Skip to main content

Understanding Adaptations and Responses to Change in Antarctica: Recent Physiological and Genomic Advances in Marine Environments

  • Chapter
  • First Online:
Adaptation and Evolution in Marine Environments, Volume 1

Part of the book series: From Pole to Pole ((POLE))

Abstract

Antarctic marine environments are amongst the most extreme on Earth in several characteristics. They combine the globally lowest and most stable temperatures with the highest oxygen content and the greatest variability in other variables such as light intensity, ice cover and phytoplankton productivity (Peck et al. 2006).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abele D, Brey T, Philipp E (2009) Bivalve models of aging and the determination of molluscan lifespans. Exp Gerontol 44:307–315

    Article  Google Scholar 

  • Abele D, Burlando B, Viarengo A (1998) Exposure to elevated temperatures and hydrogen peroxide elicits oxidative stress and antioxidant response in the Antarctic intertidal limpet Nacella concinna. Comp Biochem Physiol B–Biochem Molec Biol 120:425–435

    Article  Google Scholar 

  • Acevedo JP, Reyes F, Parra LP, Salazar O, Andrews BA, Asenjo JA (2008) Cloning of complete genes for novel hydrolytic enzymes from Antarctic sea water bacteria by use of an improved genome walking technique. J Biotechnol 133:277–286

    Article  CAS  Google Scholar 

  • Allen MA, Lauro FM, Williams TJ, Burg D, Siddiqui KS, De Francisci D, Chong KWY, Pilak O, Chew HH, De Maere MZ, Ting L, Katrib M, Ng C, Sowers KR, Galperin MY, Anderson IJ, Ivanova N, Dalin E, Martinez M, Lapidus A, Hauser L, Land M, Thomas T, Cavicchioli R (2009) The genome sequence of the psychrophilic archaeon, Methanococcoides burtonii: the role of genome evolution in cold adaptation. ISME J 3:1012–1035

    Article  CAS  Google Scholar 

  • Amsler CD, Iken K, McClintock JB, Baker BJ (2009) Defenses of polar macroalgae against herbivores and biofoulers. Bot Mar 52:535–545

    Article  CAS  Google Scholar 

  • Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, Selker EU, Cresko WA, Johnson EA (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. Plos One 3:7

    Article  CAS  Google Scholar 

  • Barnes DKA, Peck LS (2005) Extremes of metabolic strategy in Antarctic bryozoa. Mar Biol 147(4):979–988

    Article  Google Scholar 

  • Barnes DKA, Peck LS (2008) Examining vulnerability of Antarctic shelf biodiversity to predicted climate warming. Clim Res 37:149–163

    Article  Google Scholar 

  • Barnes DKA, Peck L, Morley S (2010) Ecological relevance of laboratory determined temperature limits: colonisation potential, biogeography and resilience of Antarctic invertebrates to environmental change. Global Change Biol 16:3164–3169

    Article  Google Scholar 

  • Barnes DKA, Webb KE, Linse K (2007) Growth rate and its variability in erect Antarctic bryozoans. Polar Biol 30:1069–1081

    Article  Google Scholar 

  • Benedetti M, Martuccio G, Nigro M, Regoli F (2008) Comparison of antioxidant efficiency in the Antarctic notothenioid species, Trematomus bernacchii, Trematomus newnesi and Trematomus hansoni. Mar Env Res 66:98–99

    Article  CAS  Google Scholar 

  • Benedetti M, Nigro M, Regoli F (2010) Characterisation of antioxidant defences in three Antarctic notothenioid species from Terra Nova Bay (Ross Sea). Chem Ecol 26:305–314

    Article  CAS  Google Scholar 

  • Billups K, Kelly C, Pierce E (2008) The late Miocene to early Pliocene climate transition in the Southern Ocean. Palaeogeogr Palaeoclimatol Palaeoecol 267:31–40

    Article  Google Scholar 

  • Bilyk KT, DeVries AL (2010) Delayed onset of adult antifreeze activity in juveniles of the Antarctic icefish Chaenocephalus aceratus. Pol Biol 33:1387–1397

    Article  Google Scholar 

  • Bosch I, Beauchamp KA, Steele ME, Pearse JS (1987) Development, metamorphosis and seasonal abundance of embryos and larvae of the Antarctic sea urchin Sterechinus neumayeri. Biol Bull 173:126–135

    Article  Google Scholar 

  • Bowgen A, Fraser KP, Peck LS, Clarke A (2007) The energetic cost of synthesizing proteins is not temperature dependent. Am J Physiol 292:R2266–R2274

