jiao, L.V. Wang, G. Stoica, Determination of local polarization properties of biological samples in the presence of diattenuation by use of Mueller optical coherence tomography. Opt. Lett. 29(20), 2402–2404 (2004)

    Article  ADS  Google Scholar 

  21. E. Götzinger, M. Pircher, W. Geitzenauer, C. Ahlers, B. Baumann, S. Michels, U. Schmidt-Erfurth, C.K. Hitzenberger, Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography. Opt. Express. 16(21), 16410–16422 (2008)

    Article  ADS  Google Scholar 

  22. E. Götzinger, M. Pircher, C.K. Hitzenberger, High speed spectral domain polarization sensitive optical coherence tomography of the human retina. Opt. Express. 13(25), 10217–10229 (2005)

    Article  Google Scholar 

  23. M. Pircher, E. Götzinger, B. Baumann, C.K. Hitzenberger, Corneal birefringence compensation for polarization sensitive optical coherence tomography of the human retina. J. Biomed. Opt. 12(4), 041210 (2007)

    Google Scholar 

  24. B. Baumann, E. Gotzinger, M. Pircher, H. Sattmann, C. Schuutze, F. Schlanitz, C. Ahlers, U. Schmidt-Erfurth, C.K. Hitzenberger, Segmentation and quantification of retinal lesions in age-related macular degeneration using polarization-sensitive optical coherence tomography. J. Biomed. Opt. 15(6), 061704 (2010)

    Google Scholar 

  25. L.J. Bour, Polarized light and the eye, in Visual Optics and Instrumentation, ed. by W.N. Charman (CRC Press, Boca Raton, FL, 1991), pp. 310–325

    Google Scholar 

  26. E. Götzinger, M. Pircher, M. Sticker, A.F. Fercher, C.K. Hitzenberger, Measurement and imaging of birefringent properties of the human cornea with phase-resolved, polarization-sensitive optical coherence tomography. J. Biomed. Opt. 9(1), 94–102 (2004)

    Article  Google Scholar 

  27. B. Baumann, E. Götzinger, M. Pircher, C.K. Hitzenberger, Single camera based spectral domain polarization sensitive optical coherence tomography. Opt. Express. 15(3), 1054–1063 (2007)

    Article  ADS  Google Scholar 

  28. M. Yamanari, S. Makita, Y. Yasuno, Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation. Opt. Express. 16(8), 5892–5906 (2008)

    Article  ADS  Google Scholar 

  29. A.W. Dreher, K. Reiter, R.N. Weinreb, Spatially resolved birefringence of the retinal nerve fiber layer assessed with a retinal laser ellipsometer. Appl. Opt. 31(19), 3730–3735 (1992)

    Article  ADS  Google Scholar 

  30. B. Cense, T.C. Chen, B.H. Park, M.C. Pierce, J.F. de Boer, Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography. Invest. Ophthalmol. Vis. Sci. 45(8), 2606–2612 (2004)

    Article  Google Scholar 

  31. H.B. Brink, G.J. van Blokland, Birefringence of the human foveal area assessed in vivo with Mueller-matrix ellipsometry. J. Opt. Soc. Am. A 5(1), 49–57 (1988)

    Article  ADS  Google Scholar 

  32. M. Pircher, E. Götzinger, R. Leitgeb, H. Sattmann, O. Findl, C.K. Hitzenberger, Imaging of polarization properties of human retina in vivo with phase resolved transversal PS-OCT. Opt. Express. 12(24), 5940–5951 (2004)

    Article  ADS  Google Scholar 

  33. S. Michels, M. Pircher, W. Geitzenauer, C. Simader, E. Götzinger, O. Findl, U. Schmidt-Erfurth, C.K. Hitzenberger, Value of polarisation-sensitive optical coherence tomography in diseases affecting the retinal pigment epithelium. Br. J. Ophthalmol. 92(2), 204–209 (2008)

    Article  Google Scholar 

  34. E. Götzinger, B. Baumann, M. Pircher, C.K. Hitzenberger, Polarization maintaining fiber based ultra-high resolution spectral domain polarization sensitive optical coherence tomography. Opt. Express. 17(25), 22704–22717 (2009)

    Article  ADS  Google Scholar 

  35. N. Kemp, H. Zaatari, J. Park, H.G. Rylander Iii, T. Milner, Form-biattenuance in fibrous tissues measured with polarization-sensitive optical coherence tomography (PS-OCT). Opt. Express. 13(12), 4611–4628 (2005)

    Article  ADS  Google Scholar 

  36. J.M. Schmitt, S.H. Xiang, Cross-polarized backscatter in optical coherence tomography of biological tissue. Opt. Lett. 23(13), 1060–1062 (1998)

    Article  ADS  Google Scholar 

  37. S. Jiao, G. Yao, L.V. Wang, Depth-resolved two-dimensional Stokes vectors of backscattered light and Mueller matrices of biological tissue measured with optical coherence tomography. Appl. Opt. 39(34), 6318–6324 (2000)

