Skip to main content

Southern Ocean Deep-Sea Isopod Biodiversity Research: From Census to Ecosystem Functioning

  • Chapter
  • First Online:
Adaptation and Evolution in Marine Environments, Volume 1

Part of the book series: From Pole to Pole ((POLE))

  • 1064 Accesses

Abstract

The isolation of Antarctica makes this continent a perfect evolutionary laboratory for studies of marine biodiversity and biogeography. Attempts to describe and explain patterns of species diversity have become a major goal in biological research since the pioneering deep-sea investigations in the early 60s of the last century.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arntz WE, Gutt J (eds) (1997) Report of “Polarstern” cruise ANT XIII/3 (EASIZ I) to the eastern Weddell Sea. Ber Polar- u Meeresforsch 249:1–148

    Google Scholar 

  • Arntz WE, Gutt J, Klages M (1997) Antarctic marine biodiversity: an overview. In: Battaglia B, Valencia J, Walton DWH (eds) Antarctic communities., Species, structure and survival Cambridge University Press, Cambridge, pp 3–14

    Google Scholar 

  • Arntz WE, Rios C (1999) Magellan-Antarctic: ecosystems that drifted apart. Sci Mar 63(Suppl 1):503

    Google Scholar 

  • Arntz WE, Clarke A (2002) Ecological studies in the antarctic sea ice zone. Springer, Berlin

    Book  Google Scholar 

  • Arntz WE, Brey T (2003) The expedition ANTARKTIS XIX/5 (LAMPOS) of RV “Polarstern” in 2002. Ber Polar- u Meeresforsch 462:1–120

    Google Scholar 

  • Barnes DKA, Peck LS (2008) Vulnerability of Antarctic shelf biodiversity to predicted regional warming. Clim Res 37:149–163

    Article  Google Scholar 

  • Barnes DKA, Conlan KE (2007) Disturbance, colonization and development of Antarctic benthic communities. In: Rogers A (ed) Antarctic ecology: from genes to ecosystems, vol 362. Royal Society, London, pp 11–38 (Phil Trans Royal Soc B)

    Google Scholar 

  • Brandt A (1991) Zur Besiedlungsgeschichte des antarktischen Schelfes am Beispiel der Isopoda (Crustacea, Malacostraca). Ber Polarforsch 98:1–240

    Google Scholar 

  • Brandt A, Brökeland W, Brix S, Malyutina M (2004) Diversity of Antarctic deep-sea Isopoda (Crustacea, Malacostraca)—a comparison with shelf data. Deep-Sea Res II 51(14–16):1753–1769

    Article  Google Scholar 

  • Brandt A, Hilbig B (2004) ANDEEP (ANtarctic benthic DEEP-sea biodiversity: colonization history and recent community patterns) - a tribute to Howard L Sanders. Deep-Sea Res 51(14–16):1457–1919

    Google Scholar 

  • Brandt A, Ebbe B (2007) ANDEEP III Antarctic benthic DEEP-sea biodiversity: colonisation history and recent community patterns. Deep-Sea Res II 54(16–17):1645–1904

    Article  Google Scholar 

  • Brandt A, Bathmann U, Brix S, Cisewski B, Flores H, Göcke C, Janussen D, Krägefsky S, Kruse S, Leach H, Linse K, Pakhomov E, Peeken I, Riehl T, Sauter E, Sachs O, Schüller M, Schrödl M, Schwabe E, Strass V, van Franeker J, Wilmsen E (2011) Maud rise—a snapshot through the water column. Deep-Sea Res II. doi:10.1016/j.dsr2.2011.01.008

  • Brandt A, De Broyer C, De Mesel I, Ellingsen KE, Gooday A, Hilbig B, Linse K, Thomson M, Tyler P (2007a) The deep benthos. In: Rogers A (ed) Antarctic ecology: from genes to ecosystems, vol B 362. Royal Society, London, pp 39–66 (Phil Trans Roy Soc)

    Google Scholar 

  • Brandt A, Gooday AJ, Brix SB, Brökeland W, Cedhagen T, Choudhury M, Cornelius N, Danis B, De Mesel I, Diaz RJ, Gillan DC, Ebbe B, Howe J, Janussen D, Kaiser S, Linse K, Malyutina M, Brandao S, Pawlowski J, Raupach M (2007b) The southern ocean deep sea: first insights into biodiversity and biogeography. Nature 447:307–311