    CAS  Google Scholar 

  • Brockington S, Peck LS (2001) Seasonality of respiration and ammonia excretion in the Antarctic echinoid Sterechinus neumayeri. Mar Ecol Progr Ser 259:159–168

    Article  Google Scholar 

  • Buckley BA, Place SP, Hofmann GE (2004) Regulation of heat shock genes in isolated hepatocytes from an Antarctic fish, Trematomus bernacchii. J Fish Biol 207:3649–3656

    CAS  Google Scholar 

  • Buttemer WA, Abele D, Costantini D (2010) From bivalves to birds: oxidative stress and longevity. Funct Ecol 24:971–983

    Article  Google Scholar 

  • Campbell H, Davison W, Fraser KPP, Peck LS, Egginton S (2009) Heart rate and ventilation in Antarctic fishes are largely determined by ecotype. J Fish Biol 74:535–552

    Article  CAS  Google Scholar 

  • Campbell HA, Fraser KPP, Bishop CM, Peck LS, Egginton S (2008) Hibernation in an Antarctic Fish: on ice for winter. Plos One 3:9

    Article  CAS  Google Scholar 

  • Canadell JG, Le Quere C, Raupach MR, Field CB, Buitenhuis ET, Ciais P, Conway TJ, Gillett NP, Houghton RA, Marland G (2007) Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc Natl Acad Sci USA 104:18866–18870

    Article  CAS  Google Scholar 

  • Chen LB, DeVries AL, Cheng C-HC (1997) Evolution of antifreeze glycoprotein gene from a trypsinogen gene in Antarctic notothenioid fish. Proc Natl Acad Sci USA 94:3811–3816

    Article  CAS  Google Scholar 

  • Chen ZZ, Cheng C-HC, Zhang JF, Cao LX, Chen L, Zhou LH, Jin YD, Ye H, Deng C, Dai ZH, Xu QH, Hu P, Sun SH, Shen Y, Chen LB (2008) Transcriptomic and genomic evolution under constant cold in Antarctic notothenioid fish. Proc Natl Acad Sci USA 103:10491–10496

    Article  Google Scholar 

  • Cheng CH-C, Detrich HW (2007) Molecular ecophysiology of Antarctic notothenioid fishes. Phil Trans R Soc B 362:2215–2232

    Article  CAS  Google Scholar 

  • Cheng CH-C, di Prisco G, Verde C (2009a) The “Icefish Paradox.” Which is the task of neuroglobin in Antarctic hemoglobin-less icefish? IUBMB Life 61:184–188

    Article  CAS  Google Scholar 

  • Cheng CH-C, di Prisco G, Verde C (2009b) Cold-adapted Antarctic fish: the discovery of neuroglobin in the dominant suborder Notothenioidei. Gene 433:100–101

    Article  CAS  Google Scholar 

  • Clark D, Lamare M, Barker M (2009) Response of sea urchin pluteus larvae (Echinodermata: Echinoidea) to reduced seawater pH: a comparison among a tropical, temperate, and a polar species. Mar Biol 156:1125–1137

    Article  Google Scholar 

  • Clark MS, Burns G (2008) Characterisation of the warm acclimated protein gene (wap65) in the Antarctic plunderfish (Harpagifer antarcticus). DNA Seq 19:50–55

    CAS  Google Scholar 

  • Clark MS, Peck LS (2009a) HSP70 Heat shock proteins and environmental stress in Antarctic marine organisms: a mini-review. Mar Gen 2:11–18

    Article  Google Scholar 

  • Clark MS, Peck LS (2009b) Triggers of the HSP70 stress response: environmental responses and laboratory manipulation in an Antarctic marine invertebrate (Nacella concinna). Cell Stress Chaperones 14:649–660

    Article  CAS  Google Scholar 

  • Clark MS, Fraser KPP, Peck LS (2008a) Lack of an HSP70 heat shock response in two Antarctic marine invertebrates. Polar Biol 31:1059–1065

    Article  Google Scholar 

  • Clark MS, Fraser KPP, Peck LS (2008b) Antarctic marine molluscs do have an HSP70 heat shock response. Cell Stress Chaperones 13:39–49

    Article  CAS  Google Scholar 

  • Clark MS, Geissler P, Waller C, Fraser KPP, Barnes DKA, Peck LS (2008c) Low heat shock thresholds in wild Antarctic inter-tidal limpets (Nacella concinna). Cell Stress Chaperones 13:51–58