    Article  ADS  Google Scholar 

  38. M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, C.K. Hitzenberger, Human macula investigated in vivo with polarization-sensitive optical coherence tomography. Invest. Ophthalmol. Vis. Sci. 47(12), 5487–5494 (2006)

    Article  Google Scholar 

  39. M. Pircher, E. Goetzinger, R. Leitgeb, C.K. Hitzenberger, Transversal phase resolved polarization sensitive optical coherence tomography. Phys. Med. Biol. 49(7), 1257–1263 (2004)

    Article  Google Scholar 

  40. E. Götzinger, M. Pircher, B. Baumann, C. Ahlers, W. Geitzenauer, U. Schmidt-Erfurth, C.K. Hitzenberger, Three-dimensional polarization sensitive OCT imaging and interactive display of the human retina. Opt. Express. 17(5), 4151–4165 (2009)

    Article  ADS  Google Scholar 

  41. B. Baumann, E. Götzinger, M. Pircher, C.K. Hitzenberger, Measurements of depolarization distribution in the healthy human macula by polarization sensitive OCT. J. Biophotonics. 2(6–7), 426–434 (2009)

    Article  Google Scholar 

  42. B. Baumann, S.O. Baumann, T. Konegger, M. Pircher, E. Götzinger, H. Sattmann, M. Litschauer, C.K. Hitzenberger, Polarization sensitive optical coherence tomography of melanin provides tissue inherent contrast based on depolarization. Proc. SPIE 7554, 75541M (2010)

    Article  ADS  Google Scholar 

  43. E. Götzinger, M. Pircher, M. Sticker, A.F. Fercher, C.K. Hitzenberger, Measurement and imaging of birefringent properties of the human cornea with phase-resolved, polarization-sensitive optical coherence tomography. J. Biomed. Opt. 9(1), 94–102 (2004)

    Article  Google Scholar 

  44. E. Götzinger, M. Pircher, I. Dejaco-Ruhswurm, S. Kaminski, C. Skorpik, C.K. Hitzenberger, Imaging of birefringent properties of keratoconus corneas by polarization-sensitive optical coherence tomography. Invest. Ophthalmol. Vis. Sci. 48(8), 3551–3558 (2007)

    Article  Google Scholar 

  45. A. Miyazawa, M. Yamanari, S. Makita, M. Miura, K. Kawana, K. Iwaya, H. Goto, Y. Yasuno, Tissue discrimination in anterior eye using three optical parameters obtained by polarization sensitive optical coherence tomography. Opt. Express. 17(20), 17426–17440 (2009)

    Article  ADS  Google Scholar 

  46. Y. Yasuno, M. Yamanari, K. Kawana, T. Oshika, M. Miura, Investigation of post-glaucoma-surgery structures by three-dimensional and polarization sensitive anterior eye segment optical coherence tomography. Opt. Express. 17(5), 3980–3996 (2009)

    Article  ADS  Google Scholar 

  47. M.R. Hee, J.A. Izatt, E.A. Swanson, D. Huang, J.S. Schuman, C.P. Lin, C.A. Puliafito, J.G. Fujimoto, Optical coherence tomography of the human retina. Arch. Ophthalmol. 113(3), 325–332 (1995)

    Article  Google Scholar 

  48. C. Ahlers, U. Schmidt-Erfurth, Three-dimensional high resolution OCT imaging of macular pathology. Opt. Express. 17(5), 4037–4045 (2009)

    Article  ADS  Google Scholar 

  49. M.L. Gabriele, G. Wollstein, H. Ishikawa, J. Xu, J. Kim, L. Kagemann, L.S. Folio, J.S. Schuman, Three dimensional optical coherence tomography imaging: advantages and advances. Prog. Retin. Eye Res. 29(6), 556–579 (2010)

    Article  Google Scholar 

  50. N. Congdon, B. O’Colmain, C.C. Klaver, R. Klein, B. Muñoz, D.S. Friedman, J. Kempen, H.R. Taylor, P. Mitchell, Eye Diseases Prevalence Research Group, Causes and prevalence of visual impairment among adults in the United States. Arch. Ophthalmol. 122(4), 477–485 (2004)

    Google Scholar 

  51. S. Resnikoff, D. Pascolini, D. Etya’ale, I. Kocur, R. Pararajasegaram, G.P. Pokharel, S.P. Mariotti, Global data on visual impairment in the year 2002. Bull. World Health Organ. 82(11), 844–851 (2004)

    Google Scholar 

  52. D.S. Friedman, B.J. O’Colmain, B. Muñoz, S.C. Tomany, C. McCarty, P.T. de Jong, B. Nemesure, P. Mitchell, J. Kempen, Eye Diseases Prevalence Research Group, Prevalence of age-related macular degeneration in the United States. Arch. Ophthalmol. 122(4), 564–572 (2004)

    Google Scholar 

  53. M.A. Zarbin, Current concepts in the pathogenesis of age-related macular degeneration. Arch. Ophthalmol. 122(4), 598–614 (2004)