    Article  CAS  Google Scholar 

  • Brandt A, Brökeland W, Choudhury M, Brix S, Kaiser S, Malyutina M (2007c) Deep-sea isopod biodiversity, abundance and endemism in the Atlantic sector of the Southern Ocean—results from the ANDEEP I–III expeditions. Deep-Sea Res II 54:1760–1775

    Article  Google Scholar 

  • Brandt A, Gutt J (2011) Biodiversity of a unique environment: the southern ocean benthos threat by climate change. In: Zachos F, Habel JC (eds) Biodiversity hotspots. Springer Publishers, Heidelberg. doi: 10.1007/978-3-642-20992-5_25

    Google Scholar 

  • Brey T, Dahm C, Gorny M, Klages M, Stiller M, Arntz W (1996) Do Antarctic benthic invertebrates show an extended level of eurybathy? Antarctic Sci 8(1):3–6

    Article  Google Scholar 

  • Brown B, Gaina C, Müller RD (2006) Circum-Antarctic palaeobathymetry: illustrated examples from cenozoic to recent times. Palaeoceanogr Palaeoclimatol Palaeoecol 231:158–168

    Article  Google Scholar 

  • Clarke A, Johnston NM (2003) Antarctic marine benthic diversity. Oceanogr Mar Biol Ann Rev 41:47–114

    Google Scholar 

  • Clarke A, Arntz WE, Smith CR (2006) EASIZ: Ecology of the antarctic sea ice zone. Deep-Sea Res II 53:803–1140

    Article  Google Scholar 

  • Clarke A, Murphy EJ, Meredith MP, King JC, Peck LS, Barnes DKA, Smith RC (2007) Climate change and the marine ecosystem of the western Antarctic Peninsula. Phil Trans Roy Soc London B 362:149–166

    Article  Google Scholar 

  • Clarke A, Griffiths HJ, Barnes DKA, Meredith MP, Grant SM (2009) Spatial variation in seabed temperatures in the southern ocean: implications for benthic ecology and biogeography. J Geophys Res 114 doi:10.1029/2008JG000886

  • Clarke A, Crame AJ (2010) Evolutionary dynamics at high latitudes: speciation and extinction in polar marine faunas. Philos Trans R Soc B 365:3655–3666. doi:10.1098/rstb.2010.0270

    Article  Google Scholar 

  • Crame AJ (1999) An evolutionary perspective on marine faunal connections between southernmost South America and Antarctica. Sci Mar 63:1–14

    Article  Google Scholar 

  • Cronin TM, Raymo ME (1997) Orbital forcing of deep-sea benthic species diversity. Nature 385:624–627

    Article  CAS  Google Scholar 

  • Dayton PK (1990) Polar benthos. Polar Oceanogr, Part B: Chem, Biol Geol 1:631–683

    Google Scholar 

  • De Broyer C, Jazdzewski K, Dauby P (2003) Biodiversity in the SO: lessons from Crustacea. In: Huiskes AHL, Gieskes WWC, Rozema J, Schorno RML, van der Vies SM, WJ Wolff (eds) Antarctic biology in a global Context, 201–214

    Google Scholar 

  • Dupont S, Thorndyke MC (2009) Impact of CO2-driven ocean acidification on invertebrates early life-history—What we know, what we need to know and what we can do. Biogeosci 6:3109–3131

    Google Scholar 

  • Flores H, van Franeker J-A, Cisewski B, Leach H, van de Putte AP, Meesters HWG, Bathmann U, Wolff WJ (2011) Macrofauna under sea ice and in the open surface layer of the Lazarev Sea, Southern Ocean. Deep-Sea Res II: 1948–1961

    Google Scholar 

  • Fox D (2010) Could East Antarctica be headed for big melt? Science 328:1630–1631

    Article  CAS  Google Scholar 

  • Hartmann G (1997) Antarctic and subantarctic podocopa (ostracoda). Theses Zoologicae 26:1–355

    Google Scholar 

  • Held C (2003) Molecular evidence for cryptic speciation within the widespread Antarctic crustacean Ceratoserolis trilobitoides (Crustacea, Isopoda). In: Huiskes AHL, Gieskes WWC, Rozema J, Schorno RML, van der Vies SM, Wolff WJ (eds) Antarctic biology in a global context, 135–139