    Article  CAS  Google Scholar 

  • Clark MS, Thorne MAS, Toullec T-Y, Meng Y, Guan L, Peck LS, Moore S (2011) Krill 454 pyrosequencing reveals chaperone and stress transcriptome. PLoS One 6:E15919

    Article  CAS  Google Scholar 

  • Clark MS, Thorne MAS, Vieira FA, Cardoso JCR, Power DM, Peck LS (2010) Insights into shell deposition in the Antarctic bivalve Laternula elliptica: gene discovery in the mantle transcriptome using 454 pyrosequencing. BMC Genomics 11:362

    Article  CAS  Google Scholar 

  • Clarke A (1988) Seasonality in the Antarctic Marine Environment. Comp Biochem Physiol B—Biochem Molec Biol 90:461–473

    Article  Google Scholar 

  • Clarke A, Gaston KJ (2006) Climate, energy and diversity. Proc Royal Soc B 273:2257–2266

    Article  Google Scholar 

  • Clarke A, Peck LS (1991) The physiology of polar marine zooplankton. In: Sakshaug E, Hopkins C, Oritsland N (eds) In: Proceedings of Pro Mare Symposium on Polar Marine Ecology, Polar Research, Trondheim, vol 10, pp 355–369

    Google Scholar 

  • Clarke A, Murphy EJ, Meredith MP, King JC, Peck LS, Barnes DKA (2007) Climate change and the marine ecosystem of the western Antarctic Peninsula. Phil Trans R Soc 362:149–166

    Article  Google Scholar 

  • Csermely P (2004) Strong links are important–but weak links stabilise them. Trends Biochem Sci 29:331–334

    Article  CAS  Google Scholar 

  • Cummings V, Hewitt J, Van Rooyen A, Currie K, Beard S, Thrush S, Norkko J, Barr N, Heath P, Halliday NJ, Sedcole R, Gomez A, McGraw C, Metcalf V (2011) Ocean acidification at high latitudes: potential effects on functioning of the Antarctic bivalve Laternula elliptica. Plos One 6:11

    Google Scholar 

  • Deng C, Cheng C-HC, Yea H, He X, Chen L (2010) Evolution of an antifreeze protein by neofunctionalization under escape from adaptive conflict. Proc Natl Acad Sci USA 107:21593–21598

    Article  CAS  Google Scholar 

  • Detrich HW, Johnson KA, Marcheseragona SP (1989) Polymerization of Antarctic Fish tubulins at low temperatures: energetic aspects. Biochem 28:10085–10093

    Article  CAS  Google Scholar 

  • Detrich HW, Williams RC (1992) Dynamic instability of Antarctic fish microtubules. Mol Biol Cell 3:A167–A167

    Google Scholar 

  • de Pascale D, Cusano AM, Autore F, Parrilli E, di Prisco G, Marino G, Tutino ML (2008) The cold active Lip1 lipase from the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 is a member of the new bacterial lipolytic enzyme family. Extremeophiles 12:311–323

    Article  CAS  Google Scholar 

  • DeVries AL, Wohlschlag DE (1969) Freezing resistance in some Antarctic fishes. Science 163:1073–1075

    Article  CAS  Google Scholar 

  • di Prisco G, Cocca E, Parker SK, Detrich HW (2002) Tracking the evolutionary loss of hemoglobin expression by the white-blooded Antarctic icefishes. Gene 295:185–191

    Article  CAS  Google Scholar 

  • di Prisco G, Eastman JT, Giordano D et al (2007) Biogeography and adaptation of Notothenioid fish: hemoglobin function and globin-gene evolution. Gene 398:143–155

    Article  CAS  Google Scholar 

  • Emerson KJ, Merz CR, Catchen JM, Hohenlohe PA, Cresko WA, Bradshaw WE, Holzapfel CM (2010) Resolving postglacial phylogeography using highthroughput sequencing. Proc Natl Acad Sci USA 107:16196–16200

    Article  CAS  Google Scholar 

  • Ericson JA, Lamare MD, Morley SA, Barker MF (2010) The response of two ecologically important Antarctic invertebrates (Sterechinus neumayeri and Parborlasia corrugatus) to reduced seawater pH: effects on fertilisation and embryonic development. Mar Biol 157:2689–2702

    Article  Google Scholar 

  • Fabry VJ, McClintock JB, Mathis JT, Grebmeier JM (2009) Ocean acidification at high Latitudes: the Bellweather. Oceanogr 22:160–171