    Article  Google Scholar 

  54. H.E. Grossniklaus, W.R. Green, Choroidal neovascularization. Am. J. Ophthalmol. 137(3), 496–503 (2004)

    Article  Google Scholar 

  55. R.D. Jager, W.F. Mieler, J.W. Miller, Age-related macular degeneration. N. Engl. J. Med. 358(24), 2606–2617 (2008)

    Article  Google Scholar 

  56. W. Green, Histopathology of age-related macular degeneration. Mol. Vis. 5, 27 (1999)

    Google Scholar 

  57. A. Abdelsalam, L. Del Priore, M. Zarbin, Drusen in age-related macular degeneration: pathogenesis, natural course, and laser photocoagulation-induced regression. Surv. Ophthalmol. 44(1), 1–29 (1999)

    Article  Google Scholar 

  58. L.V. Johnson, S. Ozaki, M.K. Staples, P.A. Erickson, D.H. Anderson, A potential role for immune complex pathogenesis in drusen formation. Exp. Eye Res. 70(4), 441–449 (2000)

    Article  Google Scholar 

  59. G.S. Hageman, P.J. Luthert, N.H. Victor Chong, L.V. Johnson, D.H. Anderson, R.F. Mullins, An integrated hypothesis that considers drusen as biomarkers of immune-mediated processes at the RPE-Bruch’s membrane interface in aging and age-related macular degeneration. Prog. Retin. Eye Res. 20(6), 705–732 (2001)

    Article  Google Scholar 

  60. C.A. Curcio, N.E. Medeiros, C.L. Millican, Photoreceptor loss in age-related macular degeneration. Invest. Ophthalmol. Vis. Sci. 37(7), 1236–1249 (1996)

    Google Scholar 

  61. S.H. Sarks, J.J. Arnold, M.C. Killingsworth, J.P. Sarks, Early drusen formation in the normal and aging eye and their relation to age related maculopathy: a clinicopathological study. Br. J. Ophthalmol. 83(3), 358–368 (1999)

    Article  Google Scholar 

  62. H. Al-Hussaini, M. Schneiders, P. Lundh, G. Jeffery, Drusen are associated with local and distant disruptions to human retinal pigment epithelium cells. Exp. Eye Res. 88(3), 610–612 (2009)

    Article  Google Scholar 

  63. The Age-Related Eye Disease Study Research Group, Risk factors associated with age-related macular degeneration. A case-control study in the age-related eye disease study: age-related eye disease study report number 3. Ophthalmology 107(12), 2224–2232 (2000)

    Google Scholar 

  64. L. Zhao, Z. Wang, Y. Liu, Y. Song, Y. Li, A.M. Laties, R. Wen, Translocation of the retinal pigment epithelium and formation of sub-retinal pigment epithelium deposit induced by subretinal deposit. Mol. Vis. 13, 873–880 (2007)

    Google Scholar 

  65. H.P. Scholl, S.S. Dandekar, T. Peto, C. Bunce, W. Xing, S. Jenkins, A.C. Bird, What is lost by digitizing stereoscopic fundus color slides for macular grading in age-related maculopathy and degeneration? Ophthalmology 111(1), 125–132 (2004)

    Article  Google Scholar 

  66. F.G. Schlanitz, B. Baumann, C. Ahlers, T. Spalek, S.M. Schriefl, I. Golbaz, M. Pircher, E. Gotzinger, C.K. Hitzenberger, U. Schmidt-Erfurth, Automatic delineation of drusen with polarization-sensitive optical coherence tomography. ARVO Poster #1783/A532-2010

    Google Scholar 

  67. F.G. Schlanitz, C. Ahlers, S. Sacu, C. Schütze, M. Rodriguez, S. Schriefl, I. Golbaz, T. Spalek, G. Stock, U. Schmidt-Erfurth, Performance of drusen detection by spectral-domain optical coherence tomography. Invest. Ophthalmol. Vis. Sci. 51(12), 6715–6721 (2010)

    Article  Google Scholar 

  68. M. Rudolf, M.E. Clark, M.F. Chimento, C.M. Li, N.E. Medeiros, C.A. Curcio, Prevalence and morphology of druse types in the macula and periphery of eyes with age-related maculopathy. Invest. Ophthalmol. Vis. Sci. 49(3), 1200–1209 (2008)

    Article  Google Scholar 

  69. A.A. Khanifar, A.F. Koreishi, J.A. Izatt, C.A. Toth, Drusen ultrastructure imaging with spectral domain optical coherence tomography in age-related macular degeneration. Ophthalmology 115(11), 1883–1890 (2008)

    Article  Google Scholar 

  70. C.N. Keilhauer, F.C. Delori, Near-infrared autofluorescence imaging of the fundus: visualization of ocular melanin. Invest. Ophthalmol. Vis. Sci. 47(8), 3556–3564 (2006)

    Article  Google Scholar 

  71. A.C. Bird, N.M. Bressler, S.B. Bressler, I.H. Chisholm, G. Coscas, M.D. Davis, P.T. de Jong, C.C. Klaver, B.E. Klein, R. Klein, An international classification and grading system for age-related maculopathy and age-related macular degeneration. Surv. Ophthalmol. 39(5), 367–374 (1995)