    Google Scholar 

  • Howe JA, Shimmield TM, Diaz R (2004) Deep-water sedimentary environments of the northwestern Weddell Sea and South Sandwich Islands. Antarctica. Deep-Sea Res II 51(14–16):1489–1515

    CAS  Google Scholar 

  • Iken K, Bluhm BA, Gradinger R (2005) Food web structure in the high Arctic Canada basin: evidence from δ13C and δ15N analysis. Polar Biol 28:238–249

    Article  Google Scholar 

  • Janussen D, Tendal OS (2007) Diversity and distribution of Porifera in the bathyal and abyssal Weddell Sea and adjacent areas. Deep-Sea Res II 54(16/17):1864–1875

    Article  Google Scholar 

  • Jamieson SSR, Sugden DE, Hulton NRJ (2010) The evolution of the subglacial landscape of Antarctica. Earth Planet Sci Lett 239:1–27

    Article  Google Scholar 

  • Kaiser S, Barnes DKA (2008) Southern Ocean deep-sea responses to climate change. Climate Res 37:165–179

    Article  Google Scholar 

  • Kaiser S, Barnes DKA, Sands CJ, Brandt A (2009) Biodiversity of the Amundsen Sea (southern ocean): spatial patterns of richness and abundance in shelf isopods. Mar Biodiv 39:27–43

    Article  Google Scholar 

  • Krylova EM, Sahling H (2010) Vesicomyidae (Bivalvia): current taxonomy and distribution. PLoS ONE5(4). doi:10.1371/journal.pone.0009957

  • Leese F, Kop A, Wägele J-W, Held C (2008) Cryptic speciation in a benthic isopod from Patagonian and Falkland Island waters and the impact of glaciations on its population structure. Frontiers Zool 5:19. doi:10.1186/1742-9994

    Article  Google Scholar 

  • Linse K, Cope T, Lörz A-N, Sands C (2007) Some evidence of cryptic speciation in the circum-Antarctic bivalve Lissarca notorcadensis (Arcoidea: Philobryidae). Polar Biol 30:1059–1068

    Article  Google Scholar 

  • Lipps JH, Hickman CS (1982) Origin, age, and evolution of Antarctic and deep-sea faunas. In: Ernst WG, Morin JG (eds) The environment of the deep sea, vol II. Rubey, Prentic Hall, pp 324–254

    Google Scholar 

  • Malyutina M, Brandt A (2007) Diversity and zoogeography of Antarctic deep-sea Munnopsidae (Crustacea, Isopoda, Asellota). Deep-Sea Res II 54:1790–1805

    Article  Google Scholar 

  • Meredith MP, King JC (2005) Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the twentieth century. Geophys Res Lett 32:L19604. doi:10.1029/2005GL024042

    Article  Google Scholar 

  • Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, Gnanadesikan A, Gruber N, Ishida A, Joos F, Key RM, Lindsay K, Maier-Reimer E, Matear R, Monfray P, Mouchet A, Najjar RG, Plattner GK, Rodgers KB, Sabine CL, Sarmiento JL, Schlitzer R, Slater RD, Totterdell IJ, Weirig MF, Yamanaka Y, Yool A (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686

    Article  CAS  Google Scholar 

  • Peck LS, Clarke MS, Morley SA, Massey A, Rossetti H (2009) Animal temperature limits and ecological relevance: effects of size, activity and rates of change. Functional Ecol 23:248–256

    Article  Google Scholar 

  • Poore GCB, Wilson GDF (1993) Marine species richness. Nature 361:597–598

    Article  Google Scholar 

  • Raupach MJ, Wägele J-W (2006) Distinguishing cryptic species in Antarctic Asellota (Crustacea: Isopoda)—a preliminary study of mitochondrial DNA in Acanthaspidia drygalskii. Ant Sci 18(2):191–198

    Article  Google Scholar 

  • Raupach M, Malyutina M, Brandt A, Wägele JW (2007) Molecular data reveal a highly diverse species flock within the munnopsoid deep-sea isopod Betamorpha fusiformis (Barnard 1920) (Crustacea: Isopoda: Asellota) in the SO. Deep-Sea Res II 54(16–17):1820–1831