    Article  Google Scholar 

  • Fields PA, Somero GN (1998) Hot spots in cold adaptation: localized increases in conformational flexibility in lactate dehydrogenase A(4) orthologs of Antarctic notothenioid fishes. Proc Natl Acad Sci USA 95:11476–11481

    Article  CAS  Google Scholar 

  • Forcada J, Trathan PN (2009) Penguin responses to climate change in the southern ocean. Glob Change Biol 15:1618–1630

    Article  Google Scholar 

  • Fraser KPP, Rogers AD (2007) Protein metabolism in marine animals: the underlying mechanism of growth. Adv Mar Biol 52:267–362

    Article  Google Scholar 

  • Giordano D, Russo R, Coppola D, di Prisco G, Verde C (2010) Molecular adaptations in haemoglobins of notothenioid fishes. J Fish Biol 76:301–318

    Article  CAS  Google Scholar 

  • Gwak IG, Jung WS, Kim HJ, Kang S-H, Jin ES (2010) Antifreeze protein in Antarctic marine diatom, Chaetoceros neogracile. Mar Biotech 12:630–639

    Article  CAS  Google Scholar 

  • Hazel JR (1995) Thermal adaptation in biological membranes: is homeoviscous adaptation the explanation? Ann Rev Physiol 57:19–42

    Article  CAS  Google Scholar 

  • Hoffman JI, Clarke A, Linse K, Peck LS (2010a) Strong population genetic structure in a broadcast-spawning Antarctic marine invertebrate. J Heredity 102:55–66

    Article  CAS  Google Scholar 

  • Hoffman JI, Clarke A, Linse K, Peck LS (2011) Effects of brooding and broadcasting reproductive modes on the population genetic structure of two Antarctic gastropod molluscs. Mar Biol 158:287–296

    Article  Google Scholar 

  • Hoffman JI, Peck LS, Hillyard G, Zieritz A, Clark MS (2010b) No evidence for genetic differentiation between Antarctic limpet Nacella concinna morphotypes. Mar Biol 157:765–778

    Article  CAS  Google Scholar 

  • Hofmann GE, Buckley BA, Airaksinen S, Keen JE, Somero GN (2000) Heat-shock protein expression is absent in the Antarctic fish Trematomus bernacchii family Nototheniidae. J Exp Biol 203:2331–2339

    CAS  Google Scholar 

  • Hudson HA, Brauer PR, Scofield MA, Petzel DH (2008) Effects of warm acclimation on serum osmolality, cortisol and hematocrit levels in the Antarctic fish, Trematomus bernacchii. Pol Biol 31:991–997

    Article  Google Scholar 

  • Hunter RL, Halanych KM (2008) Evaluating connectivity in the brooding brittle star Astrotoma agassizii across the Drake Passage in the southern ocean. J Hered 99:137–148

    Article  CAS  Google Scholar 

  • Isely N, Lamare M, Marshall C, Barker M (2009) Expression of the DNA repair enzyme, photolyase, in developmental tissues and larvae, and in response to ambient UV-R in the Antarctic sea urchin Sterechinus neumayeri. Photochem Photobiol 85:1168–1176

    Article  CAS  Google Scholar 

  • Janecki T, Kidawa A, Potocka M (2010) The effects of temperature and salinity on vital biological functions of the Antarctic crustacean Serolis polita. Pol Biol 33:1013–1020

    Article  Google Scholar 

  • Janknegt PJ, de Graaff CM, van de Poll WH, Visser RJW, Helbling EW, Buma AGJ (2009) Antioxidative responses of two marine microalgae during acclimation to static and fluctuating natural UV nadiation. Photochem Photobiol 85:1336–1345

    Article  CAS  Google Scholar 

  • Johnston IA, Calvo J, Guderley H, Fernandez D, Palmer L (1998) Latitudinal variation in the abundance and oxidative capacities of muscle mitochondria in perciform fishes. J Exp Biol 201:1–12

    CAS  Google Scholar 

  • Kidawa A, Potocka M, Janecki T (2010) The effects of temperature on the behaviour of the Antarctic sea star Odontaster validus. Polar Res 31:273–284

    Google Scholar 

  • Kiko R (2010) Acquisition of freeze protection in a sea-ice crustacean through horizontal gene transfer? Polar Biol 33:543–556