    Article  Google Scholar 

  72. J.S. Sunness, J. Gonzalez-Baron, C.A. Applegate, N.M. Bressler, Y. Tian, B. Hawkins, Y. Barron, A. Bergman, Enlargement of atrophy and visual acuity loss in the geographic atrophy form of age-related macular degeneration. Ophthalmology 106(9), 1768–1779 (1999)

    Article  Google Scholar 

  73. J.S. Sunness, The natural history of geographic atrophy, the advanced atrophic form of age-related macular degeneration. Mol. Vis. 5, 25 (1999)

    Google Scholar 

  74. J.S. Sunness, E. Margalit, D. Srikumaran, C.A. Applegate, Y. Tian, D. Perry, B.S. Hawkins, N.M. Bressler, The long-term natural history of geographic atrophy from age-related macular degeneration: enlargement of atrophy and implications for interventional clinical trials. Ophthalmology 114(2), 271–277 (2007)

    Article  Google Scholar 

  75. M. Fleckenstein, P. Charbel Issa, H.M. Helb, S. Schmitz-Valckenberg, R.P. Finger, H.P. Scholl, K.U. Loeffler, F.G. Holz, High-resolution spectral domain-OCT imaging in geographic atrophy associated with age-related macular degeneration. Invest. Ophthalmol. Vis. Sci. 49(9), 4137–4144 (2008)

    Article  Google Scholar 

  76. B.J. Lujan, P.J. Rosenfeld, G. Gregori, F. Wang, R.W. Knighton, W.J. Feuer, C.A. Puliafito, Spectral domain optical coherence tomographic imaging of geographic atrophy. Ophthalmic Surg. Lasers Imaging 40(2), 96–101 (2009)

    Article  Google Scholar 

  77. M. Fleckenstein, S. Schmitz-Valckenberg, C. Adrion, I. Krämer, N. Eter, H.M. Helb, C.K. Brinkmann, P. Charbel Issa, U. Mansmann, F.G. Holz, Tracking progression with spectral-domain optical coherence tomography in geographic atrophy caused by age-related macular degeneration. Invest. Ophthalmol. Vis. Sci. 51(8), 3846–3852 (2010)

    Article  Google Scholar 

  78. C. Ahlers, E. Götzinger, M. Pircher, I. Golbaz, F. Prager, C. Schütze, B. Baumann, C.K. Hitzenberger, U. Schmidt-Erfurth, Imaging of the retinal pigment epithelium in age-related macular degeneration using polarization sensitive optical coherence tomography. Invest. Ophthalmol. Vis. Sci. 51(4), 2149–2157 (2010)

    Article  Google Scholar 

  79. F.G. Holz, C. Bellman, S. Staudt, F. Schütt, H.E. Völcker, Fundus autofluorescence and development of geographic atrophy in age-related macular degeneration. Invest. Ophthalmol. Vis. Sci. 42(5), 1051–1056 (2001)

    Google Scholar 

  80. F.G. Holz, A. Bindewald-Wittich, M. Fleckenstein, J. Dreyhaupt, H.P. Scholl, S. Schmitz-Valckenberg, FAM-Study Group, Progression of geographic atrophy and impact of fundus autofluorescence patterns in age-related macular degeneration. Am. J. Ophthalmol. 143(3), 463–472 (2007)

    Google Scholar 

  81. U.E.K. Wolf-Schnurrbusch, V. Enzmann, C.K. Brinkmann, S. Wolf, Morphologic changes in patients with geographic atrophy assessed with a novel spectral OCT-SLO combination. Invest. Ophthalmol. Vis. Sci. 49(7), 3095–3099 (2008)

    Article  Google Scholar 

  82. R.P. Singh, C. Patel, J.E. Sears, Management of subretinal macular haemorrhage by direct administration of tissue plasminogen activator. Br. J. Ophthalmol. 90(4), 429–431 (2006)

    Article  Google Scholar 

  83. C.A. Toth, L.S. Morse, L.M. Hjelmeland, M.B. Landers 3rd, Fibrin directs early retinal damage after experimental subretinal hemorrhage. Arch. Ophthalmol. 109(5), 723–729 (1991)

    Article  Google Scholar 

  84. J.D. Benner, A. Hay, M.B. Landers 3rd, L.M. Hjelmeland, L.S. Morse, Fibrinolytic-assisted removal of experimental subretinal hemorrhage within seven days reduces outer retinal degeneration. Ophthalmology 101(4), 672–681 (1994)

    Google Scholar 

  85. R.L. Avery, S. Fekrat, B.S. Hawkins, N.M. Bressler, Natural history of subfoveal subretinal hemorrhage in age-related macular degeneration. Retina 16(3), 183–189 (1996)

    Article  Google Scholar 

  86. S.R. Bennett, J.C. Folk, C.F. Blodi, M. Klugman, Factors prognostic of visual outcome in patients with subretinal hemorrhage. Am. J. Ophthalmol. 109(1), 33–37 (1990)