    Article  Google Scholar 

  • Raupach MJ, Mayer C, Malyutina M, Wägele J-W (2009) Multiple origins of deep-sea Asellota (Crustacea: Isopoda) from shallow waters revealed by molecular data. Proc R Soc B 276:799–808. doi:10.1098/rspb.2008.1063

    Article  CAS  Google Scholar 

  • Rex MA, Stuart CT, Hessler RR, Allen JA, Sanders HL, Wilson GDF (1993) Global-scale latitudinal patterns of species diversity in the deep-sea benthos. Nature 365:636–639

    Article  Google Scholar 

  • Rex MA, Etter RJ, Stuart CT (1997) Large-scale patterns of species diversity in the deep-sea benthos. In: Ormond RFG, Gage JD, Angel MV (eds) Marine biodiversity: patterns and processes. Cambridge University Press, Cambridge, pp 94–122

    Chapter  Google Scholar 

  • Rex MA, McClain CR, Johnson NA, Etter RJ, Allen JA, Bouchet P, Warén A (2005) A source-sink hypothesis for abyssal biodiversity. Am Nat 165(2):163–178

    Article  Google Scholar 

  • Sanders HL (1965) Benthic marine diversity and the stability-time hypothesis. Brookh Symp Biol 22:78–81

    Google Scholar 

  • Sanders HL, Hessler RR (1969) Ecology of the deep-sea benthos. Science 163:1419–1424

    Article  CAS  Google Scholar 

  • Schüller M, Ebbe B (2007) Global distributional patterns of selected deep-sea polychaeta (Annelida) from the southern ocean. Deep-Sea Res II 54(16–17):1737–1751. doi:10.1016/j.dsr2.2007.07.005

    Article  Google Scholar 

  • Smith CR, De Leo FC, Bernardino AF, Sweetman AK, Martinez Arbizu P (2008) Abyssal food limitation, ecosystem structure and climate change. Trends Ecol Evol 23(9):518. doi:10.1016/j.tree.2008.05.002

    Article  Google Scholar 

  • Thomas E, Gooday AJ (1996) Cenozoic deep-sea benthic foraminifera: tracers for changes in oceanic productivity. Geology 24:355–358

    Article  CAS  Google Scholar 

  • Thomson MRA (2004) Geological and palaeoenvironmental history of the Scotia Sea region as a basis for biological interpretation. Deep-Sea Res II 51:1467–1487

    Article  Google Scholar 

  • Veit-Köhler G, Guilini K, Peeken I, Sachs O, Sauter EJ, Würzberg L (2011) Antarctic deep-sea meiofauna and bacteria react to the deposition of particulate organic matter after a phytoplankton bloom. Deep-Sea Res II 58:1983–1995

    Google Scholar 

  • Wilson GDF, Hessler RR (1987) Speciation in the deep Sea. Ann Rev Ecol Syst 18:185–207

    Article  CAS  Google Scholar 

  • Witman JD, Etter RJ, Smith F (2004) The relationship between regional and local species diversity in marine benthic communities: a global perspective. Proc Natl Acad Sci USA 101(44):15664–15669

    Article  CAS  Google Scholar 

  • Würzberg L, Peters J, Brandt A (2011a) Fatty acid patterns of Southern Ocean shelf and deep sea peracarid crustaceans and a possible food source, foraminiferans. Deep-Sea Res II 58:2027–2035

    Google Scholar 

  • Würzberg L, Peters J, Schüller M, Flores H, Brandt A (2011b) Demersal fishes from the Antarctic shelf and deep sea: a diet study based on fatty acid patterns and gut content analyses. Deep-Sea Res II 58:2036–2042

    Google Scholar 

  • Zachos JC, Dickens GR, Zeebe RE (2008) An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451:279–283

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author is grateful for scientific support to the CoML field projects CAML, CeDAMar and to SCAR for the support of ScarMarBIN. The Alfred-Wegener Institute for Polar- and Marine Sciences is thanked for logistics during the expeditions witha RV Polarstern, the German Science Foundation is thanked for financial support of the ANDEEP project (Br 1121/26). Alistair Crame’s kind review improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelika Brandt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brandt, A. (2012). Southern Ocean Deep-Sea Isopod Biodiversity Research: From Census to Ecosystem Functioning. In: di Prisco, G., Verde, C. (eds) Adaptation and Evolution in Marine Environments, Volume 1. From Pole to Pole. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27352-0_2

Download citation

Publish with us

Policies and ethics