    Article  Google Scholar 

  • Kock K-H, Everson I (1998) Age, growth and maximum size of Antarctic notothenioid fish revisited. In: di Prisco G, Pisano E, Clarke A (eds) Fishes of Antarctica: a Biological Overview. Springer, Milan, pp 29–40

    Google Scholar 

  • Koplovitz G, McClintock JB, Amsler CD, Baker BJ (2009) Palatability and chemical anti-predatory defenses in common ascidians from the Antarctic Peninsula. Aquat Biol 7:81–92

    Article  Google Scholar 

  • Kuhn E, Bellicanta GS, Pellizari VH (2009) New alk genes detected in Antarctic marine sediments. Env Microbiol 11:669–673

    Article  CAS  Google Scholar 

  • Lamare MD, Barker MF, Lesser MP (2007) In situ rates of DNA damage and abnormal development in Antarctic and non-Antarctic sea urchin embryos. Aquat Biol 1:21–32

    Article  CAS  Google Scholar 

  • La Mesa M, Ashford J (2008) Age and growth of ocellated icefish, Chionodraco rastrospinosus DeWitt-Hureau 1976, from the South Shetland Islands. Polar Biol 31:1333–1342

    Article  Google Scholar 

  • La Mesa M, De Felice A, Jones CD, Kock KH (2009) Age and growth of spiny icefish (Chaenodraco wilsoni Regan 1914) off Joinville-D’Urville Islands (Antarctic Peninsula). CCAMLR Sci 16:115–130

    Google Scholar 

  • La Terza A, Dobri N, Alimenti C, Vallesi A, Luporini P (2009) The water-borne protein signals (pheromones) of the Antarctic ciliated protozoan Euplotes nobilii: structure of the gene coding for the En-6 pheromone. Can J Microbiol 55:57–62

    Article  CAS  Google Scholar 

  • Lister KN, Lamare MD, Burritt DJ (2010) Sea ice protects the embryos of the Antarctic sea urchin Sterechinus neumayeri from oxidative damage due to naturally enhanced levels of UV-B radiation. J Exp Biol 213:1967–1975

    Article  CAS  Google Scholar 

  • Lurman G, Blaser T, Lamare M, Peck LS, Morley SA (2010) Mitochondrial plasticity in brachiopod (Liothyrella spp.) smooth adductor muscle as a result of season and latitude. Mar Biol 157:907–913

    Article  Google Scholar 

  • Ma WS, Mutka T, Vesley B et al (2009) Norselic acids A-E, highly oxidized anti-infective steroids that deter mesograzer predation, from the Antarctic sponge Crella sp. J Nat Prod 72:1842–1846

    Article  CAS  Google Scholar 

  • Mahon AR, Thornhill DJ, Norenburg JL, Halanych KM (2010) DNA uncovers Antarctic nemertean biodiversity and exposes a decades-old cold case of asymmetric inventory. Polar Biol 33:193–202

    Article  Google Scholar 

  • Makowski K, Bialkowska A, Olczak J, Kur J, Turkiewicz M (2007) Antarctic, cold-adapted beta-galactosidase of Pseudoalteromonas sp 22b as an effective tool for alkyl galactopyranosides synthesis. Enz Microb Technol 44:59–64

    Article  CAS  Google Scholar 

  • Matschiner M, Hanel R, Salzburger W (2010) Gene flow by larval dispersal in the Antarctic notothenioid fish Gobionotothen gibberifrons. Mol Ecol 18:2574–2587

    Article  CAS  Google Scholar 

  • McClintock JB, Amsler CD, Baker BJ (2010) Overview of the chemical ecology of benthic marine invertebrates along the Western Antarctic Peninsula. Integr Comp Biol 50:967–980

    Article  Google Scholar 

  • McClintock JB, Angus RA, Mcdonald MR, Amsler CD, Catledge SA, Vohra YK (2009) Rapid dissolution of shells of weakly calcified Antarctic benthic macroorganisms indicates high vulnerability to ocean acidification. Antarctic Sci 21:449–456

    Article  Google Scholar 

  • McNeil BI, Matear RJ (2008) Southern Ocean acidification: a tipping point at 450-ppm atmospheric CO2. Proc Natl Acad Sci USA 105:18860–18864

    Article  CAS  Google Scholar 

  • Meredith MP, King JC (2005) Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the 20th century. Geophys Res Lett 32:L19604

    Article  Google Scholar 

  • Moore M, Manahan DT (2007) Variation among females in egg lipid content and developmental success of echinoderms from McMurdo Sound, Antarctica. Polar Biol 30:1245–1252

    Article  Google Scholar 

  • Morley SA, Peck LS, Miller A, Pörtner H-O (2007a) Hypoxia tolerance associated with activity reduction is a key adaptation for Laternula elliptica seasonal energetic. Oecologia 153:29–36

    Article  Google Scholar 

  • Morley SA, Peck LS, Tan KS, Martin SM, Pörtner H-O (2007b) Latitudinal insensitivity of burrowing capacity in the bivalve Laternula. Mar Biol 151:1823–1830

    Article  Google Scholar 

  • Morley SA, Hirse T, Portner HO, Peck LS (2009) Geographical variation in thermal tolerance within Southern Ocean marine ectotherms. Comp Biochem Physiol A 153:154–161

    Article  CAS  Google Scholar 

  • Morley SA, Clark MS, Peck LS (2010a) Depth gradients in shell morphology correlate with thermal limits for activity and ice disturbance in Antarctic limpets. J Exp Mar Biol Ecol 390:1–5

    Article  Google Scholar 

  • Morley SA, Griffiths HJ, Barnes DKA, Peck LS (2010b) South Georgia: a key location for linking physiological capacity to distributional changes in response to climate change. Antarctic Sci 22:774–781

    Article  Google Scholar 

  • Muller MN, Schulz KG, Riebesell U (2010) Effects of long-term high CO2 exposure on two species of coccolithophores. Biogeosci 7:1109–1116

    Article  Google Scholar 

  • Obermüller B, Peck LS, Barnes DKA, Morley SA (2010) Seasonal physiology of Antarctic marine benthic predators and scavengers. MEPS 415:109–126. doi:10.3354/meps0873

    Article  Google Scholar 

  • Pace DA, Manahan DT (2007) Cost of protein synthesis and energy allocation during development of Antarctic sea urchin embryos and larvae. Biol Bull 212:115–129

    Article  CAS  Google Scholar 

  • Pace DA, Maxson R, Manahan DT (2010) Ribosomal analysis of rapid rates of protein synthesis in the Antarctic sea urchin Sterechinus neumayeri. Biol Bull 218:48–60

    CAS  Google Scholar 

  • Park H, Ahn IY, Kim H, Cheon J, Kim M (2008) Analysis of ESTs and expression of two peroxiredoxins in the thermally stressed Antarctic bivalve Laternula elliptica. Fish Shellfish Immunol 25:550–559

    Article  CAS  Google Scholar 

  • Parra LP, Reyes F, Acevedo JP, Salazar O, Andrews BA, Asenjo JA (2008) Cloning and fusion expression of a cold-active lipase from marine Antarctic origin. Enz Microbial Technol 42:371–377

    Article  CAS  Google Scholar 

  • Pearce I, Davidson AT, Bell EM, Wright S (2007) Seasonal changes in the concentration and metabolic activity of bacteria and viruses at an Antarctic coastal site. Aquat Microbiol Ecol 43:11–23

    Article  Google Scholar 

  • Peck LS (2002) Ecophysiology of Antarctic marine ectotherms: limits to life. Polar Biol 25:31–40

    Article  Google Scholar 

  • Peck LS, Clark MS, Morley SA, Massey A, Rosetti H (2009a) Animal temperature limits: effects of size, activity and rates of change. Funct Ecol 23:248–256

    Article  Google Scholar 

  • Peck LS, Convey P, Barnes DKA (2006) Environmental constraints on life histories in Antarctic ecosystems: tempos, timings and predictability. Biol Rev 81:75–109

    Article  Google Scholar 

  • Peck LS, Massey A, Thorne M, Clark MS (2009b) Lack of acclimation in Ophionotus victoriae: brittle stars are not fish. Polar Biol 32:399–402

    Article  Google Scholar 

  • Peck LS, Barnes DKA, Cook AJ, Fleming AH, Clarke A (2010a) Negative feedback in the cold: ice retreat produces new carbon sinks in Antarctica. Glob Change Biol 16:2614–2623

    Article  Google Scholar 

  • Peck LS, Morley SA, Clark MS (2010b) Poor acclimation capacities in Antarctic marine ectotherms. Mar Biol 157:2051–2059

    Article  Google Scholar 

  • Peck LS, Powell DK, Tyler PA (2007) Very slow development in two Antarctic bivalve molluscs, the infaunal clam, Laternula elliptica and the scallop Adamussium colbecki. Mar Biol 150:1191–1197

    Article  Google Scholar 

  • Peck LS, Webb KE, Clark MS, Miller A, Hill T (2008) Temperature limits to activity, feeding and metabolism in the Antarctic starfish Odontaster validus. Mar Ecol Prog Ser 381:181–189

    Article  Google Scholar 

  • Philipp E, Brey T, Portner HO, Abele D (2005) Chronological and physiological ageing in a polar and a temperate mud clam. Mech Age Dev 126:598–609

    Article  CAS  Google Scholar 

  • Place SP, Zippay ML, Hofmann GE (2004) Constitutive roles for inducible genes: evidence for the alteration in expression of the inducible hsp70 gene in Antarctic notothenioid fishes. Am J Physiol Reg Integr Comp Physiol 287:R429–R436

    Article  CAS  Google Scholar 

  • Pörtner H-O, Somero GA, Peck LS (2007) Thermal limits and adaptation in marine Antarctic ectotherms: an integrative view. In: Rogers A, Murphy E (eds) Antarctic ecology, from genes to ecosystems. Special Volume Phil Trans R Soc 362:2233–2258

    Google Scholar 

  • Powell AWB (1951) Antarctic and subanctarctic mollusca: pelecypoda and gastropoda. Discovery Rep (USA) 26:49–196

    Google Scholar 

  • Privalov PL (1990) Cold denaturation of proteins. Crit Rev Biochem Mol Biol 25:281–305

    Article  CAS  Google Scholar 

  • Pucciarelli S, La Terza A, Ballarini P et al (2009) Molecular cold-adaptation of protein function and gene regulation: the case for comparative genomic analyses in marine ciliated protozoa. Mar Gen 2:57–66

    Article  Google Scholar 

  • Robinson E, Davison W (2008a) The Antarctic notothenioid fish Pagothenia borchgrevinki is thermally flexible: acclimation changes oxygen consumption. Polar Biol 31:317–326

    Article  Google Scholar 

  • Robinson E, Davison W (2008b) Antarctic fish can survive prolonged exposure to elevated temperatures. J Fish Biol 73:1676–1689

    Article  Google Scholar 

  • Rodrigues E, Santos MRD, Rodrigues E, Gannabathula V, Lavrado HP (2009) Arginine metabolism of the Antarctic bivalve Laternula elliptica King-Broderip 1831: an ecophysiological approach. Polar Biol 32:691–702

    Article  Google Scholar 

  • Römisch K, Collie N, Soto N, Logue J, Lindsay M, Scheper W, Cheng CHC (2003) Protein translocation across the endoplasmic reticulum membrane in cold-adapted organisms. J Cell Sci 116:2875–2883

    Article  CAS  Google Scholar 

  • Ruud JT (1954) Vertebrates without erythrocytes and blood pigment. Nature 173:848–850

    Article  CAS  Google Scholar 

  • Schofield O, Ducklow HW, Martinson DG et al (2010) How do polar marine ecosystems respond to rapid climate change? Science 328:1520–1523

    Article  CAS  Google Scholar 

  • Somero GN (2010) The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers’. J Exp Biol 213:912–920

    Article  CAS  Google Scholar 

  • Sørensen JG, Loeschcke V (2007) Studying stress responses in the post-genomic era: its ecological and evolutionary role. J Biosci 32:447–456

    Article  Google Scholar 

  • Stanwell-Smith DP, Peck LS (1998) Temperature and embryonic development in relation to spawning and field occurrence of larvae of 3 Antarctic echinoderms. Biol Bull Woods Hole 194:44–52

    Article  Google Scholar 

  • Stillman JH (2003) Acclimation capacity underlies susceptibility to climate change. Science 301:65

    Article  CAS  Google Scholar 

  • Strebel H (1908) Die Gastropoden. Wissenschaftliche Ergebn Schwedisch Sudpolar-Expedition 1901–1903 6:1–112

    Google Scholar 

  • Sutton CP, Manning MJ, Stevens DW, Marriot PM (2008) Biological parameters for icefish (Chionobathyscus dewitti) in the Ross Sea, Antarctica. CCAMLR Sci 15:139–165

    Google Scholar 

  • Thorne MAS, Burns G, Fraser KPP, Hillyard G, Clark MS (2010) Transcription profiling of acute temperature stress in the Antarctic plunderfish Harpagifer antarcticus. Mar Gen 3:35–44

    Article  CAS  Google Scholar 

  • Ting L, Williams TJ, Cowley MJ, Lauro FM, Guilhaus M, Raftery MJ, Cavicchioli R (2010) Cold adaptation in the marine bacterium, Sphingopyxis alaskensis, assessed using quantitative proteomics. Environ Microbiol 12:2658–2676

    CAS  Google Scholar 

  • Tomanek L (2010) Variation in the heat shock response and its implication for predicting the effect of global climate change on species’ biogeographical distribution ranges and metabolic costs. J Exp Biol 213:971–979

    Article  CAS  Google Scholar 

  • Truebano M, Burns G, Thorne MAS et al (2010) Transcriptional response to heat stress in the Antarctic bivalve Laternula elliptica. J Exp Mar Biol Ecol 391:65–72

    Article  CAS  Google Scholar 

  • Vallesi A, Alimenti C, La Terza A, Di Giuseppe G, Dini F, Luporini P (2009) Characterization of the pheromone gene family of an Antarctic and Arctic protozoan ciliate, Euplotes nobilii. Mar Gen 2:27–32

    Article  Google Scholar 

  • Vera JC, Wheat CW, Fescemyer HW et al (2008) Rapid transcriptome characterization for a nonmodel organism using 454 pyrosequencing. Mol Ecol 17:1636–1647

    Article  CAS  Google Scholar 

  • Verde C, Giordano D, Russo R, di Prisco G (2012) The adaptive evolution of polar fishes. Lessons from the function of hemoproteins. In: di Prisco G, Verde C (eds) Adaptation and evolution in marine environments—The impacts of global change on biodiversity, vol 1. Series “From Pole to Pole”. Springer, Berlin, pp 197–213

    Chapter  Google Scholar 

  • Verde C, Parisi E, di Prisco G (2006) The evolution of thermal adaptation in polar fish. Gene 385:137–145

    Article  CAS  Google Scholar 

  • Verde C, Vergara A, Mazzarella L, di Prisco G (2008) The hemoglobins of fishes living at polar latitudes–current knowledge on structural adaptations in a changing environment. Curr Prot Pept Sci 9:578–590

    Article  CAS  Google Scholar 

  • Waller RG, Tyler PA, Smith CR (2010) Fecundity and embryo development of three Antarctic deep-water scleractinians: Flabellum thouarsii, F-curvatum and F-impensum. Deep-Sea Res Part II 55:2527–2534

    Article  Google Scholar 

  • Wang F, Hao JH, Yang CY, Sun M (2010) Cloning, expression, and identification of a novel extracellular cold-adapted alkaline protease gene of the marine bacterium strain YS-80-122. Appl Biochem Biothechnol 162:1497–1505

    Article  CAS  Google Scholar 

  • Wang QF, Hou YH, Miao JL, Li GY (2009) Effect of UV-B radiation on the growth and antioxidant enzymes of Antarctic sea ice microalgae Chlamydomonas sp ICE-L. Acta Physiol Plant 31:1097–1102

    Article  CAS  Google Scholar 

  • Weihe E, Kriews M, Abele D (2010) Differences in heavy metal concentrations and in the response of the antioxidant system to hypoxia and air exposure in the Antarctic limpet Nacella concinna. Mar Env Res 69:127–135

    Article  CAS  Google Scholar 

  • Wilson NG, Hunter RL, Lockhart SJ, Halanych KM (2007) Multiple lineages and absence of panmixia in the “circumpolar” crinoid Promachocrinus kerguelensis from the Atlantic sector of Antarctica. Mar Biol 152:895–904

    Article  Google Scholar 

  • Wilson SL, Walker VK (2010) Selection of low-temperature resistance in bacteria and potential applications. Env Technol 32:943–956

    Article  CAS  Google Scholar 

  • Winston JE, Bernheimer AW (1986) Hemolytic activity in an Antarctic bryozoan. J Nat Hist 20:369–374

    Article  Google Scholar 

  • Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693

    Article  CAS  Google Scholar 

  • Zhang JF, Deng C, Wang JS, Chen LB (2009) Identification of a two-domain antifreeze protein gene in Antarctic eelpout Lycodichthys dearborni. Polar Biol 32:35–40

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lloyd S. Peck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Peck, L.S., Clark, M.S. (2012). Understanding Adaptations and Responses to Change in Antarctica: Recent Physiological and Genomic Advances in Marine Environments. In: di Prisco, G., Verde, C. (eds) Adaptation and Evolution in Marine Environments, Volume 1. From Pole to Pole. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27352-0_9

Download citation

Publish with us

Policies and ethics