    Google Scholar 

  87. M.H. Berrocal, M.L. Lewis, H.W. Flynn Jr, Variations in the clinical course of submacular hemorrhage. Am. J. Ophthalmol. 122(4), 486–493 (1996)

    Google Scholar 

  88. M.T.S. Tennant, J.L. Borrillo, C.D. Regillo, Management of submacular hemorrhage. Ophthalmol. Clin. North Am. 15(4), 445vi–452vi (2002)

    Google Scholar 

  89. M.A. Hochman, C.M. Seery, M.A. Zarbin, Pathophysiology and management of subretinal hemorrhage. Surv. Ophthalmol. 42(3), 195–213 (1997)

    Article  Google Scholar 

  90. U.M. Schmidt-Erfurth, C. Pruente, Management of neovascular age-related macular degeneration. Prog. Retin. Eye Res. 26(4), 437–451 (2007)

    Article  Google Scholar 

  91. C. Ahlers, I. Golbaz, G. Stock, A. Fous, S. Kolar, C. Pruente, U. Schmidt-Erfurth, Time course of morphologic effects on different retinal compartments after ranibizumab therapy in age-related macular degeneration. Ophthalmology 115(8), e39–e46 (2008)

    Article  Google Scholar 

  92. N. Shams, T. Ianchulev, Role of vascular endothelial growth factor in ocular angiogenesis. Ophthalmol. Clin. North Am. 19(3), 335–344 (2006)

    Google Scholar 

  93. A. Kvanta, P.V. Algvere, L. Berglin, S. Seregard, Subfoveal fibrovascular membranes in age-related macular degeneration express vascular endothelial growth factor. Invest. Ophthalmol. Vis. Sci. 37(9), 1929–1934 (1996)

    Google Scholar 

  94. C. Schuetze, C. Ahlers, B. Baumann, M. Pircher, E. Götzinger, R. Donner, J. Ofner, C. Hitzenberger, U. Schmidt-Erfurth, Automatic segmentation of subretinal fluid in choroidal neovascularization using polarization-sensitive optical coherence tomography. ARVO Poster #4935/A552-2010

    Google Scholar 

  95. A.C. Bird, Doyne Lecture. Pathogenesis of retinal pigment epithelial detachment in the elderly; the relevance of Bruch’s membrane change. Eye (Lond). 5(Pt 1), 1–12 (1991)

    Google Scholar 

  96. S.H. Sarks, New vessel formation beneath the retinal pigment epithelium in senile eyes. Br. J. Ophthalmol. 57(12), 951–965 (1973)

    Article  Google Scholar 

  97. L.J. Singerman, J.H. Stockfish, Natural history of subfoveal pigment epithelial detachments associated with subfoveal or unidentifiable choroidal neovascularization complicating age-related macular degeneration. Graefes Arch. Clin. Exp. Ophthalmol. 227(6), 501–507 (1989)

    Article  Google Scholar 

  98. C. Kunze, A.E. Elsner, E. Beausencourt, L. Moraes, M.E. Hartnett, C.L. Trempe, Spatial extent of pigment epithelial detachments in age-related macular degeneration. Ophthalmology 106(9), 1830–1840 (1999)

    Article  Google Scholar 

  99. C. Cedrone, C. Nucci, G. Scuderi, F. Ricci, A. Cerulli, F. Culasso, Prevalence of blindness and low vision in an Italian population: a comparison with other European studies. Eye (Lond). 20(6), 661–667 (2006)

    Google Scholar 

  100. H.A. Quigley, A.T. Broman, The number of people with glaucoma worldwide in 2010 and 2020. Br. J. Ophthalmol. 90(3), 262–267 (2006)

    Article  Google Scholar 

  101. H.A. Quigley, R.W. Nickells, L.A. Kerrigan, M.E. Pease, D.J. Thibault, D.J. Zack, Retinal ganglion cell death in experimental glaucoma and after axotomy occurs by apoptosis. Invest. Ophthalmol. Vis. Sci. 36(5), 774–786 (1995)

    Google Scholar 

  102. L.A. Kerrigan, D.J. Zack, H.A. Quigley, S.D. Smith, M.E. Pease, TUNEL-positive ganglion cells in human primary open-angle glaucoma. Arch. Ophthalmol. 115(8), 1031–1035 (1997)

    Article  Google Scholar 

  103. H.A. Quigley, G.R. Dunkelberger, W.R. Green, Chronic human glaucoma causing selectively greater loss of large optic nerve fibers. Ophthalmology 95(3), 357–363 (1988)

    Google Scholar 

  104. A. Heijl, M.C. Leske, B. Bengtsson, L. Hyman, M. Hussein, Early Manifest Glaucoma Trial Group, Reduction of intraocular pressure and glaucoma progression: results from the early manifest glaucoma trial. Arch. Ophthalmol. 120(10), 1268–1279 (2002)

    Google Scholar 

  105. A. Tuulonen, P.J. Airaksinen, Initial glaucomatous optic disk and retinal nerve fiber layer abnormalities and their progression. Am. J. Ophthalmol. 111(4), 485–490 (1991)

    Google Scholar 

  106. H.A. Quigley, Early detection of glaucomatous damage. II. Changes in the appearance of the optic disk. Surv. Ophthalmol. 30(2), 111, 117–126 (1985)

    Google Scholar 

  107. W.F. Hoyt, L. Frisén, N.M. Newman, Fundoscopy of nerve fiber layer defects in glaucoma. Invest. Ophthalmol. 12(11), 814–829 (1973)

    Google Scholar 

  108. R.S. Harwerth, L. Carter-Dawson, F. Shen, E.L. Smith 3rd, M.L. Crawford, Ganglion cell losses underlying visual field defects from experimental glaucoma. Invest. Ophthalmol. Vis. Sci. 40(10), 2242–2250 (1999)

    Google Scholar 

  109. L.A. Kerrigan-Baumrind, H.A. Quigley, M.E. Pease, D.F. Kerrigan, R.S. Mitchell, Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons. Invest. Ophthalmol. Vis. Sci. 41(3), 741–748 (2000)

    Google Scholar 

  110. R.N. Weinreb, L.M. Zangwill, S. Jain, L.M. Becerra, K. Dirkes, J.R. Piltz-Seymour, G.A. Cioffi, G.L. Trick, A.L. Coleman, J.D. Brandt, J.M. Liebmann, M.O. Gordon, M.A. Kass, OHTS CSLO Ancillary Study Group, Predicting the onset of glaucoma: the confocal scanning laser ophthalmoscopy ancillary study to the ocular hypertension treatment study. Ophthalmology 117(9), 1674–1683 (2010)

    Google Scholar 

  111. F.A. Medeiros, G. Vizzeri, L.M. Zangwill, L.M. Alencar, P.A. Sample, R.N. Weinreb, Comparison of retinal nerve fiber layer and optic disc imaging for diagnosing glaucoma in patients suspected of having the disease. Ophthalmology 115(8), 1340–1346 (2008)

    Article  Google Scholar 

  112. M. Lalezary, F.A. Medeiros, R.N. Weinreb, C. Bowd, P.A. Sample, I.M. Tavares, A. Tafreshi, L.M. Zangwill, Baseline optical coherence tomography predicts the development of glaucomatous change in glaucoma suspects. Am. J. Ophthalmol. 142(4), 576–582 (2006)

    Article  Google Scholar 

  113. Q. Zhou, J. Reed, R.W. Betts, P.K. Trost, P.W. Lo, C. Wallace, R.H. Bienias, G. Li, R. Winnick, W.A. Papworth, M. Sinai, Detection of glaucomatous retinal nerve fiber layer damage by scanning laser polarimetry with custom corneal compensation. Proc. SPIE 4951, 32 (2003)

    Article  ADS  Google Scholar 

  114. R.P. Hemenger, Birefringence of a medium of tenuous parallel cylinders. Appl. Opt. 28(18), 4030–4034 (1989)

    Article  ADS  Google Scholar 

  115. Q. Zhou, R.W. Knighton, Light scattering and form birefringence of parallel cylindrical arrays that represent cellular organelles of the retinal nerve fiber layer. Appl. Opt 36(10), 2273–2285 (1997)

    Article  ADS  Google Scholar 

  116. X.R. Huang, R.W. Knighton, Microtubules contribute to the birefringence of the retinal nerve fiber layer. Invest. Ophthalmol. Vis. Sci. 46(12), 4588–4593 (2005)

    Article  Google Scholar 

  117. X.R. Huang, H. Bagga, D.S. Greenfield, R.W. Knighton, Variation of peripapillary retinal nerve fiber layer birefringence in normal human subjects. Invest. Ophthalmol. Vis. Sci. 45(9), 3073–3080 (2004)

    Article  Google Scholar 

  118. E. Götzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, C.K. Hitzenberger, Retinal nerve fiber layer birefringence evaluated with polarization sensitive spectral domain OCT and scanning laser polarimetry: a comparison. J. Biophotonics. 1(2), 129–139 (2008)

    Article  Google Scholar 

  119. H.G. Rylander 3rd, N.J. Kemp, J. Park, H.N. Zaatari, T.E. Milner, Birefringence of the primate retinal nerve fiber layer. Exp. Eye Res. 81(1), 81–89 (2005)

    Article  Google Scholar 

  120. T.E. Ogden, Nerve fiber layer of the primate retina: thickness and glial content. Vision Res. 23(6), 581–587 (1983)

    Article  Google Scholar 

  121. G.M. Pocock, R.G. Aranibar, N.J. Kemp, C.S. Specht, M.K. Markey, H.G. Rylander 3rd, The relationship between retinal ganglion cell axon constituents and retinal nerve fiber layer birefringence in the primate. Invest. Ophthalmol. Vis. Sci. 50(11), 5238–5246 (2009)

    Article  Google Scholar 

  122. E. Götzinger, M. Pircher, B. Baumann, H. Resch, C. Vass, C.K. Hitzenberger, Comparison of retinal nerve fiber layer birefringence and thickness of healthy and glaucoma suspect eyes measured with polarization sensitive spectral domain OCT. ARVO Poster #5823/A161-2009

    Google Scholar 

  123. J.C. Vickers, R.A. Schumer, S.M. Podos, R.F. Wang, B.M. Riederer, J.H. Morrison, Differential vulnerability of neurochemically identified subpopulations of retinal neurons in a monkey model of glaucoma. Brain Res. 680(1–2), 23–35 (1995)

    Article  Google Scholar 

  124. A.J. Weber, P.L. Kaufman, W.C. Hubbard, Morphology of single ganglion cells in the glaucomatous primate retina. Invest. Ophthalmol. Vis. Sci. 39(12), 2304–2320 (1998)

    Google Scholar 

  125. T. Shou, J. Liu, W. Wang, Y. Zhou, K. Zhao, Differential dendritic shrinkage of alpha and beta retinal ganglion cells in cats with chronic glaucoma. Invest. Ophthalmol. Vis. Sci. 44(7), 3005–3010 (2003)

    Article  Google Scholar 

  126. C. Balaratnasingam, W.H. Morgan, L. Bass, S.J. Cringle, D.Y. Yu, Time-dependent effects of elevated intraocular pressure on optic nerve head axonal transport and cytoskeleton proteins. Invest. Ophthalmol. Vis. Sci. 49(3), 986–999 (2008)

    Article  Google Scholar 

  127. J.H. Kempen, B.J. O’Colmain, M.C. Leske, S.M. Haffner, R. Klein, S.E. Moss, H.R. Taylor, R.F. Hamman, Eye Diseases Prevalence Research Group, The prevalence of diabetic retinopathy among adults in the United States. Arch. Ophthalmol. 122(4), 552–563 (2004)

    Google Scholar 

  128. R. Klein, B.E. Klein, S.E. Moss, K.J. Cruickshanks, The Wisconsin Epidemiologic Study of Diabetic Retinopathy. XV. The long-term incidence of macular edema. Ophthalmology 102(1), 7–16 (1995)

    Google Scholar 

  129. Group TDCaCTR. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group. N. Engl. J. Med. 329(14), 977–986 (1993)

    Google Scholar 

  130. P. Reichard, B.Y. Nilsson, U. Rosenqvist, The effect of long-term intensified insulin treatment on the development of microvascular complications of diabetes mellitus. N. Engl. J. Med. 329(5), 304–309 (1993)

    Article  Google Scholar 

  131. UK Prospective Diabetes Study Group, Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. Br. Med. J. 317(7160), 703–713 (1998)

    Article  Google Scholar 

  132. ACCORD Study Group, ACCORD Eye Study Group, E.Y. Chew, W.T. Ambrosius, M.D. Davis, R.P. Danis , S. Gangaputra, C.M. Greven, L. Hubbard, B.A. Esser, J.F. Lovato, L.H. Perdue, D.C. Goff Jr, W.C. Cushman, H.N. Ginsberg, M.B. Elam, S. Genuth, H.C. Gerstein, U. Schubart, L.J. Fine, Effects of medical therapies on retinopathy progression in type 2 diabetes. N. Engl. J. Med. 363(3), 233–244 (2010)

    Google Scholar 

  133. R. Klein, B.E. Klein, S.E. Moss, M.D. Davis, D.L. DeMets, The Wisconsin epidemiologic study of diabetic retinopathy: X. Four-year incidence and progression of diabetic retinopathy when age at diagnosis is 30 years or more. Arch. Ophthalmol. 107(2), 244–249 (1989)

    Google Scholar 

  134. Early Treatment Diabetic Retinopathy Study Research Group, Photocoagulation for diabetic macular edema. ETDRS report number 1. Arch. Ophthalmol. 103(12), 1796–1806 (1985)

    Google Scholar 

  135. Early Treatment Diabetic Retinopathy Study Research Group, Treatment techniques and clinical guidelines for photocoagulation of diabetic macular edema. ETDRS Report No 2. Ophthalmology 94(7), 761–774 (1987)

    Google Scholar 

  136. G.G. Deák, M. Bolz, K. Kriechbaum, S. Prager, G. Mylonas, C. Scholda, U. Schmidt-Erfurth, Diabetic Retinopathy Research Group Vienna, Effect of retinal photocoagulation on intraretinal lipid exudates in diabetic macular edema documented by optical coherence tomography. Ophthalmology 117(4), 773–779 (2010)

    Google Scholar 

  137. M. Bolz, U. Schmidt-Erfurth, G. Deak, G. Mylonas, K. Kriechbaum, C. Scholda, Diabetic Retinopathy Research Group Vienna, Optical coherence tomographic hyperreflective foci: a morphologic sign of lipid extravasation in diabetic macular edema. Ophthalmology 116(5), 914–920 (2009)

    Google Scholar 

  138. W. Soliman, B. Sander, T.M. Jørgensen, Enhanced optical coherence patterns of diabetic macular oedema and their correlation with the pathophysiology. Acta Ophthalmol. Scand. 85(6), 613–617 (2007)

    Article  Google Scholar 

  139. M. Bolz, B. Pemp, J. Lammer, B. Baumann, B. Wetzel, M. Pircher, C.K. Hitzenbergerv, U. Schmidt-Erfurth, Diabetic Retinopathy Research Group Vienna, The influence of anti-VEGF agents on intra-retinal lipo-protein exudates assessed by spectral domain and polarisations sensitive optical coherence tomography. ARVO Poster #5060/D991-2010

    Google Scholar 

  140. J. Lammer, M. Bolz, B. Baumann, M. Pircher, B. Wetzel, C.K. Hitzenberger, U. Schmidt-Erfurth, Diabetic Retinopathy Research Group (DRRG) Vienna, Automated detection and quantification of hard exudates in diabetic macular edema using polarization sensitive optical coherence tomography. ARVO Poster #4660/D935-2010

    Google Scholar 

  141. Diabetic Retinopathy Clinical Research Network, M.J. Elman, L.P. Aiello, R.W. Beck, N.M. Bressler, S.B. Bressler, A.R. Edwards, F.L. Ferris 3rd, S.M. Friedman, A.R. Glassman, K.M. Miller, I.U. Scott, C.R. Stockdale, J.K. Sun, Randomized trial evaluating ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema. Ophthalmology 117(6), 1064.e35–1077.e35 (2010)

    Google Scholar 

  142. E.Y. Chew, M.L. Klein, F.L. Ferris 3rd, N.A. Remaley, R.P. Murphy, K. Chantry, B.J. Hoogwerf, D. Miller, Association of elevated serum lipid levels with retinal hard exudate in diabetic retinopathy: early treatment diabetic retinopathy study (ETDRS) report 22. Arch. Ophthalmol. 114(9), 1079–1084 (1996)

    Article  Google Scholar 

  143. D.J. Wilson, D. Finkelstein, H.A. Quigley, W.R. Green, Macular grid photocoagulation: an experimental study on the primate retina. Arch. Ophthalmol. 106(1), 100–105 (1988)

    Article  Google Scholar 

  144. A. Arnarsson, E. Stefánsson, Laser treatment and the mechanism of edema reduction in branch retinal vein occlusion. Invest. Ophthalmol. Vis. Sci. 41(3), 877–879 (2000)

    Google Scholar 

  145. Writing Committee for the Diabetic Retinopathy Clinical Research Network, D.S. Fong, S.F. Strauber, L.P. Aiello, R.W. Beck, D.G. Callanan, R.P. Danis, M.D. Davis, S.S. Feman, F. Ferris, S.M. Friedman, C.A. Garcia, A.R. Glassman, D.P. Han, D. Le, C. Kollman, A.K. Lauer, F.M. Recchia, S.D. Solomon, Comparison of the modified early treatment diabetic retinopathy study and mild macular grid laser photocoagulation strategies for diabetic macular edema. Arch. Ophthalmol. 125(4), 469–480 (2007)

    Google Scholar 

  146. M. Bolz, K. Kriechbaum, C. Simader, G. Deak, J. Lammer, C. Treu, C. Scholda, C. Prünte, U. Schmidt-Erfurth, Diabetic Retinopathy Research Group Vienna, In vivo retinal morphology after grid laser treatment in diabetic macular edema. Ophthalmology 117(3), 538–544 (2010)

    Google Scholar 

  147. J. Lammer, M. Bolz, G. Deak, S.G. Prager, B. Baumann, M. Pircher, E. Götzinger, C.K. Hitzenberger, U. Schmidt-Erfurth, Diabetic Retinopathy Research Group Vienna, In vivo effects of laser treatment on retinal morphology observed by polarization sensitive OCT. ARVO abstract #2080-2009

    Google Scholar 

  148. K. Kriechbaum, M. Bolz, G.G. Deak, S. Prager, C. Scholda, U. Schmidt-Erfurth, High-resolution imaging of the human retina in vivo after scatter photocoagulation treatment using a semiautomated laser system. Ophthalmology 117(3), 545–551 (2010)

    Article  Google Scholar 

  149. Y.M. Paulus, A. Jain, R.F. Gariano, B.V. Stanzel, M. Marmor, M.S. Blumenkranz, D. Palanker, Healing of retinal photocoagulation lesions. Invest. Ophthalmol. Vis. Sci. 49(12), 5540–5545 (2008)

    Article  Google Scholar 

  150. T. Li, Q.L. Luo, H.Y. Wu, Histopathologic an immunohistochemical studies on retina after laser photocoagulation (abstract). Sichuan Da Xue Xue Bao Yi Xue Ban 35(4), 512–515 (2004)

    Google Scholar 

Download references

Acknowledgements

The authors would like to gratefully acknowledge the Austrian Science Fund (FWF grants P16776-N02 and P19624-B02) and EU-Project FUN OCT (FP7 HEALTH, Contract No. 201880) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Schmidt-Erfurth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schmidt-Erfurth, U. et al. (2012). Polarization Sensitivity. In: Bernardes, R., Cunha-Vaz, J. (eds) Optical Coherence Tomography. Biological and Medical Physics, Biomedical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27410-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27410-7_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27409-1

  • Online ISBN: 978-3-642-27410-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics